1
|
Wang J, Shu X, Bach B, Hinrichs U. Visualization Atlases: Explaining and Exploring Complex Topics Through Data, Visualization, and Narration. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:437-447. [PMID: 39302770 DOI: 10.1109/tvcg.2024.3456311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
This paper defines, analyzes, and discusses the emerging genre of visualization atlases. We currently witness an increase in web-based, data-driven initiatives that call themselves "atlases" while explaining complex, contemporary issues through data and visualizations: climate change, sustainability, AI, or cultural discoveries. To understand this emerging genre and inform their design, study, and authoring support, we conducted a systematic analysis of 33 visualization atlases and semi-structured interviews with eight visualization atlas creators. Based on our results, we contribute (1) a definition of a visualization atlas as a compendium of (web) pages aimed at explaining and supporting exploration of data about a dedicated topic through data, visualizations and narration. (2) a set of design patterns of 8 design dimensions, (3) insights into the atlas creation from interviews and (4) the definition of 5 visualization atlas genres. We found that visualization atlases are unique in the way they combine i) exploratory visualization, ii) narrative elements from data-driven storytelling and iii) structured navigation mechanisms. They target a wide range of audiences with different levels of domain knowledge, acting as tools for study, communication, and discovery. We conclude with a discussion of current design practices and emerging questions around the ethics and potential real-world impact of visualization atlases, aimed to inform the design and study of visualization atlases.
Collapse
|
2
|
Oral B, Dragicevic P, Telea A, Dimara E. Decoupling Judgment and Decision Making: A Tale of Two Tails. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:6928-6940. [PMID: 38145516 DOI: 10.1109/tvcg.2023.3346640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Is it true that if citizens understand hurricane probabilities, they will make more rational decisions for evacuation? Finding answers to such questions is not straightforward in the literature because the terms "judgment" and "decision making" are often used interchangeably. This terminology conflation leads to a lack of clarity on whether people make suboptimal decisions because of inaccurate judgments of information conveyed in visualizations or because they use alternative yet currently unknown heuristics. To decouple judgment from decision making, we review relevant concepts from the literature and present two preregistered experiments (N = 601) to investigate if the task (judgment versus decision making), the scenario (sports versus humanitarian), and the visualization (quantile dotplots, density plots, probability bars) affect accuracy. While experiment 1 was inconclusive, we found evidence for a difference in experiment 2. Contrary to our expectations and previous research, which found decisions less accurate than their direct-equivalent judgments, our results pointed in the opposite direction. Our findings further revealed that decisions were less vulnerable to status-quo bias, suggesting decision makers may disfavor responses associated with inaction. We also found that both scenario and visualization types can influence people's judgments and decisions. Although effect sizes are not large and results should be interpreted carefully, we conclude that judgments cannot be safely used as proxy tasks for decision making, and discuss implications for visualization research and beyond. Materials and preregistrations are available at https://osf.io/ufzp5/?view_only=adc0f78a23804c31bf7fdd9385cb264f.
Collapse
|
3
|
Panagiotidou G, Lamqaddam H, Poblome J, Brosens K, Verbert K, Vande Moere A. Communicating Uncertainty in Digital Humanities Visualization Research. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:635-645. [PMID: 36166561 DOI: 10.1109/tvcg.2022.3209436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Due to their historical nature, humanistic data encompass multiple sources of uncertainty. While humanists are accustomed to handling such uncertainty with their established methods, they are cautious of visualizations that appear overly objective and fail to communicate this uncertainty. To design more trustworthy visualizations for humanistic research, therefore, a deeper understanding of its relation to uncertainty is needed. We systematically reviewed 126 publications from digital humanities literature that use visualization as part of their research process, and examined how uncertainty was handled and represented in their visualizations. Crossing these dimensions with the visualization type and use, we identified that uncertainty originated from multiple steps in the research process from the source artifacts to their datafication. We also noted how besides known uncertainty coping strategies, such as excluding data and evaluating its effects, humanists also embraced uncertainty as a separate dimension important to retain. By mapping how the visualizations encoded uncertainty, we identified four approaches that varied in terms of explicitness and customization. This work contributes with two empirical taxonomies of uncertainty and it's corresponding coping strategies, as well as with the foundation of a research agenda for uncertainty visualization in the digital humanities. Our findings further the synergy among humanists and visualization researchers, and ultimately contribute to the development of more trustworthy, uncertainty-aware visualizations.
Collapse
|
4
|
Sarma A, Guo S, Hoffswell J, Rossi R, Du F, Koh E, Kay M. Evaluating the Use of Uncertainty Visualisations for Imputations of Data Missing At Random in Scatterplots. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:602-612. [PMID: 36166557 DOI: 10.1109/tvcg.2022.3209348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Most real-world datasets contain missing values yet most exploratory data analysis (EDA) systems only support visualising data points with complete cases. This omission may potentially lead the user to biased analyses and insights. Imputation techniques can help estimate the value of a missing data point, but introduces additional uncertainty. In this work, we investigate the effects of visualising imputed values in charts using different ways of representing data imputations and imputation uncertainty-no imputation, mean, 95% confidence intervals, probability density plots, gradient intervals, and hypothetical outcome plots. We focus on scatterplots, which is a commonly used chart type, and conduct a crowdsourced study with 202 participants. We measure users' bias and precision in performing two tasks-estimating average and detecting trend-and their self-reported confidence in performing these tasks. Our results suggest that, when estimating averages, uncertainty representations may reduce bias but at the cost of decreasing precision. When estimating trend, only hypothetical outcome plots may lead to a small probability of reducing bias while increasing precision. Participants in every uncertainty representation were less certain about their response when compared to the baseline. The findings point towards potential trade-offs in using uncertainty encodings for datasets with a large number of missing values. This paper and the associated analysis materials are available at: https://osf.io/q4y5r/.
Collapse
|
5
|
Quadri GJ, Rosen P. A Survey of Perception-Based Visualization Studies by Task. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:5026-5048. [PMID: 34283717 DOI: 10.1109/tvcg.2021.3098240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Knowledge of human perception has long been incorporated into visualizations to enhance their quality and effectiveness. The last decade, in particular, has shown an increase in perception-based visualization research studies. With all of this recent progress, the visualization community lacks a comprehensive guide to contextualize their results. In this report, we provide a systematic and comprehensive review of research studies on perception related to visualization. This survey reviews perception-focused visualization studies since 1980 and summarizes their research developments focusing on low-level tasks, further breaking techniques down by visual encoding and visualization type. In particular, we focus on how perception is used to evaluate the effectiveness of visualizations, to help readers understand and apply the principles of perception of their visualization designs through a task-optimized approach. We concluded our report with a summary of the weaknesses and open research questions in the area.
Collapse
|
6
|
Fernstad SJ, Westberg JJ. To Explore What Isn't There-Glyph-Based Visualization for Analysis of Missing Values. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:3513-3529. [PMID: 33690119 DOI: 10.1109/tvcg.2021.3065124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article contributes a novel visualization method, Missingness Glyph, for analysis and exploration of missing values in data. Missing values are a common challenge in most data generating domains and may cause a range of analysis issues. Missingness in data may indicate potential problems in data collection and pre-processing, or highlight important data characteristics. While the development and improvement of statistical methods for dealing with missing data is a research area in its own right, mainly focussing on replacing missing values with estimated values, considerably less focus has been put on visualization of missing values. Nonetheless, visualization and explorative analysis has great potential to support understanding of missingness in data, and to enable gaining of novel insights into patterns of missingness in a way that statistical methods are unable to. The Missingness Glyph supports identification of relevant missingness patterns in data, and is evaluated and compared to two other visualization methods in context of the missingness patterns. The results are promising and confirms that the Missingness Glyph in several cases perform better than the alternative visualization methods.
Collapse
|
7
|
Pittenger LM, Glassman AM, Mumbower S, Merritt DM, Bollenback D. Bounded Rationality: Managerial Decision-Making and Data. JOURNAL OF COMPUTER INFORMATION SYSTEMS 2022. [DOI: 10.1080/08874417.2022.2111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Linda M. Pittenger
- Embry-Riddle Aeronautical University - Worldwide, Daytona Beach, FL, USA
| | - Aaron M. Glassman
- Embry-Riddle Aeronautical University - Worldwide, Daytona Beach, FL, USA
| | - Stacey Mumbower
- Embry-Riddle Aeronautical University - Worldwide, Daytona Beach, FL, USA
| | - Daisha M. Merritt
- Embry-Riddle Aeronautical University - Worldwide, Daytona Beach, FL, USA
| | - Denise Bollenback
- Embry-Riddle Aeronautical University - Worldwide, Daytona Beach, FL, USA
| |
Collapse
|
8
|
A Visual Analysis Approach to Understand and Explore Quality Problems of AIS Data. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9020198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low quality automatic identification system (AIS) data often mislead analysts to a misunderstanding of ship behavior analysis and to making incorrect navigation risk assessments. It is therefore necessary to accurately understand and judge the quality problems in AIS data before a further analysis of ship behavior. Outliers were filtered in the existing methods of AIS quality analysis based only on mathematical models where AIS data related quality problems are not utilized and there is a lack of visual exploration. Thus, the human brain’s ability cannot be fully utilized to think visually and for reasoning. In this regard, a visual analytics (VA) approach called AIS Data Quality visualization (ADQvis) was designed and implemented here to support evaluations and explorations of AIS data quality. The system interface is overviewed and then the visualization model and corresponding human-computer interaction method are described in detail. Finally, case studies were carried out to demonstrate the effectiveness of our visual analytics approach for AIS quality problems.
Collapse
|
9
|
Rosen P, Quadri GJ. LineSmooth: An Analytical Framework for Evaluating the Effectiveness of Smoothing Techniques on Line Charts. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1536-1546. [PMID: 33048725 DOI: 10.1109/tvcg.2020.3030421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present a comprehensive framework for evaluating line chart smoothing methods under a variety of visual analytics tasks. Line charts are commonly used to visualize a series of data samples. When the number of samples is large, or the data are noisy, smoothing can be applied to make the signal more apparent. However, there are a wide variety of smoothing techniques available, and the effectiveness of each depends upon both nature of the data and the visual analytics task at hand. To date, the visualization community lacks a summary work for analyzing and classifying the various smoothing methods available. In this paper, we establish a framework, based on 8 measures of the line smoothing effectiveness tied to 8 low-level visual analytics tasks. We then analyze 12 methods coming from 4 commonly used classes of line chart smoothing-rank filters, convolutional filters, frequency domain filters, and subsampling. The results show that while no method is ideal for all situations, certain methods, such as Gaussian filters and TOPOLOGY-based subsampling, perform well in general. Other methods, such as low-pass CUTOFF filters and Douglas-peucker subsampling, perform well for specific visual analytics tasks. Almost as importantly, our framework demonstrates that several methods, including the commonly used UNIFORM subsampling, produce low-quality results, and should, therefore, be avoided, if possible.
Collapse
|
10
|
Whitlock M, Wu K, Szafir DA. Designing for Mobile and Immersive Visual Analytics in the Field. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:503-513. [PMID: 31425088 DOI: 10.1109/tvcg.2019.2934282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Data collection and analysis in the field is critical for operations in domains such as environmental science and public safety. However, field workers currently face data- and platform-oriented issues in efficient data collection and analysis in the field, such as limited connectivity, screen space, and attentional resources. In this paper, we explore how visual analytics tools might transform field practices by more deeply integrating data into these operations. We use a design probe coupling mobile, cloud, and immersive analytics components to guide interviews with ten experts from five domains to explore how visual analytics could support data collection and analysis needs in the field. The results identify shortcomings of current approaches and target scenarios and design considerations for future field analysis systems. We embody these findings in FieldView, an extensible, open-source prototype designed to support critical use cases for situated field analysis. Our findings suggest the potential for integrating mobile and immersive technologies to enhance data's utility for various field operations and new directions for visual analytics tools to transform fieldwork.
Collapse
|