1
|
Oral E, Chawla R, Wijkstra M, Mahyar N, Dimara E. From Information to Choice: A Critical Inquiry Into Visualization Tools for Decision Making. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:359-369. [PMID: 37871054 DOI: 10.1109/tvcg.2023.3326593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In the face of complex decisions, people often engage in a three-stage process that spans from (1) exploring and analyzing pertinent information (intelligence); (2) generating and exploring alternative options (design); and ultimately culminating in (3) selecting the optimal decision by evaluating discerning criteria (choice). We can fairly assume that all good visualizations aid in the "intelligence" stage by enabling data exploration and analysis. Yet, to what degree and how do visualization systems currently support the other decision making stages, namely "design" and "choice"? To further explore this question, we conducted a comprehensive review of decision-focused visualization tools by examining publications in major visualization journals and conferences, including VIS, EuroVis, and CHI, spanning all available years. We employed a deductive coding method and in-depth analysis to assess whether and how visualization tools support design and choice. Specifically, we examined each visualization tool by (i) its degree of visibility for displaying decision alternatives, criteria, and preferences, and (ii) its degree of flexibility for offering means to manipulate the decision alternatives, criteria, and preferences with interactions such as adding, modifying, changing mapping, and filtering. Our review highlights the opportunities and challenges that decision-focused visualization tools face in realizing their full potential to support all stages of the decision making process. It reveals a surprising scarcity of tools that support all stages, and while most tools excel in offering visibility for decision criteria and alternatives, the degree of flexibility to manipulate these elements is often limited, and the lack of tools that accommodate decision preferences and their elicitation is notable. Based on our findings, to better support the choice stage, future research could explore enhancing flexibility levels and variety, exploring novel visualization paradigms, increasing algorithmic support, and ensuring that this automation is user-controlled via the enhanced flexibility I evels. Our curated list of the 88 surveyed visualization tools is available in the OSF link (https://osf.io/nrasz/?view_only=b92a90a34ae241449b5f2cd33383bfcb).
Collapse
|
2
|
Hou Y, Zhu H, Liang HN, Yu L. A study of the effect of star glyph parameters on value estimation and comparison. J Vis (Tokyo) 2022. [DOI: 10.1007/s12650-022-00888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Xia J, Zhang Y, Song J, Chen Y, Wang Y, Liu S. Revisiting Dimensionality Reduction Techniques for Visual Cluster Analysis: An Empirical Study. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:529-539. [PMID: 34587015 DOI: 10.1109/tvcg.2021.3114694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dimensionality Reduction (DR) techniques can generate 2D projections and enable visual exploration of cluster structures of high-dimensional datasets. However, different DR techniques would yield various patterns, which significantly affect the performance of visual cluster analysis tasks. We present the results of a user study that investigates the influence of different DR techniques on visual cluster analysis. Our study focuses on the most concerned property types, namely the linearity and locality, and evaluates twelve representative DR techniques that cover the concerned properties. Four controlled experiments were conducted to evaluate how the DR techniques facilitate the tasks of 1) cluster identification, 2) membership identification, 3) distance comparison, and 4) density comparison, respectively. We also evaluated users' subjective preference of the DR techniques regarding the quality of projected clusters. The results show that: 1) Non-linear and Local techniques are preferred in cluster identification and membership identification; 2) Linear techniques perform better than non-linear techniques in density comparison; 3) UMAP (Uniform Manifold Approximation and Projection) and t-SNE (t-Distributed Stochastic Neighbor Embedding) perform the best in cluster identification and membership identification; 4) NMF (Nonnegative Matrix Factorization) has competitive performance in distance comparison; 5) t-SNLE (t-Distributed Stochastic Neighbor Linear Embedding) has competitive performance in density comparison.
Collapse
|
4
|
CNERVis: a visual diagnosis tool for Chinese named entity recognition. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-021-00799-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Cheng S, Li X, Shan G, Niu B, Wang Y, Luo M. ACMViz: a visual analytics approach to understand DRL-based autonomous control model. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-021-00793-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Takama Y, Tanaka Y, Mori Y, Shibata H. Treemap-Based Cluster Visualization and its Application to Text Data Analysis. JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS 2021. [DOI: 10.20965/jaciii.2021.p0498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper proposes Treemap-based visualization for supporting cluster analysis of multi-dimensional data. It is important to grasp data distribution in a target dataset for such tasks as machine learning and cluster analysis. When dealing with multi-dimensional data such as statistical data and document datasets, dimensionality reduction algorithms are usually applied to project original data to lower-dimensional space. However, dimensionality reduction tends to lose the characteristics of data in the original space. In particular, the border between different data groups could not be represented correctly in lower-dimensional space. To overcome this problem, the proposed visualization method applies Fuzzy c-Means to target data and visualizes the result on the basis of the highest and the second-highest membership values with Treemap. Visualizing the information about not only the closest clusters but also the second closest ones is expected to be useful for identifying objects around the border between different clusters, as well as for understanding the relationship between different clusters. A prototype interface is implemented, of which the effectiveness is investigated with a user experiment on a news articles dataset. As another kind of text data, a case study of applying it to a word embedding space is also shown.
Collapse
|
7
|
Visual selection of standard wells for large scale logging data via discrete choice model. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.01.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Zhao Y, Jiang H, Chen Q, Qin Y, Xie H, Wu Y, Liu S, Zhou Z, Xia J, Zhou F. Preserving Minority Structures in Graph Sampling. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1698-1708. [PMID: 33048731 DOI: 10.1109/tvcg.2020.3030428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sampling is a widely used graph reduction technique to accelerate graph computations and simplify graph visualizations. By comprehensively analyzing the literature on graph sampling, we assume that existing algorithms cannot effectively preserve minority structures that are rare and small in a graph but are very important in graph analysis. In this work, we initially conduct a pilot user study to investigate representative minority structures that are most appealing to human viewers. We then perform an experimental study to evaluate the performance of existing graph sampling algorithms regarding minority structure preservation. Results confirm our assumption and suggest key points for designing a new graph sampling approach named mino-centric graph sampling (MCGS). In this approach, a triangle-based algorithm and a cut-point-based algorithm are proposed to efficiently identify minority structures. A set of importance assessment criteria are designed to guide the preservation of important minority structures. Three optimization objectives are introduced into a greedy strategy to balance the preservation between minority and majority structures and suppress the generation of new minority structures. A series of experiments and case studies are conducted to evaluate the effectiveness of the proposed MCGS.
Collapse
|
9
|
Zhou Z, Shi C, Shen X, Cai L, Wang H, Liu Y, Zhao Y, Chen W. Context-aware Sampling of Large Networks via Graph Representation Learning. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1709-1719. [PMID: 33052861 DOI: 10.1109/tvcg.2020.3030440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Numerous sampling strategies have been proposed to simplify large-scale networks for highly readable visualizations. It is of great challenge to preserve contextual structures formed by nodes and edges with tight relationships in a sampled graph, because they are easily overlooked during the process of sampling due to their irregular distribution and immunity to scale. In this paper, a new graph sampling method is proposed oriented to the preservation of contextual structures. We first utilize a graph representation learning (GRL) model to transform nodes into vectors so that the contextual structures in a network can be effectively extracted and organized. Then, we propose a multi-objective blue noise sampling model to select a subset of nodes in the vectorized space to preserve contextual structures with the retention of relative data and cluster densities in addition to those features of significance, such as bridging nodes and graph connections. We also design a set of visual interfaces enabling users to interactively conduct context-aware sampling, visually compare results with various sampling strategies, and deeply explore large networks. Case studies and quantitative comparisons based on real-world datasets have demonstrated the effectiveness of our method in the abstraction and exploration of large networks.
Collapse
|
10
|
A visual uncertainty analytics approach for weather forecast similarity measurement based on fuzzy clustering. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-020-00709-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
|
12
|
|
13
|
Mei H, Chen W, Wei Y, Hu Y, Zhou S, Lin B, Zhao Y, Xia J. RSATree: Distribution-Aware Data Representation of Large-Scale Tabular Datasets for Flexible Visual Query. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:1161-1171. [PMID: 31443022 DOI: 10.1109/tvcg.2019.2934800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Analysts commonly investigate the data distributions derived from statistical aggregations of data that are represented by charts, such as histograms and binned scatterplots, to visualize and analyze a large-scale dataset. Aggregate queries are implicitly executed through such a process. Datasets are constantly extremely large; thus, the response time should be accelerated by calculating predefined data cubes. However, the queries are limited to the predefined binning schema of preprocessed data cubes. Such limitation hinders analysts' flexible adjustment of visual specifications to investigate the implicit patterns in the data effectively. Particularly, RSATree enables arbitrary queries and flexible binning strategies by leveraging three schemes, namely, an R-tree-based space partitioning scheme to catch the data distribution, a locality-sensitive hashing technique to achieve locality-preserving random access to data items, and a summed area table scheme to support interactive query of aggregated values with a linear computational complexity. This study presents and implements a web-based visual query system that supports visual specification, query, and exploration of large-scale tabular data with user-adjustable granularities. We demonstrate the efficiency and utility of our approach by performing various experiments on real-world datasets and analyzing time and space complexity.
Collapse
|
14
|
Wei Y, Mei H, Zhao Y, Zhou S, Lin B, Jiang H, Chen W. Evaluating Perceptual Bias During Geometric Scaling of Scatterplots. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:321-331. [PMID: 31403425 DOI: 10.1109/tvcg.2019.2934208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Scatterplots are frequently scaled to fit display areas in multi-view and multi-device data analysis environments. A common method used for scaling is to enlarge or shrink the entire scatterplot together with the inside points synchronously and proportionally. This process is called geometric scaling. However, geometric scaling of scatterplots may cause a perceptual bias, that is, the perceived and physical values of visual features may be dissociated with respect to geometric scaling. For example, if a scatterplot is projected from a laptop to a large projector screen, then observers may feel that the scatterplot shown on the projector has fewer points than that viewed on the laptop. This paper presents an evaluation study on the perceptual bias of visual features in scatterplots caused by geometric scaling. The study focuses on three fundamental visual features (i.e., numerosity, correlation, and cluster separation) and three hypotheses that are formulated on the basis of our experience. We carefully design three controlled experiments by using well-prepared synthetic data and recruit participants to complete the experiments on the basis of their subjective experience. With a detailed analysis of the experimental results, we obtain a set of instructive findings. First, geometric scaling causes a bias that has a linear relationship with the scale ratio. Second, no significant difference exists between the biases measured from normally and uniformly distributed scatterplots. Third, changing the point radius can correct the bias to a certain extent. These findings can be used to inspire the design decisions of scatterplots in various scenarios.
Collapse
|
15
|
Zhao Y, Luo X, Lin X, Wang H, Kui X, Zhou F, Wang J, Chen Y, Chen W. Visual Analytics for Electromagnetic Situation Awareness in Radio Monitoring and Management. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:590-600. [PMID: 31443001 DOI: 10.1109/tvcg.2019.2934655] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Traditional radio monitoring and management largely depend on radio spectrum data analysis, which requires considerable domain experience and heavy cognition effort and frequently results in incorrect signal judgment and incomprehensive situation awareness. Faced with increasingly complicated electromagnetic environments, radio supervisors urgently need additional data sources and advanced analytical technologies to enhance their situation awareness ability. This paper introduces a visual analytics approach for electromagnetic situation awareness. Guided by a detailed scenario and requirement analysis, we first propose a signal clustering method to process radio signal data and a situation assessment model to obtain qualitative and quantitative descriptions of the electromagnetic situations. We then design a two-module interface with a set of visualization views and interactions to help radio supervisors perceive and understand the electromagnetic situations by a joint analysis of radio signal data and radio spectrum data. Evaluations on real-world data sets and an interview with actual users demonstrate the effectiveness of our prototype system. Finally, we discuss the limitations of the proposed approach and provide future work directions.
Collapse
|
16
|
Khayat M, Karimzadeh M, Ebert DS, Ghafoor A. The Validity, Generalizability and Feasibility of Summative Evaluation Methods in Visual Analytics. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:353-363. [PMID: 31425085 DOI: 10.1109/tvcg.2019.2934264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many evaluation methods have been used to assess the usefulness of Visual Analytics (VA) solutions. These methods stem from a variety of origins with different assumptions and goals, which cause confusion about their proofing capabilities. Moreover, the lack of discussion about the evaluation processes may limit our potential to develop new evaluation methods specialized for VA. In this paper, we present an analysis of evaluation methods that have been used to summatively evaluate VA solutions. We provide a survey and taxonomy of the evaluation methods that have appeared in the VAST literature in the past two years. We then analyze these methods in terms of validity and generalizability of their findings, as well as the feasibility of using them. We propose a new metric called summative quality to compare evaluation methods according to their ability to prove usefulness, and make recommendations for selecting evaluation methods based on their summative quality in the VA domain.
Collapse
|
17
|
Zhao Y, Wang L, Li S, Zhou F, Lin X, Lu Q, Ren L. A Visual Analysis Approach for Understanding Durability Test Data of Automotive Products. ACM T INTEL SYST TEC 2019. [DOI: 10.1145/3345640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
People face data-rich manufacturing environments in Industry 4.0. As an important technology for explaining and understanding complex data, visual analytics has been increasingly introduced into industrial data analysis scenarios. With the durability test of automotive starters as background, this study proposes a visual analysis approach for understanding large-scale and long-term durability test data. Guided by detailed scenario and requirement analyses, we first propose a migration-adapted clustering algorithm that utilizes a segmentation strategy and a group of matching-updating operations to achieve an efficient and accurate clustering analysis of the data for starting mode identification and abnormal test detection. We then design and implement a visual analysis system that provides a set of user-friendly visual designs and lightweight interactions to help people gain data insights into the test process overview, test data patterns, and durability performance dynamics. Finally, we conduct a quantitative algorithm evaluation, case study, and user interview by using real-world starter durability test datasets. The results demonstrate the effectiveness of the approach and its possible inspiration for the durability test data analysis of other similar industrial products.
Collapse
Affiliation(s)
- Ying Zhao
- Central South University, Changsha, Hunan, China
| | - Lei Wang
- Central South University, Changsha, Hunan, China
| | - Shijie Li
- Central South University, Changsha, Hunan, China
| | | | - Xiaoru Lin
- Central South University, Changsha, Hunan, China
| | - Qiang Lu
- Hefei University of Technology 8 China and Anhui Province Key Laboratory of Industry Safety and Emergency Technology, Hefei, Anhui, China
| | - Lei Ren
- Beihang University, Beijing, China
| |
Collapse
|
18
|
Han D, Pan J, Guo F, Luo X, Wu Y, Zheng W, Chen W. RankBrushers: interactive analysis of temporal ranking ensembles. J Vis (Tokyo) 2019. [DOI: 10.1007/s12650-019-00598-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Fan X, Li C, Yuan X, Dong X, Liang J. An interactive visual analytics approach for network anomaly detection through smart labeling. J Vis (Tokyo) 2019. [DOI: 10.1007/s12650-019-00580-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Liu Y, Guo Z, Zhang X, Zhang R, Zhou Z. (ChinaVis 2019) uncertainty visualization in stratigraphic correlation based on multi-source data fusion. J Vis (Tokyo) 2019. [DOI: 10.1007/s12650-019-00579-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Wang Z, Li R, Bi C. Image-based facial pore detection and visualization in skin health evaluation. J Vis (Tokyo) 2019. [DOI: 10.1007/s12650-019-00581-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
FuzzyRadar: visualization for understanding fuzzy clusters. J Vis (Tokyo) 2019. [DOI: 10.1007/s12650-019-00577-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Luo X, Yuan Y, Zhang K, Xia J, Zhou Z, Chang L, Gu T. Enhancing statistical charts: toward better data visualization and analysis. J Vis (Tokyo) 2019. [DOI: 10.1007/s12650-019-00569-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Chen Y, Guan Z, Zhang R, Du X, Wang Y. A survey on visualization approaches for exploring association relationships in graph data. J Vis (Tokyo) 2019. [DOI: 10.1007/s12650-019-00551-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Zhou F, Lin X, Liu C, Zhao Y, Xu P, Ren L, Xue T, Ren L. A survey of visualization for smart manufacturing. J Vis (Tokyo) 2018. [DOI: 10.1007/s12650-018-0530-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|