1
|
Sultanum N, Naeem F, Brudno M, Chevalier F. ChartWalk: Navigating large collections of text notes in electronic health records for clinical chart review. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:1244-1254. [PMID: 36166535 DOI: 10.1109/tvcg.2022.3209444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Before seeing a patient for the first time, healthcare workers will typically conduct a comprehensive clinical chart review of the patient's electronic health record (EHR). Within the diverse documentation pieces included there, text notes are among the most important and thoroughly perused segments for this task; and yet they are among the least supported medium in terms of content navigation and overview. In this work, we delve deeper into the task of clinical chart review from a data visualization perspective and propose a hybrid graphics+text approach via ChartWalk, an interactive tool to support the review of text notes in EHRs. We report on our iterative design process grounded in input provided by a diverse range of healthcare professionals, with steps including: (a) initial requirements distilled from interviews and the literature, (b) an interim evaluation to validate design decisions, and (c) a task-based qualitative evaluation of our final design. We contribute lessons learned to better support the design of tools not only for clinical chart reviews but also other healthcare-related tasks around medical text analysis.
Collapse
|
2
|
Wang Q, Chen Z, Wang Y, Qu H. A Survey on ML4VIS: Applying Machine Learning Advances to Data Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:5134-5153. [PMID: 34437063 DOI: 10.1109/tvcg.2021.3106142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inspired by the great success of machine learning (ML), researchers have applied ML techniques to visualizations to achieve a better design, development, and evaluation of visualizations. This branch of studies, known as ML4VIS, is gaining increasing research attention in recent years. To successfully adapt ML techniques for visualizations, a structured understanding of the integration of ML4VIS is needed. In this article, we systematically survey 88 ML4VIS studies, aiming to answer two motivating questions: "what visualization processes can be assisted by ML?" and "how ML techniques can be used to solve visualization problems? "This survey reveals seven main processes where the employment of ML techniques can benefit visualizations: Data Processing4VIS, Data-VIS Mapping, Insight Communication, Style Imitation, VIS Interaction, VIS Reading, and User Profiling. The seven processes are related to existing visualization theoretical models in an ML4VIS pipeline, aiming to illuminate the role of ML-assisted visualization in general visualizations. Meanwhile, the seven processes are mapped into main learning tasks in ML to align the capabilities of ML with the needs in visualization. Current practices and future opportunities of ML4VIS are discussed in the context of the ML4VIS pipeline and the ML-VIS mapping. While more studies are still needed in the area of ML4VIS, we hope this article can provide a stepping-stone for future exploration. A web-based interactive browser of this survey is available at https://ml4vis.github.io.
Collapse
|
3
|
Pei J. Construction of a Legal System of Corporate Social Responsibility Based on Big Data Analysis Technology. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2022; 2022:8448095. [PMID: 36246459 PMCID: PMC9568343 DOI: 10.1155/2022/8448095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/03/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022]
Abstract
The company is an essential organization in modern society, and the company has transformed from a purely economic organization to a corporate citizen that realizes economic responsibility and practices social responsibility at the same time. It is only by constructing a legal system of corporate social responsibility that companies can take social responsibility on the track of the legal system, realize the company's mission of the times, and achieve a win-win situation for both the company and society. This paper used the LDA and text clustering methods to analyze existing legal texts. It obtained the theme and text clustering results, thus proposing five aspects of the legal system construction framework to guide the corporate social responsibility legal system, which has pioneering significance.
Collapse
Affiliation(s)
- Jiuzheng Pei
- North China University of Water Resources and Electric Power, Zhengzhou 450000, China
| |
Collapse
|
4
|
Pandey A, Syeda UH, Shah C, Guerra-Gomez JA, Borkin MA. A State-of-the-Art Survey of Tasks for Tree Design and Evaluation With a Curated Task Dataset. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:3563-3584. [PMID: 33667165 DOI: 10.1109/tvcg.2021.3064037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the field of information visualization, the concept of "tasks" is an essential component of theories and methodologies for how a visualization researcher or a practitioner understands what tasks a user needs to perform and how to approach the creation of a new design. In this article, we focus on the collection of tasks for tree visualizations, a common visual encoding in many domains ranging from biology to computer science to geography. In spite of their commonality, no prior efforts exist to collect and abstractly define tree visualization tasks. We present a literature review of tree visualization articles and generate a curated dataset of over 200 tasks. To enable effective task abstraction for trees, we also contribute a novel extension of the Multi-Level Task Typology to include more specificity to support tree-specific tasks as well as a systematic procedure to conduct task abstractions for tree visualizations. All tasks in the dataset were abstracted with the novel typology extension and analyzed to gain a better understanding of the state of tree visualizations. These abstracted tasks can benefit visualization researchers and practitioners as they design evaluation studies or compare their analytical tasks with ones previously studied in the literature to make informed decisions about their design. We also reflect on our novel methodology and advocate more broadly for the creation of task-based knowledge repositories for different types of visualizations. The Supplemental Material, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TVCG.2021.3064037, will be maintained on OSF: https://osf.io/u5ehs/.
Collapse
|
5
|
Automatic and intelligent content visualization system based on deep learning and genetic algorithm. Neural Comput Appl 2022; 34:2473-2493. [PMID: 35068702 PMCID: PMC8760887 DOI: 10.1007/s00521-022-06887-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/04/2022] [Indexed: 11/22/2022]
Abstract
Increasing demand in distance education, e-learning, web-based learning, and other digital sectors (e.g., entertainment) has led to excessive amounts of e-content. Learning objects (LOs) are among the most important components of electronic content (e-content) and are preserved in learning object repositories (LORs). LORs produce different types of electronic content. In producing e-content, several visualization techniques are employed to attract users and ensure a better understanding of the provided information. Many of these visualization systems match images with corresponding text using methods such as semantic web, ontologies, natural language processing, statistical techniques, neural networks, and deep neural networks. Unlike these methods, in this study, an automatic and intelligent content visualization system is developed using deep learning and popular artificial intelligence techniques. The proposed system includes subsystems that segment images to panoptic image instances and use these image instances to generate new images using a genetic algorithm, an evolution-based technique that is one of the best-known artificial intelligence methods. This large-scale proposed system was used to test different amounts of LOs for various science fields. The results show that the developed system can be efficiently used to create visually enhanced content for digital use.
Collapse
|
6
|
Narechania A, Karduni A, Wesslen R, Wall E. VITALITY: Promoting Serendipitous Discovery of Academic Literature with Transformers & Visual Analytics. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:486-496. [PMID: 34587054 DOI: 10.1109/tvcg.2021.3114820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There are a few prominent practices for conducting reviews of academic literature, including searching for specific keywords on Google Scholar or checking citations from some initial seed paper(s). These approaches serve a critical purpose for academic literature reviews, yet there remain challenges in identifying relevant literature when similar work may utilize different terminology (e.g., mixed-initiative visual analytics papers may not use the same terminology as papers on model-steering, yet the two topics are relevant to one another). In this paper, we introduce a system, VITALITY, intended to complement existing practices. In particular, VITALITY promotes serendipitous discovery of relevant literature using transformer language models, allowing users to find semantically similar papers in a word embedding space given (1) a list of input paper(s) or (2) a working abstract. VITALITY visualizes this document-level embedding space in an interactive 2-D scatterplot using dimension reduction. VITALITY also summarizes meta information about the document corpus or search query, including keywords and co-authors, and allows users to save and export papers for use in a literature review. We present qualitative findings from an evaluation of VITALITY, suggesting it can be a promising complementary technique for conducting academic literature reviews. Furthermore, we contribute data from 38 popular data visualization publication venues in VITALITY, and we provide scrapers for the open-source community to continue to grow the list of supported venues.
Collapse
|
7
|
Yang W, Wang X, Lu J, Dou W, Liu S. Interactive Steering of Hierarchical Clustering. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:3953-3967. [PMID: 32746252 DOI: 10.1109/tvcg.2020.2995100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hierarchical clustering is an important technique to organize big data for exploratory data analysis. However, existing one-size-fits-all hierarchical clustering methods often fail to meet the diverse needs of different users. To address this challenge, we present an interactive steering method to visually supervise constrained hierarchical clustering by utilizing both public knowledge (e.g., Wikipedia) and private knowledge from users. The novelty of our approach includes 1) automatically constructing constraints for hierarchical clustering using knowledge (knowledge-driven) and intrinsic data distribution (data-driven), and 2) enabling the interactive steering of clustering through a visual interface (user-driven). Our method first maps each data item to the most relevant items in a knowledge base. An initial constraint tree is then extracted using the ant colony optimization algorithm. The algorithm balances the tree width and depth and covers the data items with high confidence. Given the constraint tree, the data items are hierarchically clustered using evolutionary Bayesian rose tree. To clearly convey the hierarchical clustering results, an uncertainty-aware tree visualization has been developed to enable users to quickly locate the most uncertain sub-hierarchies and interactively improve them. The quantitative evaluation and case study demonstrate that the proposed approach facilitates the building of customized clustering trees in an efficient and effective manner.
Collapse
|
8
|
Impresso Inspect and Compare. Visual Comparison of Semantically Enriched Historical Newspaper Articles. INFORMATION 2021. [DOI: 10.3390/info12090348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The automated enrichment of mass-digitised document collections using techniques such as text mining is becoming increasingly popular. Enriched collections offer new opportunities for interface design to allow data-driven and visualisation-based search, exploration and interpretation. Most such interfaces integrate close and distant reading and represent semantic, spatial, social or temporal relations, but often lack contrastive views. Inspect and Compare (I&C) contributes to the current state of the art in interface design for historical newspapers with highly versatile side-by-side comparisons of query results and curated article sets based on metadata and semantic enrichments. I&C takes search queries and pre-curated article sets as inputs and allows comparisons based on the distributions of newspaper titles, publication dates and automatically generated enrichments, such as language, article types, topics and named entities. Contrastive views of such data reveal patterns, help humanities scholars to improve search strategies and to facilitate a critical assessment of the overall data quality. I&C is part of the impresso interface for the exploration of digitised and semantically enriched historical newspapers.
Collapse
|
9
|
Chen C, Yuan J, Lu Y, Liu Y, Su H, Yuan S, Liu S. OoDAnalyzer: Interactive Analysis of Out-of-Distribution Samples. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:3335-3349. [PMID: 32070976 DOI: 10.1109/tvcg.2020.2973258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One major cause of performance degradation in predictive models is that the test samples are not well covered by the training data. Such not well-represented samples are called OoD samples. In this article, we propose OoDAnalyzer, a visual analysis approach for interactively identifying OoD samples and explaining them in context. Our approach integrates an ensemble OoD detection method and a grid-based visualization. The detection method is improved from deep ensembles by combining more features with algorithms in the same family. To better analyze and understand the OoD samples in context, we have developed a novel kNN-based grid layout algorithm motivated by Hall's theorem. The algorithm approximates the optimal layout and has O(kN2) time complexity, faster than the grid layout algorithm with overall best performance but O(N3) time complexity. Quantitative evaluation and case studies were performed on several datasets to demonstrate the effectiveness and usefulness of OoDAnalyzer.
Collapse
|
10
|
Ma C, Zhao Y, Curtis A, Kamw F, Al-Dohuki S, Yang J, Jamonnak S, Ali I. CLEVis: A Semantic Driven Visual Analytics System for Community Level Events. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2021; 41:49-62. [PMID: 32078538 DOI: 10.1109/mcg.2020.2973939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Community-level event (CLE) datasets, such as police reports of crime events, contain abundant semantic information of event situations, and descriptions in a geospatial-temporal context. They are critical for frontline users, such as police officers and social workers, to discover and examine insights about community neighborhoods. We propose CLEVis, a neighborhood visual analytics system for CLE datasets, to help frontline users explore events for insights at community regions of interest, namely fine-grained geographical resolutions, such as small neighborhoods around local restaurants, churches, and schools. CLEVis fully utilizes semantic information by integrating automatic algorithms and interactive visualizations. The design and development of CLEVis are conducted with solid collaborations with real-world community workers and social scientists. Case studies and user feedback are presented with real-world datasets and applications.
Collapse
|
11
|
Wang Q, Yuan J, Chen S, Su H, Qu H, Liu S. Visual Genealogy of Deep Neural Networks. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:3340-3352. [PMID: 31180859 DOI: 10.1109/tvcg.2019.2921323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A comprehensive and comprehensible summary of existing deep neural networks (DNNs) helps practitioners understand the behaviour and evolution of DNNs, offers insights for architecture optimization, and sheds light on the working mechanisms of DNNs. However, this summary is hard to obtain because of the complexity and diversity of DNN architectures. To address this issue, we develop DNN Genealogy, an interactive visualization tool, to offer a visual summary of representative DNNs and their evolutionary relationships. DNN Genealogy enables users to learn DNNs from multiple aspects, including architecture, performance, and evolutionary relationships. Central to this tool is a systematic analysis and visualization of 66 representative DNNs based on our analysis of 140 papers. A directed acyclic graph is used to illustrate the evolutionary relationships among these DNNs and highlight the representative DNNs. A focus + context visualization is developed to orient users during their exploration. A set of network glyphs is used in the graph to facilitate the understanding and comparing of DNNs in the context of the evolution. Case studies demonstrate that DNN Genealogy provides helpful guidance in understanding, applying, and optimizing DNNs. DNN Genealogy is extensible and will continue to be updated to reflect future advances in DNNs.
Collapse
|
12
|
Defragmenting Research Areas with Knowledge Visualization and Visual Text Analytics. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The increasing specialization of science is motivating the fragmentation of traditional and well-established research areas into interdisciplinary communities of practice that focus on cooperation between experts to solve problems in a wide range of domains. This is the case of problem-driven visualization research (PDVR), in which groups of scholars use visualization techniques in different application domains such as the digital humanities, bioinformatics, sports science, or computer security. In this paper, we employ the findings obtained during the development of a novel visual text analytics tool we built in previous studies, GlassViz, to automatically detect interesting knowledge associations and groups of common interests between these communities of practice. Our proposed method relies on the statistical modeling of author-assigned keywords to make its findings, which are demonstrated in two use cases. The results show that it is possible to propose interactive, semisupervised visual approaches that aim at defragmenting a body of research using text-based, automatic literature analysis methods.
Collapse
|
13
|
Abstract
Abstract
Text visualization and visual text analytics methods have been successfully applied for various tasks related to the analysis of individual text documents and large document collections such as summarization of main topics or identification of events in discourse. Visualization of sentiments and emotions detected in textual data has also become an important topic of interest, especially with regard to the data originating from social media. Despite the growing interest in this topic, the research problem related to detecting and visualizing various stances, such as rudeness or uncertainty, has not been adequately addressed by the existing approaches. The challenges associated with this problem include the development of the underlying computational methods and visualization of the corresponding multi-label stance classification results. In this paper, we describe our work on a visual analytics platform, called StanceVis Prime, which has been designed for the analysis of sentiment and stance in temporal text data from various social media data sources. The use case scenarios intended for StanceVis Prime include social media monitoring and research in sociolinguistics. The design was motivated by the requirements of collaborating domain experts in linguistics as part of a larger research project on stance analysis. Our approach involves consuming documents from several text stream sources and applying sentiment and stance classification, resulting in multiple data series associated with source texts. StanceVis Prime provides the end users with an overview of similarities between the data series based on dynamic time warping analysis, as well as detailed visualizations of data series values. Users can also retrieve and conduct both distant and close reading of the documents corresponding to the data series. We demonstrate our approach with case studies involving political targets of interest and several social media data sources and report preliminary user feedback received from a domain expert.
Graphic abstract
Collapse
|
14
|
Abstract
Text visualization is a rapidly growing sub-field of information visualization and visual analytics. There are many approaches and techniques introduced every year to address a wide range of challenges and analysis tasks, enabling researchers from different disciplines to obtain leading-edge knowledge from digitized collections of text. This can be challenging particularly when the data is massive. Additionally, the sources of digital text have spread substantially in the last decades in various forms, such as web pages, blogs, twitter, email, electronic publications, and digitized books. In response to the explosion of text visualization research literature, the first text visualization survey article was published in 2010. Furthermore, there are a growing number of surveys that review existing techniques and classify them based on text research methodology. In this work, we aim to present the first Survey of Surveys (SoS) that review all of the surveys and state-of-the-art papers on text visualization techniques and provide an SoS classification. We study and compare the 14 surveys, and categorize them into five groups: (1) Document-centered, (2) user task analysis, (3) cross-disciplinary, (4) multi-faceted, and (5) satellite-themed. We provide survey recommendations for researchers in the field of text visualization. The result is a very unique, valuable starting point and overview of the current state-of-the-art in text visualization research literature.
Collapse
|
15
|
|
16
|
Carrizosa E, Guerrero V, Hardt D, Romero Morales D. On Building Online Visualization Maps for News Data Streams by Means of Mathematical Optimization. BIG DATA 2018; 6:139-158. [PMID: 29924652 DOI: 10.1089/big.2018.0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this article we develop a novel online framework to visualize news data over a time horizon. First, we perform a Natural Language Processing analysis, wherein the words are extracted, and their attributes, namely the importance and the relatedness, are calculated. Second, we present a Mathematical Optimization model for the visualization problem and a numerical optimization approach. The model represents the words using circles, the time-varying area of which displays the importance of the words in each time period. Word location in the visualization region is guided by three criteria, namely, the accurate representation of semantic relatedness, the spread of the words in the visualization region to improve the quality of the visualization, and the visual stability over the time horizon. Our approach is flexible, allowing the user to interact with the display, as well as incremental and scalable. We show results for three case studies using data from Danish news sources.
Collapse
Affiliation(s)
- Emilio Carrizosa
- 1 Instituto de Matemáticas de la Universidad de Sevilla (IMUS) , Seville, Spain
| | - Vanesa Guerrero
- 2 Department of Statistics, Carlos III University of Madrid , Getafe, Spain
| | - Daniel Hardt
- 3 Department of Digitalization, Copenhagen Business School , Frederiksberg, Denmark
| | | |
Collapse
|