1
|
Han C, Isaacs KE. A Deixis-Centered Approach for Documenting Remote Synchronous Communication Around Data Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:930-940. [PMID: 39255160 DOI: 10.1109/tvcg.2024.3456351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Referential gestures, or as termed in linguistics, deixis, are an essential part of communication around data visualizations. Despite their importance, such gestures are often overlooked when documenting data analysis meetings. Transcripts, for instance, fail to capture gestures, and video recordings may not adequately capture or emphasize them. We introduce a novel method for documenting collaborative data meetings that treats deixis as a first-class citizen. Our proposed framework captures cursor-based gestural data along with audio and converts them into interactive documents. The framework leverages a large language model to identify word correspondences with gestures. These identified references are used to create context-based annotations in the resulting interactive document. We assess the effectiveness of our proposed method through a user study, finding that participants preferred our automated interactive documentation over recordings, transcripts, and manual note-taking. Furthermore, we derive a preliminary taxonomy of cursor-based deictic gestures from participant actions during the study. This taxonomy offers further opportunities for better utilizing cursor-based deixis in collaborative data analysis scenarios.
Collapse
|
2
|
Patnaik B, Peng H, Elmqvist N. Sensemaking Sans Power: Interactive Data Visualization Using Color-Changing Ink. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:5282-5293. [PMID: 36170400 DOI: 10.1109/tvcg.2022.3209631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We present an approach for interactively visualizing data using color-changing inks without the need for electronic displays or computers. Color-changing inks are a family of physical inks that change their color characteristics in response to an external stimulus such as heat, UV light, water, and pressure. Visualizations created using color-changing inks can embed interactivity in printed material without external computational media. In this article, we survey current color-changing ink technology and then use these findings to derive a framework for how it can be used to construct interactive data representations. We also enumerate the interaction techniques possible using this technology. We then show some examples of how to use color-changing ink to create interactive visualizations on paper. While obviously limited in scope to situations where no power or computing is present, or as a complement to digital displays, our findings can be employed for paper, data physicalization, and embedded visualizations.
Collapse
|
3
|
Linhares CDG, Lima DM, Ponciano JR, Olivatto MM, Gutierrez MA, Poco J, Traina C, Traina AJM. ClinicalPath: A Visualization Tool to Improve the Evaluation of Electronic Health Records in Clinical Decision-Making. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:4031-4046. [PMID: 35588413 DOI: 10.1109/tvcg.2022.3175626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Physicians work at a very tight schedule and need decision-making support tools to help on improving and doing their work in a timely and dependable manner. Examining piles of sheets with test results and using systems with little visualization support to provide diagnostics is daunting, but that is still the usual way for the physicians' daily procedure, especially in developing countries. Electronic Health Records systems have been designed to keep the patients' history and reduce the time spent analyzing the patient's data. However, better tools to support decision-making are still needed. In this article, we propose ClinicalPath, a visualization tool for users to track a patient's clinical path through a series of tests and data, which can aid in treatments and diagnoses. Our proposal is focused on patient's data analysis, presenting the test results and clinical history longitudinally. Both the visualization design and the system functionality were developed in close collaboration with experts in the medical domain to ensure a right fit of the technical solutions and the real needs of the professionals. We validated the proposed visualization based on case studies and user assessments through tasks based on the physician's daily activities. Our results show that our proposed system improves the physicians' experience in decision-making tasks, made with more confidence and better usage of the physicians' time, allowing them to take other needed care for the patients.
Collapse
|
4
|
Linhares CDG, Ponciano JR, Pedro DS, Rocha LEC, Traina AJM, Poco J. LargeNetVis: Visual Exploration of Large Temporal Networks Based on Community Taxonomies. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:203-213. [PMID: 36155451 DOI: 10.1109/tvcg.2022.3209477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Temporal (or time-evolving) networks are commonly used to model complex systems and the evolution of their components throughout time. Although these networks can be analyzed by different means, visual analytics stands out as an effective way for a pre-analysis before doing quantitative/statistical analyses to identify patterns, anomalies, and other behaviors in the data, thus leading to new insights and better decision-making. However, the large number of nodes, edges, and/or timestamps in many real-world networks may lead to polluted layouts that make the analysis inefficient or even infeasible. In this paper, we propose LargeNetVis, a web-based visual analytics system designed to assist in analyzing small and large temporal networks. It successfully achieves this goal by leveraging three taxonomies focused on network communities to guide the visual exploration process. The system is composed of four interactive visual components: the first (Taxonomy Matrix) presents a summary of the network characteristics, the second (Global View) gives an overview of the network evolution, the third (a node-link diagram) enables community- and node-level structural analysis, and the fourth (a Temporal Activity Map - TAM) shows the community- and node-level activity under a temporal perspective. We demonstrate the usefulness and effectiveness of LargeNetVis through two usage scenarios and a user study with 14 participants.
Collapse
|
5
|
Wang Z, Romat H, Chevalier F, Riche NH, Murray-Rust D, Bach B. Interactive Data Comics. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:944-954. [PMID: 34587073 DOI: 10.1109/tvcg.2021.3114849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This paper investigates how to make data comics interactive. Data comics are an effective and versatile means for visual communication, leveraging the power of sequential narration and combined textual and visual content, while providing an overview of the storyline through panels assembled in expressive layouts. While a powerful static storytelling medium that works well on paper support, adding interactivity to data comics can enable non-linear storytelling, personalization, levels of details, explanations, and potentially enriched user experiences. This paper introduces a set of operations tailored to support data comics narrative goals that go beyond the traditional linear, immutable storyline curated by a story author. The goals and operations include adding and removing panels into pre-defined layouts to support branching, change of perspective, or access to detail-on-demand, as well as providing and modifying data, and interacting with data representation, to support personalization and reader-defined data focus. We propose a lightweight specification language, COMICSCRIPT, for designers to add such interactivity to static comics. To assess the viability of our authoring process, we recruited six professional illustrators, designers and data comics enthusiasts and asked them to craft an interactive comic, allowing us to understand authoring workflow and potential of our approach. We present examples of interactive comics in a gallery. This initial step towards understanding the design space of interactive comics can inform the design of creation tools and experiences for interactive storytelling.
Collapse
|
6
|
Latif S, Zhou Z, Kim Y, Beck F, Kim NW. Kori: Interactive Synthesis of Text and Charts in Data Documents. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:184-194. [PMID: 34587042 DOI: 10.1109/tvcg.2021.3114802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Charts go hand in hand with text to communicate complex data and are widely adopted in news articles, online blogs, and academic papers. They provide graphical summaries of the data, while text explains the message and context. However, synthesizing information across text and charts is difficult; it requires readers to frequently shift their attention. We investigated ways to support the tight coupling of text and charts in data documents. To understand their interplay, we analyzed the design space of chart-text references through news articles and scientific papers. Informed by the analysis, we developed a mixed-initiative interface enabling users to construct interactive references between text and charts. It leverages natural language processing to automatically suggest references as well as allows users to manually construct other references effortlessly. A user study complemented with algorithmic evaluation of the system suggests that the interface provides an effective way to compose interactive data documents.
Collapse
|
7
|
Lalle S, Toker D, Conati C. Gaze-Driven Adaptive Interventions for Magazine-Style Narrative Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:2941-2952. [PMID: 31831427 DOI: 10.1109/tvcg.2019.2958540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this article, we investigate the value of gaze-driven adaptive interventions to support the processing of textual documents with embedded visualizations, i.e., Magazine Style Narrative Visualizations (MSNVs). These interventions are provided dynamically by highlighting relevant data points in the visualization when the user reads related sentences in the MSNV text, as detected by an eye-tracker. We conducted a user study during which participants read a set of MSNVs with our interventions, and compared their performance and experience with participants who received no interventions. Our work extends previous findings by showing that dynamic, gaze-driven interventions can be delivered based on reading behaviors in MSNVs, a widespread form of documents that have never been considered for gaze-driven adaptation so far. Next, we found that the interventions significantly improved the performance of users with low levels of visualization literacy, i.e., those users who need help the most due to their lower ability to process and understand data visualizations. However, high literacy users were not impacted by the interventions, providing initial evidence that gaze-driven interventions can be further improved by personalizing them to the levels of visualization literacy of their users.
Collapse
|
8
|
Prasad KMS, Reddy TH. Bidirectional Encoding Contextual Approach for Identification of Relevant Document in Corpus. JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT 2021. [DOI: 10.1142/s0219649221500143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
With the increasing advance of computer and information technologies, numerous documents have been published online as well as offline, and as new research fields have been continuingly created, users have a lot of trouble in finding their interesting documents. These documents can be in the form of blogs, research papers, and thesis. There is a heterogeneous set of documents which has information linked with each other. Traditional search is about taking an input of the query text from the user and checking if the subsequence is a part of any sentence in the set of documents and showing the set to the user. In this paper, we have proposed a Bidiection Encoding Contextual algorithm that can be applied to different types of documents and do a semantic search across the corpus. The algorithm used to understand the meaning of the word, their relative relationship between other words and provide the user with the documents that not just has the textual reference but also contain the relative meaning of the query. On the COVID-19 dataset, test been performed on the reliability of the interpretation through the function of linguistic similarities. The experimental findings demonstrate the strong association between the conceptual term interpretation of human consciousness in the role of measuring the similarity. Experiments show that the Bidirectional Encoding Contextual model has the best accuracy of 85.6% when compared with other traditional models like RNN, CNN and LSTM models.
Collapse
Affiliation(s)
- K. M. Shiva Prasad
- Department of Computer Science and Engineering, Rao Bahadur Y Mahabaleswarappa Engineering College, Affiliated to VTU, Belagavi, Karnataka, India
| | - T. Hanumantha Reddy
- Department of Computer Science and Engineering, Rao Bahadur Y Mahabaleswarappa Engineering College, Affiliated to VTU, Belagavi, Karnataka, India
| |
Collapse
|
9
|
Wang Z, Ritchie J, Zhou J, Chevalier F, Bach B. Data Comics for Reporting Controlled User Studies in Human-Computer Interaction. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:967-977. [PMID: 33048732 DOI: 10.1109/tvcg.2020.3030433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Inspired by data comics, this paper introduces a novel format for reporting controlled studies in the domain of human-computer interaction (HCI). While many studies in HCI follow similar steps in explaining hypotheses, laying out a study design, and reporting results, many of these decisions are buried in blocks of dense scientific text. We propose leveraging data comics as study reports to provide an open and glanceable view of studies by tightly integrating text and images, illustrating design decisions and key insights visually, resulting in visual narratives that can be compelling to non-scientists and researchers alike. Use cases of data comics study reports range from illustrations for non-scientific audiences to graphical abstracts, study summaries, technical talks, textbooks, teaching, blogs, supplementary submission material, and inclusion in scientific articles. This paper provides examples of data comics study reports alongside a graphical repertoire of examples, embedded in a framework of guidelines for creating comics reports which was iterated upon and evaluated through a series of collaborative design sessions.
Collapse
|