1
|
Zhou Z, Ye L, Cai L, Wang L, Wang Y, Wang Y, Chen W, Wang Y. ConceptThread: Visualizing Threaded Concepts in MOOC Videos. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1354-1370. [PMID: 38300781 DOI: 10.1109/tvcg.2024.3361001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Massive Open Online Courses (MOOCs) platforms are becoming increasingly popular in recent years. Online learners need to watch the whole course video on MOOC platforms to learn the underlying new knowledge, which is often tedious and time-consuming due to the lack of a quick overview of the covered knowledge and their structures. In this article, we propose ConceptThread, a visual analytics approach to effectively show the concepts and the relations among them to facilitate effective online learning. Specifically, given that the majority of MOOC videos contain slides, we first leverage video processing and speech analysis techniques, including shot recognition, speech recognition and topic modeling, to extract core knowledge concepts and construct the hierarchical and temporal relations among them. Then, by using a metaphor of thread, we present a novel visualization to intuitively display the concepts based on video sequential flow, and enable learners to perform interactive visual exploration of concepts. We conducted a quantitative study, two case studies, and a user study to extensively evaluate ConceptThread. The results demonstrate the effectiveness and usability of ConceptThread in providing online learners with a quick understanding of the knowledge content of MOOC videos.
Collapse
|
2
|
Wu Y, Xu Y, Gao S, Wang X, Song W, Nie Z, Fan X, Li Q. LiveRetro: Visual Analytics for Strategic Retrospect in Livestream E-Commerce. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:1117-1127. [PMID: 37874716 DOI: 10.1109/tvcg.2023.3326911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Livestream e-commerce integrates live streaming and online shopping, allowing viewers to make purchases while watching. However, effective marketing strategies remain a challenge due to limited empirical research and subjective biases from the absence of quantitative data. Current tools fail to capture the interdependence between live performances and feedback. This study identified computational features, formulated design requirements, and developed LiveRetro, an interactive visual analytics system. It enables comprehensive retrospective analysis of livestream e-commerce for streamers, viewers, and merchandise. LiveRetro employs enhanced visualization and time-series forecasting models to align performance features and feedback, identifying influences at channel, merchandise, feature, and segment levels. Through case studies and expert interviews, the system provides deep insights into the relationship between live performance and streaming statistics, enabling efficient strategic analysis from multiple perspectives.
Collapse
|
3
|
Huang Z, He Q, Maher K, Deng X, Lai YK, Ma C, Qin SF, Liu YJ, Wang H. SpeechMirror: A Multimodal Visual Analytics System for Personalized Reflection of Online Public Speaking Effectiveness. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:606-616. [PMID: 37871082 DOI: 10.1109/tvcg.2023.3326932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
As communications are increasingly taking place virtually, the ability to present well online is becoming an indispensable skill. Online speakers are facing unique challenges in engaging with remote audiences. However, there has been a lack of evidence-based analytical systems for people to comprehensively evaluate online speeches and further discover possibilities for improvement. This paper introduces SpeechMirror, a visual analytics system facilitating reflection on a speech based on insights from a collection of online speeches. The system estimates the impact of different speech techniques on effectiveness and applies them to a speech to give users awareness of the performance of speech techniques. A similarity recommendation approach based on speech factors or script content supports guided exploration to expand knowledge of presentation evidence and accelerate the discovery of speech delivery possibilities. SpeechMirror provides intuitive visualizations and interactions for users to understand speech factors. Among them, SpeechTwin, a novel multimodal visual summary of speech, supports rapid understanding of critical speech factors and comparison of different speech samples, and SpeechPlayer augments the speech video by integrating visualization of the speaker's body language with interaction, for focused analysis. The system utilizes visualizations suited to the distinct nature of different speech factors for user comprehension. The proposed system and visualization techniques were evaluated with domain experts and amateurs, demonstrating usability for users with low visualization literacy and its efficacy in assisting users to develop insights for potential improvement.
Collapse
|
4
|
Chen Z, Yang Q, Xie X, Beyer J, Xia H, Wu Y, Pfister H. Sporthesia: Augmenting Sports Videos Using Natural Language. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:918-928. [PMID: 36197856 DOI: 10.1109/tvcg.2022.3209497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Augmented sports videos, which combine visualizations and video effects to present data in actual scenes, can communicate insights engagingly and thus have been increasingly popular for sports enthusiasts around the world. Yet, creating augmented sports videos remains a challenging task, requiring considerable time and video editing skills. On the other hand, sports insights are often communicated using natural language, such as in commentaries, oral presentations, and articles, but usually lack visual cues. Thus, this work aims to facilitate the creation of augmented sports videos by enabling analysts to directly create visualizations embedded in videos using insights expressed in natural language. To achieve this goal, we propose a three-step approach - 1) detecting visualizable entities in the text, 2) mapping these entities into visualizations, and 3) scheduling these visualizations to play with the video - and analyzed 155 sports video clips and the accompanying commentaries for accomplishing these steps. Informed by our analysis, we have designed and implemented Sporthesia, a proof-of-concept system that takes racket-based sports videos and textual commentaries as the input and outputs augmented videos. We demonstrate Sporthesia's applicability in two exemplar scenarios, i.e., authoring augmented sports videos using text and augmenting historical sports videos based on auditory comments. A technical evaluation shows that Sporthesia achieves high accuracy (F1-score of 0.9) in detecting visualizable entities in the text. An expert evaluation with eight sports analysts suggests high utility, effectiveness, and satisfaction with our language-driven authoring method and provides insights for future improvement and opportunities.
Collapse
|
5
|
Hou Y, Zhu H, Liang HN, Yu L. A study of the effect of star glyph parameters on value estimation and comparison. J Vis (Tokyo) 2022. [DOI: 10.1007/s12650-022-00888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Maher K, Huang Z, Song J, Deng X, Lai YK, Ma C, Wang H, Liu YJ, Wang H. E-ffective: A Visual Analytic System for Exploring the Emotion and Effectiveness of Inspirational Speeches. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:508-517. [PMID: 34591763 DOI: 10.1109/tvcg.2021.3114789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
What makes speeches effective has long been a subject for debate, and until today there is broad controversy among public speaking experts about what factors make a speech effective as well as the roles of these factors in speeches. Moreover, there is a lack of quantitative analysis methods to help understand effective speaking strategies. In this paper, we propose E-ffective, a visual analytic system allowing speaking experts and novices to analyze both the role of speech factors and their contribution in effective speeches. From interviews with domain experts and investigating existing literature, we identified important factors to consider in inspirational speeches. We obtained the generated factors from multi-modal data that were then related to effectiveness data. Our system supports rapid understanding of critical factors in inspirational speeches, including the influence of emotions by means of novel visualization methods and interaction. Two novel visualizations include E-spiral (that shows the emotional shifts in speeches in a visually compact way) and E-script (that connects speech content with key speech delivery information). In our evaluation we studied the influence of our system on experts' domain knowledge about speech factors. We further studied the usability of the system by speaking novices and experts on assisting analysis of inspirational speech effectiveness.
Collapse
|
7
|
Chen Z, Ye S, Chu X, Xia H, Zhang H, Qu H, Wu Y. Augmenting Sports Videos with VisCommentator. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:824-834. [PMID: 34587045 DOI: 10.1109/tvcg.2021.3114806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Visualizing data in sports videos is gaining traction in sports analytics, given its ability to communicate insights and explicate player strategies engagingly. However, augmenting sports videos with such data visualizations is challenging, especially for sports analysts, as it requires considerable expertise in video editing. To ease the creation process, we present a design space that characterizes augmented sports videos at an element-level (what the constituents are) and clip-level (how those constituents are organized). We do so by systematically reviewing 233 examples of augmented sports videos collected from TV channels, teams, and leagues. The design space guides selection of data insights and visualizations for various purposes. Informed by the design space and close collaboration with domain experts, we design VisCommentator, a fast prototyping tool, to eases the creation of augmented table tennis videos by leveraging machine learning-based data extractors and design space-based visualization recommendations. With VisCommentator, sports analysts can create an augmented video by selecting the data to visualize instead of manually drawing the graphical marks. Our system can be generalized to other racket sports (e.g., tennis, badminton) once the underlying datasets and models are available. A user study with seven domain experts shows high satisfaction with our system, confirms that the participants can reproduce augmented sports videos in a short period, and provides insightful implications into future improvements and opportunities.
Collapse
|
8
|
Tang T, Wu Y, Wu Y, Yu L, Li Y. VideoModerator: A Risk-aware Framework for Multimodal Video Moderation in E-Commerce. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:846-856. [PMID: 34587029 DOI: 10.1109/tvcg.2021.3114781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Video moderation, which refers to remove deviant or explicit content from e-commerce livestreams, has become prevalent owing to social and engaging features. However, this task is tedious and time consuming due to the difficulties associated with watching and reviewing multimodal video content, including video frames and audio clips. To ensure effective video moderation, we propose VideoModerator, a risk-aware framework that seamlessly integrates human knowledge with machine insights. This framework incorporates a set of advanced machine learning models to extract the risk-aware features from multimodal video content and discover potentially deviant videos. Moreover, this framework introduces an interactive visualization interface with three views, namely, a video view, a frame view, and an audio view. In the video view, we adopt a segmented timeline and highlight high-risk periods that may contain deviant information. In the frame view, we present a novel visual summarization method that combines risk-aware features and video context to enable quick video navigation. In the audio view, we employ a storyline-based design to provide a multi-faceted overview which can be used to explore audio content. Furthermore, we report the usage of VideoModerator through a case scenario and conduct experiments and a controlled user study to validate its effectiveness.
Collapse
|
9
|
Sun G, Li T, Liang R. SurVizor: visualizing and understanding the key content of surveillance videos. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-021-00803-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Sun G, Wu H, Zhu L, Xu C, Liang H, Xu B, Liang R. VSumVis: Interactive Visual Understanding and Diagnosis of Video Summarization Model. ACM T INTEL SYST TEC 2021. [DOI: 10.1145/3458928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
With the rapid development of mobile Internet, the popularity of video capture devices has brought a surge in multimedia video resources. Utilizing machine learning methods combined with well-designed features, we could automatically obtain video summarization to relax video resource consumption and retrieval issues. However, there always exists a gap between the summarization obtained by the model and the ones annotated by users. How to help users understand the difference, provide insights in improving the model, and enhance the trust in the model remains challenging in the current study. To address these challenges, we propose VSumVis under a user-centered design methodology, a visual analysis system with multi-feature examination and multi-level exploration, which could help users explore and analyze video content, as well as the intrinsic relationship that existed in our video summarization model. The system contains multiple coordinated views, i.e., video view, projection view, detail view, and sequential frames view. A multi-level analysis process to integrate video events and frames are presented with clusters and nodes visualization in our system. Temporal patterns concerning the difference between the manual annotation score and the saliency score produced by our model are further investigated and distinguished with sequential frames view. Moreover, we propose a set of rich user interactions that enable an in-depth, multi-faceted analysis of the features in our video summarization model. We conduct case studies and interviews with domain experts to provide anecdotal evidence about the effectiveness of our approach. Quantitative feedback from a user study confirms the usefulness of our visual system for exploring the video summarization model.
Collapse
Affiliation(s)
- Guodao Sun
- Zhejiang University of Technology, Hangzhou, China
| | - Hao Wu
- Zhejiang University of Technology, Hangzhou, China
| | - Lin Zhu
- Zhejiang University of Technology, Hangzhou, China
| | - Chaoqing Xu
- Zhejiang University of Technology, Hangzhou, China
| | - Haoran Liang
- Zhejiang University of Technology, Hangzhou, China
| | - Binwei Xu
- Zhejiang University of Technology, Hangzhou, China
| | | |
Collapse
|