1
|
Kuo YH, Liu D, Ma KL. SpreadLine: Visualizing Egocentric Dynamic Influence. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1050-1060. [PMID: 39269806 DOI: 10.1109/tvcg.2024.3456373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Egocentric networks, often visualized as node-link diagrams, portray the complex relationship (link) dynamics between an entity (node) and others. However, common analytics tasks are multifaceted, encompassing interactions among four key aspects: strength, function, structure, and content. Current node-link visualization designs may fall short, focusing narrowly on certain aspects and neglecting the holistic, dynamic nature of egocentric networks. To bridge this gap, we introduce SpreadLine, a novel visualization framework designed to enable the visual exploration of egocentric networks from these four aspects at the microscopic level. Leveraging the intuitive appeal of storyline visualizations, SpreadLine adopts a storyline-based design to represent entities and their evolving relationships. We further encode essential topological information in the layout and condense the contextual information in a metro map metaphor, allowing for a more engaging and effective way to explore temporal and attribute-based information. To guide our work, with a thorough review of pertinent literature, we have distilled a task taxonomy that addresses the analytical needs specific to egocentric network exploration. Acknowledging the diverse analytical requirements of users, SpreadLine offers customizable encodings to enable users to tailor the framework for their tasks. We demonstrate the efficacy and general applicability of SpreadLine through three diverse real-world case studies (disease surveillance, social media trends, and academic career evolution) and a usability study.
Collapse
|
2
|
Chen Q, Cao S, Wang J, Cao N. How Does Automation Shape the Process of Narrative Visualization: A Survey of Tools. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:4429-4448. [PMID: 37030780 DOI: 10.1109/tvcg.2023.3261320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In recent years, narrative visualization has gained much attention. Researchers have proposed different design spaces for various narrative visualization genres and scenarios to facilitate the creation process. As users' needs grow and automation technologies advance, increasingly more tools have been designed and developed. In this study, we summarized six genres of narrative visualization (annotated charts, infographics, timelines & storylines, data comics, scrollytelling & slideshow, and data videos) based on previous research and four types of tools (design spaces, authoring tools, ML/AI-supported tools and ML/AI-generator tools) based on the intelligence and automation level of the tools. We surveyed 105 papers and tools to study how automation can progressively engage in visualization design and narrative processes to help users easily create narrative visualizations. This research aims to provide an overview of current research and development in the automation involvement of narrative visualization tools. We discuss key research problems in each category and suggest new opportunities to encourage further research in the related domain.
Collapse
|
3
|
Valdrighi G, Ferreira N, Poco J. MoReVis: A Visual Summary for Spatiotemporal Moving Regions. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:1927-1941. [PMID: 37028073 DOI: 10.1109/tvcg.2023.3250166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Spatial and temporal interactions are central and fundamental in many activities in our world. A common problem faced when visualizing this type of data is how to provide an overview that helps users navigate efficiently. Traditional approaches use coordinated views or 3D metaphors like the Space-time cube to tackle this problem. However, they suffer from overplotting and often lack spatial context, hindering data exploration. More recent techniques, such as MotionRugs, propose compact temporal summaries based on 1D projection. While powerful, these techniques do not support the situation for which the spatial extent of the objects and their intersections is relevant, such as the analysis of surveillance videos or tracking weather storms. In this article, we propose MoReVis, a visual overview of spatiotemporal data that considers the objects' spatial extent and strives to show spatial interactions among these objects by displaying spatial intersections. Like previous techniques, our method involves projecting the spatial coordinates to 1D to produce compact summaries. However, our solution's core consists of performing a layout optimization step that sets the size and positions of the visual marks on the summary to resemble the actual values on the original space. We also provide multiple interactive mechanisms to make interpreting the results more straightforward for the user. We perform an extensive experimental evaluation and usage scenarios. Moreover, we evaluated the usefulness of MoReVis in a study with 9 participants. The results point out the effectiveness and suitability of our method in representing different datasets compared to traditional techniques.
Collapse
|
4
|
Hulstein G, Pena-Araya V, Bezerianos A. Geo-Storylines: Integrating Maps into Storyline Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:994-1004. [PMID: 36227814 DOI: 10.1109/tvcg.2022.3209480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Storyline visualizations are a powerful way to compactly visualize how the relationships between people evolve over time. Real-world relationships often also involve space, for example the cities that two political rivals visited together or alone over the years. By default, Storyline visualizations only show implicitly geospatial co-occurrence between people (drawn as lines), by bringing their lines together. Even the few designs that do explicitly show geographic locations only do so in abstract ways (e.g., annotations) and do not communicate geospatial information, such as the direction or extent of their political campains. We introduce Geo-Storylines, a collection of visualisation designs that integrate geospatial context into Storyline visualizations, using different strategies for compositing time and space. Our contribution is twofold. First, we present the results of a sketching workshop with 11 participants, that we used to derive a design space for integrating maps into Storylines. Second, by analyzing the strengths and weaknesses of the potential designs of the design space in terms of legibility and ability to scale to multiple relationships, we extract the three most promising: Time Glyphs, Coordinated Views, and Map Glyphs. We compare these three techniques first in a controlled study with 18 participants, under five different geospatial tasks and two maps of different complexity. We additionally collected informal feedback about their usefulness from domain experts in data journalism. Our results indicate that, as expected, detailed performance depends on the task. Nevertheless, Coordinated Views remain a highly effective and preferred technique across the board.
Collapse
|
5
|
Deng D, Wu A, Qu H, Wu Y. DashBot: Insight-Driven Dashboard Generation Based on Deep Reinforcement Learning. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:690-700. [PMID: 36179003 DOI: 10.1109/tvcg.2022.3209468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Analytical dashboards are popular in business intelligence to facilitate insight discovery with multiple charts. However, creating an effective dashboard is highly demanding, which requires users to have adequate data analysis background and be familiar with professional tools, such as Power BI. To create a dashboard, users have to configure charts by selecting data columns and exploring different chart combinations to optimize the communication of insights, which is trial-and-error. Recent research has started to use deep learning methods for dashboard generation to lower the burden of visualization creation. However, such efforts are greatly hindered by the lack of large-scale and high-quality datasets of dashboards. In this work, we propose using deep reinforcement learning to generate analytical dashboards that can use well-established visualization knowledge and the estimation capacity of reinforcement learning. Specifically, we use visualization knowledge to construct a training environment and rewards for agents to explore and imitate human exploration behavior with a well-designed agent network. The usefulness of the deep reinforcement learning model is demonstrated through ablation studies and user studies. In conclusion, our work opens up new opportunities to develop effective ML-based visualization recommenders without beforehand training datasets.
Collapse
|
6
|
MVST-SciVis: narrative visualization and analysis of compound events in scientific data. J Vis (Tokyo) 2022. [DOI: 10.1007/s12650-022-00893-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
SmartShots: An Optimization Approach for Generating Videos with Data Visualizations Embedded. ACM T INTERACT INTEL 2022. [DOI: 10.1145/3484506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Videos are well-received methods for storytellers to communicate various narratives. To further engage viewers, we introduce a novel visual medium where data visualizations are embedded into videos to present data insights. However, creating such data-driven videos requires professional video editing skills, data visualization knowledge, and even design talents. To ease the difficulty, we propose an optimization method and develop SmartShots, which facilitates the automatic integration of in-video visualizations. For its development, we first collaborated with experts from different backgrounds, including information visualization, design, and video production. Our discussions led to a design space that summarizes crucial design considerations along three dimensions: visualization, embedded layout, and rhythm. Based on that, we formulated an optimization problem that aims to address two challenges: (1) embedding visualizations while considering both contextual relevance and aesthetic principles and (2) generating videos by assembling multi-media materials. We show how SmartShots solves this optimization problem and demonstrate its usage in three cases. Finally, we report the results of semi-structured interviews with experts and amateur users on the usability of SmartShots.
Collapse
|
8
|
Wang Y, Peng TQ, Lu H, Wang H, Xie X, Qu H, Wu Y. Seek for Success: A Visualization Approach for Understanding the Dynamics of Academic Careers. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:475-485. [PMID: 34587034 DOI: 10.1109/tvcg.2021.3114790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
How to achieve academic career success has been a long-standing research question in social science research. With the growing availability of large-scale well-documented academic profiles and career trajectories, scholarly interest in career success has been reinvigorated, which has emerged to be an active research domain called the Science of Science (i.e., SciSci). In this study, we adopt an innovative dynamic perspective to examine how individual and social factors will influence career success over time. We propose ACSeeker, an interactive visual analytics approach to explore the potential factors of success and how the influence of multiple factors changes at different stages of academic careers. We first applied a Multi-factor Impact Analysis framework to estimate the effect of different factors on academic career success over time. We then developed a visual analytics system to understand the dynamic effects interactively. A novel timeline is designed to reveal and compare the factor impacts based on the whole population. A customized career line showing the individual career development is provided to allow a detailed inspection. To validate the effectiveness and usability of ACSeeker, we report two case studies and interviews with a social scientist and general researchers.
Collapse
|
9
|
Tang T, Wu Y, Wu Y, Yu L, Li Y. VideoModerator: A Risk-aware Framework for Multimodal Video Moderation in E-Commerce. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:846-856. [PMID: 34587029 DOI: 10.1109/tvcg.2021.3114781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Video moderation, which refers to remove deviant or explicit content from e-commerce livestreams, has become prevalent owing to social and engaging features. However, this task is tedious and time consuming due to the difficulties associated with watching and reviewing multimodal video content, including video frames and audio clips. To ensure effective video moderation, we propose VideoModerator, a risk-aware framework that seamlessly integrates human knowledge with machine insights. This framework incorporates a set of advanced machine learning models to extract the risk-aware features from multimodal video content and discover potentially deviant videos. Moreover, this framework introduces an interactive visualization interface with three views, namely, a video view, a frame view, and an audio view. In the video view, we adopt a segmented timeline and highlight high-risk periods that may contain deviant information. In the frame view, we present a novel visual summarization method that combines risk-aware features and video context to enable quick video navigation. In the audio view, we employ a storyline-based design to provide a multi-faceted overview which can be used to explore audio content. Furthermore, we report the usage of VideoModerator through a case scenario and conduct experiments and a controlled user study to validate its effectiveness.
Collapse
|
10
|
Bartolomeo SD, Zhang Y, Sheng F, Dunne C. Sequence Braiding: Visual Overviews of Temporal Event Sequences and Attributes. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1353-1363. [PMID: 33074822 DOI: 10.1109/tvcg.2020.3030442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Temporal event sequence alignment has been used in many domains to visualize nuanced changes and interactions over time. Existing approaches align one or two sentinel events. Overview tasks require examining all alignments of interest using interaction and time or juxtaposition of many visualizations. Furthermore, any event attribute overviews are not closely tied to sequence visualizations. We present Sequence Braiding, a novel overview visualization for temporal event sequences and attributes using a layered directed acyclic network. Sequence Braiding visually aligns many temporal events and attribute groups simultaneously and supports arbitrary ordering, absence, and duplication of events. In a controlled experiment we compare Sequence Braiding and IDMVis on user task completion time, correctness, error, and confidence. Our results provide good evidence that users of Sequence Braiding can understand high-level patterns and trends faster and with similar error. A full version of this paper with all appendices; the evaluation stimuli, data, and analysis code; and source code are available at [Formula: see text].
Collapse
|
11
|
Shu X, Wu A, Tang J, Bach B, Wu Y, Qu H. What Makes a Data-GIF Understandable? IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1492-1502. [PMID: 33048713 DOI: 10.1109/tvcg.2020.3030396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
GIFs are enjoying increasing popularity on social media as a format for data-driven storytelling with visualization; simple visual messages are embedded in short animations that usually last less than 15 seconds and are played in automatic repetition. In this paper, we ask the question, "What makes a data-GIF understandable?" While other storytelling formats such as data videos, infographics, or data comics are relatively well studied, we have little knowledge about the design factors and principles for "data-GIFs". To close this gap, we provide results from semi-structured interviews and an online study with a total of 118 participants investigating the impact of design decisions on the understandability of data-GIFs. The study and our consequent analysis are informed by a systematic review and structured design space of 108 data-GIFs that we found online. Our results show the impact of design dimensions from our design space such as animation encoding, context preservation, or repetition on viewers understanding of the GIF's core message. The paper concludes with a list of suggestions for creating more effective Data-GIFs.
Collapse
|
12
|
Baumgartl T, Petzold M, Wunderlich M, Hohn M, Archambault D, Lieser M, Dalpke A, Scheithauer S, Marschollek M, Eichel VM, Mutters NT, Consortium H, Landesberger TV. In Search of Patient Zero: Visual Analytics of Pathogen Transmission Pathways in Hospitals. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:711-721. [PMID: 33290223 DOI: 10.1109/tvcg.2020.3030437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pathogen outbreaks (i.e., outbreaks of bacteria and viruses) in hospitals can cause high mortality rates and increase costs for hospitals significantly. An outbreak is generally noticed when the number of infected patients rises above an endemic level or the usual prevalence of a pathogen in a defined population. Reconstructing transmission pathways back to the source of an outbreak - the patient zero or index patient - requires the analysis of microbiological data and patient contacts. This is often manually completed by infection control experts. We present a novel visual analytics approach to support the analysis of transmission pathways, patient contacts, the progression of the outbreak, and patient timelines during hospitalization. Infection control experts applied our solution to a real outbreak of Klebsiella pneumoniae in a large German hospital. Using our system, our experts were able to scale the analysis of transmission pathways to longer time intervals (i.e., several years of data instead of days) and across a larger number of wards. Also, the system is able to reduce the analysis time from days to hours. In our final study, feedback from twenty-five experts from seven German hospitals provides evidence that our solution brings significant benefits for analyzing outbreaks.
Collapse
|
13
|
Tang T, Li R, Wu X, Liu S, Knittel J, Koch S, Yu L, Ren P, Ertl T, Wu Y. PlotThread: Creating Expressive Storyline Visualizations using Reinforcement Learning. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:294-303. [PMID: 33048748 DOI: 10.1109/tvcg.2020.3030467] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Storyline visualizations are an effective means to present the evolution of plots and reveal the scenic interactions among characters. However, the design of storyline visualizations is a difficult task as users need to balance between aesthetic goals and narrative constraints. Despite that the optimization-based methods have been improved significantly in terms of producing aesthetic and legible layouts, the existing (semi-) automatic methods are still limited regarding 1) efficient exploration of the storyline design space and 2) flexible customization of storyline layouts. In this work, we propose a reinforcement learning framework to train an AI agent that assists users in exploring the design space efficiently and generating well-optimized storylines. Based on the framework, we introduce PlotThread, an authoring tool that integrates a set of flexible interactions to support easy customization of storyline visualizations. To seamlessly integrate the AI agent into the authoring process, we employ a mixed-initiative approach where both the agent and designers work on the same canvas to boost the collaborative design of storylines. We evaluate the reinforcement learning model through qualitative and quantitative experiments and demonstrate the usage of PlotThread using a collection of use cases.
Collapse
|
14
|
Rubab S, Tang J, Wu Y. Examining interaction techniques in data visualization authoring tools from the perspective of goals and human cognition: a survey. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-020-00705-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Chotisarn N, Lu J, Ma L, Xu J, Meng L, Lin B, Xu Y, Luo X, Chen W. Bubble storytelling with automated animation: a Brexit hashtag activism case study. J Vis (Tokyo) 2020; 24:101-115. [PMID: 32904885 PMCID: PMC7459253 DOI: 10.1007/s12650-020-00690-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/01/2020] [Accepted: 08/09/2020] [Indexed: 12/02/2022]
Abstract
Abstract Hashtag data are common and easy to acquire. Thus, they are widely used in studies and visual data storytelling. For example, a recent story by China Central Television Europe depicts Brexit as a hashtag movement displayed on an animated bubble chart. However, creating such a story is usually laborious and tedious, because narrators have to switch between different tools and discuss with different collaborators. To reduce the burden, we develop a prototype system to help explore the bubbles’ movement by automatically inserting animations connected to the storytelling of the video creators and the interaction of viewers to those videos. We demonstrate the usability of our method through both use cases and a semi-structured user study. Graphic abstract ![]()
Collapse
Affiliation(s)
| | - Junhua Lu
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Libinzi Ma
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Jingli Xu
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Linhao Meng
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Bingru Lin
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Ying Xu
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Xiaonan Luo
- Guilin University of Electronic Technology, Guilin, China
| | - Wei Chen
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
|
17
|
|