1
|
Zhang Y, Xu L, Tao S, Guan Q, Li Q, Zeng H. CSLens: Towards Better Deploying Charging Stations via Visual Analytics - a Coupled Networks Perspective. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:251-261. [PMID: 39255147 DOI: 10.1109/tvcg.2024.3456392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In recent years, the global adoption of electric vehicles (EVs) has surged, prompting a corresponding rise in the installation of charging stations. This proliferation has underscored the importance of expediting the deployment of charging infrastructure. Both academia and industry have thus devoted to addressing the charging station location problem (CSLP) to streamline this process. However, prevailing algorithms addressing CSLP are hampered by restrictive assumptions and computational overhead, leading to a dearth of comprehensive evaluations in the spatiotemporal dimensions. Consequently, their practical viability is restricted. Moreover, the placement of charging stations exerts a significant impact on both the road network and the power grid, which necessitates the evaluation of the potential post-deployment impacts on these interconnected networks holistically. In this study, we propose CSLens, a visual analytics system designed to inform charging station deployment decisions through the lens of coupled transportation and power networks. CSLens offers multiple visualizations and interactive features, empowering users to delve into the existing charging station layout, explore alternative deployment solutions, and assess the ensuring impact. To validate the efficacy of CSLens, we conducted two case studies and engaged in interviews with domain experts. Through these efforts, we substantiated the usability and practical utility of CSLens in enhancing the decision-making process surrounding charging station deployment. Our findings underscore CSLens's potential to serve as a valuable asset in navigating the complexities of charging infrastructure planning.
Collapse
|
2
|
Oral E, Chawla R, Wijkstra M, Mahyar N, Dimara E. From Information to Choice: A Critical Inquiry Into Visualization Tools for Decision Making. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:359-369. [PMID: 37871054 DOI: 10.1109/tvcg.2023.3326593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In the face of complex decisions, people often engage in a three-stage process that spans from (1) exploring and analyzing pertinent information (intelligence); (2) generating and exploring alternative options (design); and ultimately culminating in (3) selecting the optimal decision by evaluating discerning criteria (choice). We can fairly assume that all good visualizations aid in the "intelligence" stage by enabling data exploration and analysis. Yet, to what degree and how do visualization systems currently support the other decision making stages, namely "design" and "choice"? To further explore this question, we conducted a comprehensive review of decision-focused visualization tools by examining publications in major visualization journals and conferences, including VIS, EuroVis, and CHI, spanning all available years. We employed a deductive coding method and in-depth analysis to assess whether and how visualization tools support design and choice. Specifically, we examined each visualization tool by (i) its degree of visibility for displaying decision alternatives, criteria, and preferences, and (ii) its degree of flexibility for offering means to manipulate the decision alternatives, criteria, and preferences with interactions such as adding, modifying, changing mapping, and filtering. Our review highlights the opportunities and challenges that decision-focused visualization tools face in realizing their full potential to support all stages of the decision making process. It reveals a surprising scarcity of tools that support all stages, and while most tools excel in offering visibility for decision criteria and alternatives, the degree of flexibility to manipulate these elements is often limited, and the lack of tools that accommodate decision preferences and their elicitation is notable. Based on our findings, to better support the choice stage, future research could explore enhancing flexibility levels and variety, exploring novel visualization paradigms, increasing algorithmic support, and ensuring that this automation is user-controlled via the enhanced flexibility I evels. Our curated list of the 88 surveyed visualization tools is available in the OSF link (https://osf.io/nrasz/?view_only=b92a90a34ae241449b5f2cd33383bfcb).
Collapse
|
3
|
Liu Q, Ren Y, Zhu Z, Li D, Ma X, Li Q. RankAxis: Towards a Systematic Combination of Projection and Ranking in Multi-Attribute Data Exploration. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:701-711. [PMID: 36155453 DOI: 10.1109/tvcg.2022.3209463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Projection and ranking are frequently used analysis techniques in multi-attribute data exploration. Both families of techniques help analysts with tasks such as identifying similarities between observations and determining ordered subgroups, and have shown good performances in multi-attribute data exploration. However, they often exhibit problems such as distorted projection layouts, obscure semantic interpretations, and non-intuitive effects produced by selecting a subset of (weighted) attributes. Moreover, few studies have attempted to combine projection and ranking into the same exploration space to complement each other's strengths and weaknesses. For this reason, we propose RankAxis, a visual analytics system that systematically combines projection and ranking to facilitate the mutual interpretation of these two techniques and jointly support multi-attribute data exploration. A real-world case study, expert feedback, and a user study demonstrate the efficacy of RankAxis.
Collapse
|
4
|
Chen R, Shu X, Chen J, Weng D, Tang J, Fu S, Wu Y. Nebula: A Coordinating Grammar of Graphics. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:4127-4140. [PMID: 33909565 DOI: 10.1109/tvcg.2021.3076222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In multiple coordinated views (MCVs), visualizations across views update their content in response to users' interactions in other views. Interactive systems provide direct manipulation to create coordination between views, but are restricted to limited types of predefined templates. By contrast, textual specification languages enable flexible coordination but expose technical burden. To bridge the gap, we contribute Nebula, a grammar based on natural language for coordinating visualizations in MCVs. The grammar design is informed by a novel framework based on a systematic review of 176 coordinations from existing theories and applications, which describes coordination by demonstration, i.e., how coordination is performed by users. With the framework, Nebula specification formalizes coordination as a composition of user- and coordination-triggered interactions in origin and destination views, respectively, along with potential data transformation between the interactions. We evaluate Nebula by demonstrating its expressiveness with a gallery of diverse examples and analyzing its usability on cognitive dimensions.
Collapse
|
5
|
You are experienced: interactive tour planning with crowdsourcing tour data from web. J Vis (Tokyo) 2022. [DOI: 10.1007/s12650-022-00884-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
Deng Z, Weng D, Liu S, Tian Y, Xu M, Wu Y. A survey of urban visual analytics: Advances and future directions. COMPUTATIONAL VISUAL MEDIA 2022; 9:3-39. [PMID: 36277276 PMCID: PMC9579670 DOI: 10.1007/s41095-022-0275-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/08/2022] [Indexed: 06/16/2023]
Abstract
Developing effective visual analytics systems demands care in characterization of domain problems and integration of visualization techniques and computational models. Urban visual analytics has already achieved remarkable success in tackling urban problems and providing fundamental services for smart cities. To promote further academic research and assist the development of industrial urban analytics systems, we comprehensively review urban visual analytics studies from four perspectives. In particular, we identify 8 urban domains and 22 types of popular visualization, analyze 7 types of computational method, and categorize existing systems into 4 types based on their integration of visualization techniques and computational models. We conclude with potential research directions and opportunities.
Collapse
Affiliation(s)
- Zikun Deng
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Di Weng
- Microsoft Research Asia, Beijing, 100080 China
| | - Shuhan Liu
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Yuan Tian
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Mingliang Xu
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001 China
| | - Yingcai Wu
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
7
|
Deng Z, Weng D, Liang Y, Bao J, Zheng Y, Schreck T, Xu M, Wu Y. Visual Cascade Analytics of Large-Scale Spatiotemporal Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:2486-2499. [PMID: 33822726 DOI: 10.1109/tvcg.2021.3071387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many spatiotemporal events can be viewed as contagions. These events implicitly propagate across space and time by following cascading patterns, expanding their influence, and generating event cascades that involve multiple locations. Analyzing such cascading processes presents valuable implications in various urban applications, such as traffic planning and pollution diagnostics. Motivated by the limited capability of the existing approaches in mining and interpreting cascading patterns, we propose a visual analytics system called VisCas. VisCas combines an inference model with interactive visualizations and empowers analysts to infer and interpret the latent cascading patterns in the spatiotemporal context. To develop VisCas, we address three major challenges 1) generalized pattern inference; 2) implicit influence visualization; and 3) multifaceted cascade analysis. For the first challenge, we adapt the state-of-the-art cascading network inference technique to general urban scenarios, where cascading patterns can be reliably inferred from large-scale spatiotemporal data. For the second and third challenges, we assemble a set of effective visualizations to support location navigation, influence inspection, and cascading exploration, and facilitate the in-depth cascade analysis. We design a novel influence view based on a three-fold optimization strategy for analyzing the implicit influences of the inferred patterns. We demonstrate the capability and effectiveness of VisCas with two case studies conducted on real-world traffic congestion and air pollution datasets with domain experts.
Collapse
|
8
|
Deng Z, Weng D, Xie X, Bao J, Zheng Y, Xu M, Chen W, Wu Y. Compass: Towards Better Causal Analysis of Urban Time Series. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:1051-1061. [PMID: 34596550 DOI: 10.1109/tvcg.2021.3114875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The spatial time series generated by city sensors allow us to observe urban phenomena like environmental pollution and traffic congestion at an unprecedented scale. However, recovering causal relations from these observations to explain the sources of urban phenomena remains a challenging task because these causal relations tend to be time-varying and demand proper time series partitioning for effective analyses. The prior approaches extract one causal graph given long-time observations, which cannot be directly applied to capturing, interpreting, and validating dynamic urban causality. This paper presents Compass, a novel visual analytics approach for in-depth analyses of the dynamic causality in urban time series. To develop Compass, we identify and address three challenges: detecting urban causality, interpreting dynamic causal relations, and unveiling suspicious causal relations. First, multiple causal graphs over time among urban time series are obtained with a causal detection framework extended from the Granger causality test. Then, a dynamic causal graph visualization is designed to reveal the time-varying causal relations across these causal graphs and facilitate the exploration of the graphs along the time. Finally, a tailored multi-dimensional visualization is developed to support the identification of spurious causal relations, thereby improving the reliability of causal analyses. The effectiveness of Compass is evaluated with two case studies conducted on the real-world urban datasets, including the air pollution and traffic speed datasets, and positive feedback was received from domain experts.
Collapse
|
9
|
Dimara E, Stasko J. A Critical Reflection on Visualization Research: Where Do Decision Making Tasks Hide? IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:1128-1138. [PMID: 34587049 DOI: 10.1109/tvcg.2021.3114813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It has been widely suggested that a key goal of visualization systems is to assist decision making, but is this true? We conduct a critical investigation on whether the activity of decision making is indeed central to the visualization domain. By approaching decision making as a user task, we explore the degree to which decision tasks are evident in visualization research and user studies. Our analysis suggests that decision tasks are not commonly found in current visualization task taxonomies and that the visualization field has yet to leverage guidance from decision theory domains on how to study such tasks. We further found that the majority of visualizations addressing decision making were not evaluated based on their ability to assist decision tasks. Finally, to help expand the impact of visual analytics in organizational as well as casual decision making activities, we initiate a research agenda on how decision making assistance could be elevated throughout visualization research.
Collapse
|
10
|
Ma Y, Medini PCP, Nelson JR, Wei R, Grubesic TH, Sefair JA, Maciejewski R. A Visual Analytics System for Oil Spill Response and Recovery. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2021; 41:91-100. [PMID: 32746085 DOI: 10.1109/mcg.2020.3004321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Extensive research has been done on oil spill simulation techniques, spatial optimization models, and oil spill cleanup strategies. This article presents a visual analytics system that integrates the independent facets of spill modeling techniques and spatial optimization to enable inspection, exploration, and decision making for offshore oil spill response.
Collapse
|
11
|
SemanticAxis: exploring multi-attribute data by semantic construction and ranking analysis. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-020-00733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Xie T, Ma Y, Tong H, Thai MT, Maciejewski R. Auditing the Sensitivity of Graph-based Ranking with Visual Analytics. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1459-1469. [PMID: 33027000 DOI: 10.1109/tvcg.2020.3028958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Graph mining plays a pivotal role across a number of disciplines, and a variety of algorithms have been developed to answer who/what type questions. For example, what items shall we recommend to a given user on an e-commerce platform? The answers to such questions are typically returned in the form of a ranked list, and graph-based ranking methods are widely used in industrial information retrieval settings. However, these ranking algorithms have a variety of sensitivities, and even small changes in rank can lead to vast reductions in product sales and page hits. As such, there is a need for tools and methods that can help model developers and analysts explore the sensitivities of graph ranking algorithms with respect to perturbations within the graph structure. In this paper, we present a visual analytics framework for explaining and exploring the sensitivity of any graph-based ranking algorithm by performing perturbation-based what-if analysis. We demonstrate our framework through three case studies inspecting the sensitivity of two classic graph-based ranking algorithms (PageRank and HITS) as applied to rankings in political news media and social networks.
Collapse
|
13
|
Zeng W, Lin C, Lin J, Jiang J, Xia J, Turkay C, Chen W. Revisiting the Modifiable Areal Unit Problem in Deep Traffic Prediction with Visual Analytics. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:839-848. [PMID: 33074818 DOI: 10.1109/tvcg.2020.3030410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Deep learning methods are being increasingly used for urban traffic prediction where spatiotemporal traffic data is aggregated into sequentially organized matrices that are then fed into convolution-based residual neural networks. However, the widely known modifiable areal unit problem within such aggregation processes can lead to perturbations in the network inputs. This issue can significantly destabilize the feature embeddings and the predictions - rendering deep networks much less useful for the experts. This paper approaches this challenge by leveraging unit visualization techniques that enable the investigation of many-to-many relationships between dynamically varied multi-scalar aggregations of urban traffic data and neural network predictions. Through regular exchanges with a domain expert, we design and develop a visual analytics solution that integrates 1) a Bivariate Map equipped with an advanced bivariate colormap to simultaneously depict input traffic and prediction errors across space, 2) a Moran's I Scatterplot that provides local indicators of spatial association analysis, and 3) a Multi-scale Attribution View that arranges non-linear dot plots in a tree layout to promote model analysis and comparison across scales. We evaluate our approach through a series of case studies involving a real-world dataset of Shenzhen taxi trips, and through interviews with domain experts. We observe that geographical scale variations have important impact on prediction performances, and interactive visual exploration of dynamically varying inputs and outputs benefit experts in the development of deep traffic prediction models.
Collapse
|
14
|
Chotisarn N, Lu J, Ma L, Xu J, Meng L, Lin B, Xu Y, Luo X, Chen W. Bubble storytelling with automated animation: a Brexit hashtag activism case study. J Vis (Tokyo) 2020; 24:101-115. [PMID: 32904885 PMCID: PMC7459253 DOI: 10.1007/s12650-020-00690-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/01/2020] [Accepted: 08/09/2020] [Indexed: 12/02/2022]
Abstract
Abstract Hashtag data are common and easy to acquire. Thus, they are widely used in studies and visual data storytelling. For example, a recent story by China Central Television Europe depicts Brexit as a hashtag movement displayed on an animated bubble chart. However, creating such a story is usually laborious and tedious, because narrators have to switch between different tools and discuss with different collaborators. To reduce the burden, we develop a prototype system to help explore the bubbles’ movement by automatically inserting animations connected to the storytelling of the video creators and the interaction of viewers to those videos. We demonstrate the usability of our method through both use cases and a semi-structured user study. Graphic abstract ![]()
Collapse
Affiliation(s)
| | - Junhua Lu
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Libinzi Ma
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Jingli Xu
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Linhao Meng
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Bingru Lin
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Ying Xu
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Xiaonan Luo
- Guilin University of Electronic Technology, Guilin, China
| | - Wei Chen
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
|
16
|
Deng Z, Weng D, Chen J, Liu R, Wang Z, Bao J, Zheng Y, Wu Y. AirVis: Visual Analytics of Air Pollution Propagation. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:800-810. [PMID: 31443012 DOI: 10.1109/tvcg.2019.2934670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Air pollution has become a serious public health problem for many cities around the world. To find the causes of air pollution, the propagation processes of air pollutants must be studied at a large spatial scale. However, the complex and dynamic wind fields lead to highly uncertain pollutant transportation. The state-of-the-art data mining approaches cannot fully support the extensive analysis of such uncertain spatiotemporal propagation processes across multiple districts without the integration of domain knowledge. The limitation of these automated approaches motivates us to design and develop AirVis, a novel visual analytics system that assists domain experts in efficiently capturing and interpreting the uncertain propagation patterns of air pollution based on graph visualizations. Designing such a system poses three challenges: a) the extraction of propagation patterns; b) the scalability of pattern presentations; and c) the analysis of propagation processes. To address these challenges, we develop a novel pattern mining framework to model pollutant transportation and extract frequent propagation patterns efficiently from large-scale atmospheric data. Furthermore, we organize the extracted patterns hierarchically based on the minimum description length (MDL) principle and empower expert users to explore and analyze these patterns effectively on the basis of pattern topologies. We demonstrated the effectiveness of our approach through two case studies conducted with a real-world dataset and positive feedback from domain experts.
Collapse
|
17
|
Wang J, Zhao K, Deng D, Cao A, Xie X, Zhou Z, Zhang H, Wu Y. Tac-Simur: Tactic-based Simulative Visual Analytics of Table Tennis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:407-417. [PMID: 31442999 DOI: 10.1109/tvcg.2019.2934630] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Simulative analysis in competitive sports can provide prospective insights, which can help improve the performance of players in future matches. However, adequately simulating the complex competition process and effectively explaining the simulation result to domain experts are typically challenging. This work presents a design study to address these challenges in table tennis. We propose a well-established hybrid second-order Markov chain model to characterize and simulate the competition process in table tennis. Compared with existing methods, our approach is the first to support the effective simulation of tactics, which represent high-level competition strategies in table tennis. Furthermore, we introduce a visual analytics system called Tac-Simur based on the proposed model for simulative visual analytics. Tac-Simur enables users to easily navigate different players and their tactics based on their respective performance in matches to identify the player and the tactics of interest for further analysis. Then, users can utilize the system to interactively explore diverse simulation tasks and visually explain the simulation results. The effectiveness and usefulness of this work are demonstrated by two case studies, in which domain experts utilize Tac-Simur to find interesting and valuable insights. The domain experts also provide positive feedback on the usability of Tac-Simur. Our work can be extended to other similar sports such as tennis and badminton.
Collapse
|
18
|
Han D, Pan J, Guo F, Luo X, Wu Y, Zheng W, Chen W. RankBrushers: interactive analysis of temporal ranking ensembles. J Vis (Tokyo) 2019. [DOI: 10.1007/s12650-019-00598-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Liu Y, Guo Z, Zhang X, Zhang R, Zhou Z. (ChinaVis 2019) uncertainty visualization in stratigraphic correlation based on multi-source data fusion. J Vis (Tokyo) 2019. [DOI: 10.1007/s12650-019-00579-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|