1
|
Hong J, Hnatyshyn R, Santos EAD, Maciejewski R, Isenberg T. A Survey of Designs for Combined 2D+3D Visual Representations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:2888-2902. [PMID: 38648152 DOI: 10.1109/tvcg.2024.3388516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We examine visual representations of data that make use of combinations of both 2D and 3D data mappings. Combining 2D and 3D representations is a common technique that allows viewers to understand multiple facets of the data with which they are interacting. While 3D representations focus on the spatial character of the data or the dedicated 3D data mapping, 2D representations often show abstract data properties and take advantage of the unique benefits of mapping to a plane. Many systems have used unique combinations of both types of data mappings effectively. Yet there are no systematic reviews of the methods in linking 2D and 3D representations. We systematically survey the relationships between 2D and 3D visual representations in major visualization publications-IEEE VIS, IEEE TVCG, and EuroVis-from 2012 to 2022. We closely examined 105 articles where 2D and 3D representations are connected visually, interactively, or through animation. These approaches are designed based on their visual environment, the relationships between their visual representations, and their possible layouts. Through our analysis, we introduce a design space as well as provide design guidelines for effectively linking 2D and 3D visual representations.
Collapse
|
2
|
Kopp W, Weinkauf T. Temporal Merge Tree Maps: A Topology-Based Static Visualization for Temporal Scalar Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:1157-1167. [PMID: 36155442 DOI: 10.1109/tvcg.2022.3209387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Creating a static visualization for a time-dependent scalar field is a non-trivial task, yet very insightful as it shows the dynamics in one picture. Existing approaches are based on a linearization of the domain or on feature tracking. Domain linearizations use space-filling curves to place all sample points into a 1D domain, thereby breaking up individual features. Feature tracking methods explicitly respect feature continuity in space and time, but generally neglect the data context in which those features live. We present a feature-based linearization of the spatial domain that keeps features together and preserves their context by involving all data samples. We use augmented merge trees to linearize the domain and show that our linearized function has the same merge tree as the original data. A greedy optimization scheme aligns the trees over time providing temporal continuity. This leads to a static 2D visualization with one temporal dimension, and all spatial dimensions compressed into one. We compare our method against other domain linearizations as well as feature-tracking approaches, and apply it to several real-world data sets.
Collapse
|
3
|
Zhou L, Fan M, Hansen C, Johnson CR, Weiskopf D. A Review of Three-Dimensional Medical Image Visualization. HEALTH DATA SCIENCE 2022; 2022:9840519. [PMID: 38487486 PMCID: PMC10880180 DOI: 10.34133/2022/9840519] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/17/2022] [Indexed: 03/17/2024]
Abstract
Importance. Medical images are essential for modern medicine and an important research subject in visualization. However, medical experts are often not aware of the many advanced three-dimensional (3D) medical image visualization techniques that could increase their capabilities in data analysis and assist the decision-making process for specific medical problems. Our paper provides a review of 3D visualization techniques for medical images, intending to bridge the gap between medical experts and visualization researchers.Highlights. Fundamental visualization techniques are revisited for various medical imaging modalities, from computational tomography to diffusion tensor imaging, featuring techniques that enhance spatial perception, which is critical for medical practices. The state-of-the-art of medical visualization is reviewed based on a procedure-oriented classification of medical problems for studies of individuals and populations. This paper summarizes free software tools for different modalities of medical images designed for various purposes, including visualization, analysis, and segmentation, and it provides respective Internet links.Conclusions. Visualization techniques are a useful tool for medical experts to tackle specific medical problems in their daily work. Our review provides a quick reference to such techniques given the medical problem and modalities of associated medical images. We summarize fundamental techniques and readily available visualization tools to help medical experts to better understand and utilize medical imaging data. This paper could contribute to the joint effort of the medical and visualization communities to advance precision medicine.
Collapse
Affiliation(s)
- Liang Zhou
- National Institute of Health Data Science, Peking University, Beijing, China
| | - Mengjie Fan
- National Institute of Health Data Science, Peking University, Beijing, China
| | - Charles Hansen
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, USA
| | - Chris R. Johnson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, USA
| | - Daniel Weiskopf
- Visualization Research Center (VISUS), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
4
|
Athawale TM, Maljovec D, Yan L, Johnson CR, Pascucci V, Wang B. Uncertainty Visualization of 2D Morse Complex Ensembles Using Statistical Summary Maps. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:1955-1966. [PMID: 32897861 PMCID: PMC8935531 DOI: 10.1109/tvcg.2020.3022359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Morse complexes are gradient-based topological descriptors with close connections to Morse theory. They are widely applicable in scientific visualization as they serve as important abstractions for gaining insights into the topology of scalar fields. Data uncertainty inherent to scalar fields due to randomness in their acquisition and processing, however, limits our understanding of Morse complexes as structural abstractions. We, therefore, explore uncertainty visualization of an ensemble of 2D Morse complexes that arises from scalar fields coupled with data uncertainty. We propose several statistical summary maps as new entities for quantifying structural variations and visualizing positional uncertainties of Morse complexes in ensembles. Specifically, we introduce three types of statistical summary maps - the probabilistic map, the significance map, and the survival map - to characterize the uncertain behaviors of gradient flows. We demonstrate the utility of our proposed approach using wind, flow, and ocean eddy simulation datasets.
Collapse
|
5
|
Zhou L, Johnson CR, Weiskopf D. Data-Driven Space-Filling Curves. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1591-1600. [PMID: 33048752 PMCID: PMC8464196 DOI: 10.1109/tvcg.2020.3030473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Abstract-We propose a data-driven space-filling curve method for 2D and 3D visualization. Our flexible curve traverses the data elements in the spatial domain in a way that the resulting linearization better preserves features in space compared to existing methods. We achieve such data coherency by calculating a Hamiltonian path that approximately minimizes an objective function that describes the similarity of data values and location coherency in a neighborhood. Our extended variant even supports multiscale data via quadtrees and octrees. Our method is useful in many areas of visualization including multivariate or comparative visualization ensemble visualization of 2D and 3D data on regular grids or multiscale visual analysis of particle simulations. The effectiveness of our method is evaluated with numerical comparisons to existing techniques and through examples of ensemble and multivariate datasets.
Collapse
|
6
|
Eulzer P, Bauer S, Kilian F, Lawonn K. Visualization of Human Spine Biomechanics for Spinal Surgery. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:700-710. [PMID: 33048710 DOI: 10.1109/tvcg.2020.3030388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We propose a visualization application, designed for the exploration of human spine simulation data. Our goal is to support research in biomechanical spine simulation and advance efforts to implement simulation-backed analysis in surgical applications. Biomechanical simulation is a state-of-the-art technique for analyzing load distributions of spinal structures. Through the inclusion of patient-specific data, such simulations may facilitate personalized treatment and customized surgical interventions. Difficulties in spine modelling and simulation can be partly attributed to poor result representation, which may also be a hindrance when introducing such techniques into a clinical environment. Comparisons of measurements across multiple similar anatomical structures and the integration of temporal data make commonly available diagrams and charts insufficient for an intuitive and systematic display of results. Therefore, we facilitate methods such as multiple coordinated views, abstraction and focus and context to display simulation outcomes in a dedicated tool. By linking the result data with patient-specific anatomy, we make relevant parameters tangible for clinicians. Furthermore, we introduce new concepts to show the directions of impact force vectors, which were not accessible before. We integrated our toolset into a spine segmentation and simulation pipeline and evaluated our methods with both surgeons and biomechanical researchers. When comparing our methods against standard representations that are currently in use, we found increases in accuracy and speed in data exploration tasks. in a qualitative review, domain experts deemed the tool highly useful when dealing with simulation result data, which typically combines time-dependent patient movement and the resulting force distributions on spinal structures.
Collapse
|
7
|
LYi S, Jo J, Seo J. Comparative Layouts Revisited: Design Space, Guidelines, and Future Directions. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1525-1535. [PMID: 33052858 DOI: 10.1109/tvcg.2020.3030419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present a systematic review on three comparative layouts-juxtaposition, superposition, and explicit-encoding-which are information visualization (InfoVis) layouts designed to support comparison tasks. For the last decade, these layouts have served as fundamental idioms in designing many visualization systems. However, we found that the layouts have been used with inconsistent terms and confusion, and the lessons from previous studies are fragmented. The goal of our research is to distill the results from previous studies into a consistent and reusable framework. We review 127 research papers, including 15 papers with quantitative user studies, which employed comparative layouts. We first alleviate the ambiguous boundaries in the design space of comparative layouts by suggesting lucid terminology (e.g., chart-wise and item-wise juxtaposition). We then identify the diverse aspects of comparative layouts, such as the advantages and concerns of using each layout in the real-world scenarios and researchers' approaches to overcome the concerns. Building our knowledge on top of the initial insights gained from the Gleicher et al.'s survey [19], we elaborate on relevant empirical evidence that we distilled from our survey (e.g., the actual effectiveness of the layouts in different study settings) and identify novel facets that the original work did not cover (e.g., the familiarity of the layouts to people). Finally, we show the consistent and contradictory results on the performance of comparative layouts and offer practical implications for using the layouts by suggesting trade-offs and seven actionable guidelines.
Collapse
|
8
|
Interactive Visual Analysis of Mass Spectrometry Imaging Data Using Linear and Non-Linear Embeddings. INFORMATION 2020. [DOI: 10.3390/info11120575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mass spectrometry imaging (MSI) is an imaging technique used in analytical chemistry to study the molecular distribution of various compounds at a micro-scale level. For each pixel, MSI stores a mass spectrum obtained by measuring signal intensities of thousands of mass-to-charge ratios (m/z-ratios), each linked to an individual molecular ion species. Traditional analysis tools focus on few individual m/z-ratios, which neglects most of the data. Recently, clustering methods of the spectral information have emerged, but faithful detection of all relevant image regions is not always possible. We propose an interactive visual analysis approach that considers all available information in coordinated views of image and spectral space visualizations, where the spectral space is treated as a multi-dimensional space. We use non-linear embeddings of the spectral information to interactively define clusters and respective image regions. Of particular interest is, then, which of the molecular ion species cause the formation of the clusters. We propose to use linear embeddings of the clustered data, as they allow for relating the projected views to the given dimensions. We document the effectiveness of our approach in analyzing matrix-assisted laser desorption/ionization (MALDI-2) imaging data with ground truth obtained from histological images.
Collapse
|
9
|
Wu F, Zhu S, Ye W. A Single Image 3D Reconstruction Method Based on a Novel Monocular Vision System. SENSORS 2020; 20:s20247045. [PMID: 33317002 PMCID: PMC7764691 DOI: 10.3390/s20247045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022]
Abstract
Three-dimensional (3D) reconstruction and measurement are popular techniques in precision manufacturing processes. In this manuscript, a single image 3D reconstruction method is proposed based on a novel monocular vision system, which includes a three-level charge coupled device (3-CCD) camera and a ring structured multi-color light emitting diode (LED) illumination. Firstly, a procedure for the calibration of the illumination's parameters, including LEDs' mounted angles, distribution density and incident angles, is proposed. Secondly, the incident light information, the color distribution information and gray level information are extracted from the acquired image, and the 3D reconstruction model is built based on the camera imaging model. Thirdly, the surface height information of the detected object within the field of view is computed based on the built model. The proposed method aims at solving the uncertainty and the slow convergence issues arising in 3D surface topography reconstruction using current shape-from-shading (SFS) methods. Three-dimensional reconstruction experimental tests are carried out on convex, concave, angular surfaces and on a mobile subscriber identification module (SIM) card slot, showing relative errors less than 3.6%, respectively. Advantages of the proposed method include a reduced time for 3D surface reconstruction compared to other methods, demonstrating good suitability of the proposed method in reconstructing surface 3D morphology.
Collapse
Affiliation(s)
- Fupei Wu
- Department of Mechanical Engineering, Shantou University, Shantou 515063, China;
- Key Laboratory of Intelligent Manufacturing Technology, Ministry of Education, Shantou University, Shantou 515063, China;
| | - Shukai Zhu
- Key Laboratory of Intelligent Manufacturing Technology, Ministry of Education, Shantou University, Shantou 515063, China;
| | - Weilin Ye
- Department of Mechanical Engineering, Shantou University, Shantou 515063, China;
- Correspondence:
| |
Collapse
|
10
|
Yano M, Itoh T, Tanaka Y, Matsuoka D, Araki F. A comparative visualization tool for ocean data analysis based on mode water regions. J Vis (Tokyo) 2020. [DOI: 10.1007/s12650-020-00629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Palenik J, Byska J, Bruckner S, Hauser H. Scale-Space Splatting: Reforming Spacetime for Cross-Scale Exploration of Integral Measures in Molecular Dynamics. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:643-653. [PMID: 31403429 DOI: 10.1109/tvcg.2019.2934258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding large amounts of spatiotemporal data from particle-based simulations, such as molecular dynamics, often relies on the computation and analysis of aggregate measures. These, however, by virtue of aggregation, hide structural information about the space/time localization of the studied phenomena. This leads to degenerate cases where the measures fail to capture distinct behaviour. In order to drill into these aggregate values, we propose a multi-scale visual exploration technique. Our novel representation, based on partial domain aggregation, enables the construction of a continuous scale-space for discrete datasets and the simultaneous exploration of scales in both space and time. We link these two scale-spaces in a scale-space space-time cube and model linked views as orthogonal slices through this cube, thus enabling the rapid identification of spatio-temporal patterns at multiple scales. To demonstrate the effectiveness of our approach, we showcase an advanced exploration of a protein-ligand simulation.
Collapse
|