1
|
Kumar A, Zhang X, Xin HL, Yan H, Huang X, Xu W, Mueller K. RadVolViz: An Information Display-Inspired Transfer Function Editor for Multivariate Volume Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:4464-4479. [PMID: 37030815 DOI: 10.1109/tvcg.2023.3263856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In volume visualization transfer functions are widely used for mapping voxel properties to color and opacity. Typically, volume density data are scalars which require simple 1D transfer functions to achieve this mapping. If the volume densities are vectors of three channels, one can straightforwardly map each channel to either red, green or blue, which requires a trivial extension of the 1D transfer function editor. We devise a new method that applies to volume data with more than three channels. These types of data often arise in scientific scanning applications, where the data are separated into spectral bands or chemical elements. Our method expands on prior work in which a multivariate information display, RadViz, was fused with a radial color map, in order to visualize multi-band 2D images. In this work, we extend this joint interface to blended volume rendering. The information display allows users to recognize the presence and value distribution of the multivariate voxels and the joint volume rendering display visualizes their spatial distribution. We design a set of operators and lenses that allow users to interactively control the mapping of the multivariate voxels to opacity and color. This enables users to isolate or emphasize volumetric structures with desired multivariate properties. Furthermore, it turns out that our method also enables more insightful displays even for RGB data. We demonstrate our method with three datasets obtained from spectral electron microscopy, high energy X-ray scanning, and atmospheric science.
Collapse
|
2
|
Warchol S, Troidl J, Muhlich J, Krueger R, Hoffer J, Lin T, Beyer J, Glassman E, Sorger PK, Pfister H. psudo: Exploring Multi-Channel Biomedical Image Data with Spatially and Perceptually Optimized Pseudocoloring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589087. [PMID: 38659870 PMCID: PMC11042212 DOI: 10.1101/2024.04.11.589087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Over the past century, multichannel fluorescence imaging has been pivotal in myriad scientific breakthroughs by enabling the spatial visualization of proteins within a biological sample. With the shift to digital methods and visualization software, experts can now flexibly pseudocolor and combine image channels, each corresponding to a different protein, to explore their spatial relationships. We thus propose psudo, an interactive system that allows users to create optimal color palettes for multichannel spatial data. In psudo, a novel optimization method generates palettes that maximize the perceptual differences between channels while mitigating confusing color blending in overlapping channels. We integrate this method into a system that allows users to explore multi-channel image data and compare and evaluate color palettes for their data. An interactive lensing approach provides on-demand feedback on channel overlap and a color confusion metric while giving context to the underlying channel values. Color palettes can be applied globally or, using the lens, to local regions of interest. We evaluate our palette optimization approach using three graphical perception tasks in a crowdsourced user study with 150 participants, showing that users are more accurate at discerning and comparing the underlying data using our approach. Additionally, we showcase psudo in a case study exploring the complex immune responses in cancer tissue data with a biologist.
Collapse
Affiliation(s)
- Simon Warchol
- Harvard John A. Paulson School Of Engineering And Applied Sciences
- Visual Computing Group, Harvard University
- Laboratory of Systems Pharmacology, Harvard Medical School
| | - Jakob Troidl
- Harvard John A. Paulson School Of Engineering And Applied Sciences
- Visual Computing Group, Harvard University
| | - Jeremy Muhlich
- Department of Systems Biology, Harvard Medical School
- Visual Computing Group, Harvard University
| | - Robert Krueger
- Laboratory of Systems Pharmacology, Harvard Medical School
| | - John Hoffer
- Department of Systems Biology, Harvard Medical School
- Laboratory of Systems Pharmacology, Harvard Medical School
| | - Tica Lin
- Harvard John A. Paulson School Of Engineering And Applied Sciences
- Visual Computing Group, Harvard University
| | - Johanna Beyer
- Harvard John A. Paulson School Of Engineering And Applied Sciences
- Visual Computing Group, Harvard University
| | - Elena Glassman
- Harvard John A. Paulson School Of Engineering And Applied Sciences
| | - Peter K Sorger
- Department of Systems Biology, Harvard Medical School
- Laboratory of Systems Pharmacology, Harvard Medical School
| | - Hanspeter Pfister
- Harvard John A. Paulson School Of Engineering And Applied Sciences
- Visual Computing Group, Harvard University
- Laboratory of Systems Pharmacology, Harvard Medical School
| |
Collapse
|
3
|
Quadri GJ, Nieves JA, Wiernik BM, Rosen P. Automatic Scatterplot Design Optimization for Clustering Identification. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:4312-4327. [PMID: 35816525 DOI: 10.1109/tvcg.2022.3189883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Scatterplots are among the most widely used visualization techniques. Compelling scatterplot visualizations improve understanding of data by leveraging visual perception to boost awareness when performing specific visual analytic tasks. Design choices in scatterplots, such as graphical encodings or data aspects, can directly impact decision-making quality for low-level tasks like clustering. Hence, constructing frameworks that consider both the perceptions of the visual encodings and the task being performed enables optimizing visualizations to maximize efficacy. In this article, we propose an automatic tool to optimize the design factors of scatterplots to reveal the most salient cluster structure. Our approach leverages the merge tree data structure to identify the clusters and optimize the choice of subsampling algorithm, sampling rate, marker size, and marker opacity used to generate a scatterplot image. We validate our approach with user and case studies that show it efficiently provides high-quality scatterplot designs from a large parameter space.
Collapse
|
4
|
Li K, Li J, Sun Y, Li C, Wang C. Color assignment optimization for categorical data visualization with adjacent blocks. J Vis (Tokyo) 2023. [DOI: 10.1007/s12650-022-00905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Yuan LP, Zeng W, Fu S, Zeng Z, Li H, Fu CW, Qu H. Deep Colormap Extraction From Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:4048-4060. [PMID: 33819157 DOI: 10.1109/tvcg.2021.3070876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article presents a new approach based on deep learning to automatically extract colormaps from visualizations. After summarizing colors in an input visualization image as a Lab color histogram, we pass the histogram to a pre-trained deep neural network, which learns to predict the colormap that produces the visualization. To train the network, we create a new dataset of ∼ 64K visualizations that cover a wide variety of data distributions, chart types, and colormaps. The network adopts an atrous spatial pyramid pooling module to capture color features at multiple scales in the input color histograms. We then classify the predicted colormap as discrete or continuous, and refine the predicted colormap based on its color histogram. Quantitative comparisons to existing methods show the superior performance of our approach on both synthetic and real-world visualizations. We further demonstrate the utility of our method with two use cases, i.e., color transfer and color remapping.
Collapse
|
6
|
Yuan J, Xiang S, Xia J, Yu L, Liu S. Evaluation of Sampling Methods for Scatterplots. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1720-1730. [PMID: 33074820 DOI: 10.1109/tvcg.2020.3030432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Given a scatterplot with tens of thousands of points or even more, a natural question is which sampling method should be used to create a small but "good" scatterplot for a better abstraction. We present the results of a user study that investigates the influence of different sampling strategies on multi-class scatterplots. The main goal of this study is to understand the capability of sampling methods in preserving the density, outliers, and overall shape of a scatterplot. To this end, we comprehensively review the literature and select seven typical sampling strategies as well as eight representative datasets. We then design four experiments to understand the performance of different strategies in maintaining: 1) region density; 2) class density; 3) outliers; and 4) overall shape in the sampling results. The results show that: 1) random sampling is preferred for preserving region density; 2) blue noise sampling and random sampling have comparable performance with the three multi-class sampling strategies in preserving class density; 3) outlier biased density based sampling, recursive subdivision based sampling, and blue noise sampling perform the best in keeping outliers; and 4) blue noise sampling outperforms the others in maintaining the overall shape of a scatterplot.
Collapse
|
8
|
Henglin M, Niiranen T, Watrous JD, Lagerborg KA, Antonelli J, Claggett BL, Demosthenes EJ, von Jeinsen B, Demler O, Vasan RS, Larson MG, Jain M, Cheng S. A Single Visualization Technique for Displaying Multiple Metabolite-Phenotype Associations. Metabolites 2019; 9:metabo9070128. [PMID: 31269707 PMCID: PMC6680673 DOI: 10.3390/metabo9070128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022] Open
Abstract
To assist with management and interpretation of human metabolomics data, which are rapidly increasing in quantity and complexity, we need better visualization tools. Using a dataset of several hundred metabolite measures profiled in a cohort of ~1500 individuals sampled from a population-based community study, we performed association analyses with eight demographic and clinical traits and outcomes. We compared frequently used existing graphical approaches with a novel ‘rain plot’ approach to display the results of these analyses. The ‘rain plot’ combines features of a raindrop plot and a conventional heatmap to convey results of multiple association analyses. A rain plot can simultaneously indicate effect size, directionality, and statistical significance of associations between metabolites and several traits. This approach enables visual comparison features of all metabolites examined with a given trait. The rain plot extends prior approaches and offers complementary information for data interpretation. Additional work is needed in data visualizations for metabolomics to assist investigators in the process of understanding and convey large-scale analysis results effectively, feasibly, and practically.
Collapse
Affiliation(s)
- Mir Henglin
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Teemu Niiranen
- National Institute for Health and Welfare, FI 00271 Helsinki, Finland
- Department of Medicine, Turku University Hospital and University of Turku, FI 20521 Turku, Finland
| | - Jeramie D Watrous
- Departments of Medicine & Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Kim A Lagerborg
- Departments of Medicine & Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Joseph Antonelli
- Department of Statistics, University of Florida, Gainesville, FL 32611, USA
| | - Brian L Claggett
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Emmanuella J Demosthenes
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Olga Demler
- Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ramachandran S Vasan
- Framingham Heart Study, Framingham, MA 01701, USA
- Preventive Medicine, Department of Medicine, Boston University Medical Center, Boston, MA 02215, USA
| | - Martin G Larson
- Framingham Heart Study, Framingham, MA 01701, USA
- Preventive Medicine, Department of Medicine, Boston University Medical Center, Boston, MA 02215, USA
- Biostatistics Department, School of Public Health, Boston University, Boston, MA 02215, USA
| | - Mohit Jain
- Departments of Medicine & Pharmacology, University of California San Diego, La Jolla, CA 92093, USA.
| | - Susan Cheng
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Framingham Heart Study, Framingham, MA 01701, USA.
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|