1
|
Yan Y, Hou Y, Xiao Y, Zhang R, Wang Q. KNowNEt:Guided Health Information Seeking from LLMs via Knowledge Graph Integration. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:547-557. [PMID: 39255106 PMCID: PMC11875928 DOI: 10.1109/tvcg.2024.3456364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The increasing reliance on Large Language Models (LLMs) for health information seeking can pose severe risks due to the potential for misinformation and the complexity of these topics. This paper introduces KnowNet a visualization system that integrates LLMs with Knowledge Graphs (KG) to provide enhanced accuracy and structured exploration. Specifically, for enhanced accuracy, KnowNet extracts triples (e.g., entities and their relations) from LLM outputs and maps them into the validated information and supported evidence in external KGs. For structured exploration, KnowNet provides next-step recommendations based on the neighborhood of the currently explored entities in KGs, aiming to guide a comprehensive understanding without overlooking critical aspects. To enable reasoning with both the structured data in KGs and the unstructured outputs from LLMs, KnowNet conceptualizes the understanding of a subject as the gradual construction of graph visualization. A progressive graph visualization is introduced to monitor past inquiries, and bridge the current query with the exploration history and next-step recommendations. We demonstrate the effectiveness of our system via use cases and expert interviews.
Collapse
Affiliation(s)
- Youfu Yan
- Department of Computer Science and Engineering, University of Minnesota, Twin Cities, MN, USA
| | - Yu Hou
- Medical School, University of Minnesota, Twin Cities, MN, USA
| | - Yongkang Xiao
- Medical School, University of Minnesota, Twin Cities, MN, USA
| | - Rui Zhang
- Medical School, University of Minnesota, Twin Cities, MN, USA
| | - Qianwen Wang
- Department of Computer Science and Engineering, University of Minnesota, Twin Cities, MN, USA
| |
Collapse
|
2
|
Li G, Wang J, Wang Y, Shan G, Zhao Y. An In-Situ Visual Analytics Framework for Deep Neural Networks. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:6770-6786. [PMID: 38051629 DOI: 10.1109/tvcg.2023.3339585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The past decade has witnessed the superior power of deep neural networks (DNNs) in applications across various domains. However, training a high-quality DNN remains a non-trivial task due to its massive number of parameters. Visualization has shown great potential in addressing this situation, as evidenced by numerous recent visualization works that aid in DNN training and interpretation. These works commonly employ a strategy of logging training-related data and conducting post-hoc analysis. Based on the results of offline analysis, the model can be further trained or fine-tuned. This strategy, however, does not cope with the increasing complexity of DNNs, because (1) the time-series data collected over the training are usually too large to be stored entirely; (2) the huge I/O overhead significantly impacts the training efficiency; (3) post-hoc analysis does not allow rapid human-interventions (e.g., stop training with improper hyper-parameter settings to save computational resources). To address these challenges, we propose an in-situ visualization and analysis framework for the training of DNNs. Specifically, we employ feature extraction algorithms to reduce the size of training-related data in-situ and use the reduced data for real-time visual analytics. The states of model training are disclosed to model designers in real-time, enabling human interventions on demand to steer the training. Through concrete case studies, we demonstrate how our in-situ framework helps deep learning experts optimize DNNs and improve their analysis efficiency.
Collapse
|
3
|
Wang Q, Huang K, Chandak P, Zitnik M, Gehlenborg N. Extending the Nested Model for User-Centric XAI: A Design Study on GNN-based Drug Repurposing. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:1266-1276. [PMID: 36223348 DOI: 10.1109/tvcg.2022.3209435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Whether AI explanations can help users achieve specific tasks efficiently (i.e., usable explanations) is significantly influenced by their visual presentation. While many techniques exist to generate explanations, it remains unclear how to select and visually present AI explanations based on the characteristics of domain users. This paper aims to understand this question through a multidisciplinary design study for a specific problem: explaining graph neural network (GNN) predictions to domain experts in drug repurposing, i.e., reuse of existing drugs for new diseases. Building on the nested design model of visualization, we incorporate XAI design considerations from a literature review and from our collaborators' feedback into the design process. Specifically, we discuss XAI-related design considerations for usable visual explanations at each design layer: target user, usage context, domain explanation, and XAI goal at the domain layer; format, granularity, and operation of explanations at the abstraction layer; encodings and interactions at the visualization layer; and XAI and rendering algorithm at the algorithm layer. We present how the extended nested model motivates and informs the design of DrugExplorer, an XAI tool for drug repurposing. Based on our domain characterization, DrugExplorer provides path-based explanations and presents them both as individual paths and meta-paths for two key XAI operations, why and what else. DrugExplorer offers a novel visualization design called MetaMatrix with a set of interactions to help domain users organize and compare explanation paths at different levels of granularity to generate domain-meaningful insights. We demonstrate the effectiveness of the selected visual presentation and DrugExplorer as a whole via a usage scenario, a user study, and expert interviews. From these evaluations, we derive insightful observations and reflections that can inform the design of XAI visualizations for other scientific applications.
Collapse
|
4
|
Wang J, Zhang W, Yang H, Yeh CCM, Wang L. Visual Analytics for RNN-Based Deep Reinforcement Learning. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:4141-4155. [PMID: 33929961 DOI: 10.1109/tvcg.2021.3076749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Deep reinforcement learning (DRL) targets to train an autonomous agent to interact with a pre-defined environment and strives to achieve specific goals through deep neural networks (DNN). Recurrent neural network (RNN) based DRL has demonstrated superior performance, as RNNs can effectively capture the temporal evolution of the environment and respond with proper agent actions. However, apart from the outstanding performance, little is known about how RNNs understand the environment internally and what has been memorized over time. Revealing these details is extremely important for deep learning experts to understand and improve DRLs, which in contrast, is also challenging due to the complicated data transformations inside these models. In this article, we propose Deep Reinforcement Learning Interactive Visual Explorer (DRLIVE), a visual analytics system to effectively explore, interpret, and diagnose RNN-based DRLs. Having focused on DRL agents trained for different Atari games, DRLIVE accomplishes three tasks: game episode exploration, RNN hidden/cell state examination, and interactive model perturbation. Using the system, one can flexibly explore a DRL agent through interactive visualizations, discover interpretable RNN cells by prioritizing RNN hidden/cell states with a set of metrics, and further diagnose the DRL model by interactively perturbing its inputs. Through concrete studies with multiple deep learning experts, we validated the efficacy of DRLIVE.
Collapse
|
5
|
Mohseni S, Zarei N, Ragan ED. A Multidisciplinary Survey and Framework for Design and Evaluation of Explainable AI Systems. ACM T INTERACT INTEL 2021. [DOI: 10.1145/3387166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The need for interpretable and accountable intelligent systems grows along with the prevalence of
artificial intelligence
(
AI
) applications used in everyday life.
Explainable AI
(
XAI
) systems are intended to self-explain the reasoning behind system decisions and predictions. Researchers from different disciplines work together to define, design, and evaluate explainable systems. However, scholars from different disciplines focus on different objectives and fairly independent topics of XAI research, which poses challenges for identifying appropriate design and evaluation methodology and consolidating knowledge across efforts. To this end, this article presents a survey and framework intended to share knowledge and experiences of XAI design and evaluation methods across multiple disciplines. Aiming to support diverse design goals and evaluation methods in XAI research, after a thorough review of XAI related papers in the fields of machine learning, visualization, and human-computer interaction, we present a categorization of XAI design goals and evaluation methods. Our categorization presents the mapping between design goals for different XAI user groups and their evaluation methods. From our findings, we develop a framework with step-by-step design guidelines paired with evaluation methods to close the iterative design and evaluation cycles in multidisciplinary XAI teams. Further, we provide summarized ready-to-use tables of evaluation methods and recommendations for different goals in XAI research.
Collapse
|
6
|
Chen C, Yuan J, Lu Y, Liu Y, Su H, Yuan S, Liu S. OoDAnalyzer: Interactive Analysis of Out-of-Distribution Samples. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:3335-3349. [PMID: 32070976 DOI: 10.1109/tvcg.2020.2973258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One major cause of performance degradation in predictive models is that the test samples are not well covered by the training data. Such not well-represented samples are called OoD samples. In this article, we propose OoDAnalyzer, a visual analysis approach for interactively identifying OoD samples and explaining them in context. Our approach integrates an ensemble OoD detection method and a grid-based visualization. The detection method is improved from deep ensembles by combining more features with algorithms in the same family. To better analyze and understand the OoD samples in context, we have developed a novel kNN-based grid layout algorithm motivated by Hall's theorem. The algorithm approximates the optimal layout and has O(kN2) time complexity, faster than the grid layout algorithm with overall best performance but O(N3) time complexity. Quantitative evaluation and case studies were performed on several datasets to demonstrate the effectiveness and usefulness of OoDAnalyzer.
Collapse
|
7
|
Bauerle A, van Onzenoodt C, Ropinski T. Net2Vis - A Visual Grammar for Automatically Generating Publication-Tailored CNN Architecture Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:2980-2991. [PMID: 33556010 DOI: 10.1109/tvcg.2021.3057483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To convey neural network architectures in publications, appropriate visualizations are of great importance. While most current deep learning papers contain such visualizations, these are usually handcrafted just before publication, which results in a lack of a common visual grammar, significant time investment, errors, and ambiguities. Current automatic network visualization tools focus on debugging the network itself and are not ideal for generating publication visualizations. Therefore, we present an approach to automate this process by translating network architectures specified in Keras into visualizations that can directly be embedded into any publication. To do so, we propose a visual grammar for convolutional neural networks (CNNs), which has been derived from an analysis of such figures extracted from all ICCV and CVPR papers published between 2013 and 2019. The proposed grammar incorporates visual encoding, network layout, layer aggregation, and legend generation. We have further realized our approach in an online system available to the community, which we have evaluated through expert feedback, and a quantitative study. It not only reduces the time needed to generate network visualizations for publications, but also enables a unified and unambiguous visualization design.
Collapse
|
8
|
Ma Y, Fan A, He J, Nelakurthi AR, Maciejewski R. A Visual Analytics Framework for Explaining and Diagnosing Transfer Learning Processes. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1385-1395. [PMID: 33035164 DOI: 10.1109/tvcg.2020.3028888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many statistical learning models hold an assumption that the training data and the future unlabeled data are drawn from the same distribution. However, this assumption is difficult to fulfill in real-world scenarios and creates barriers in reusing existing labels from similar application domains. Transfer Learning is intended to relax this assumption by modeling relationships between domains, and is often applied in deep learning applications to reduce the demand for labeled data and training time. Despite recent advances in exploring deep learning models with visual analytics tools, little work has explored the issue of explaining and diagnosing the knowledge transfer process between deep learning models. In this paper, we present a visual analytics framework for the multi-level exploration of the transfer learning processes when training deep neural networks. Our framework establishes a multi-aspect design to explain how the learned knowledge from the existing model is transferred into the new learning task when training deep neural networks. Based on a comprehensive requirement and task analysis, we employ descriptive visualization with performance measures and detailed inspections of model behaviors from the statistical, instance, feature, and model structure levels. We demonstrate our framework through two case studies on image classification by fine-tuning AlexNets to illustrate how analysts can utilize our framework.
Collapse
|
9
|
Ono JP, Castelo S, Lopez R, Bertini E, Freire J, Silva C. PipelineProfiler: A Visual Analytics Tool for the Exploration of AutoML Pipelines. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:390-400. [PMID: 33048694 DOI: 10.1109/tvcg.2020.3030361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent years, a wide variety of automated machine learning (AutoML) methods have been proposed to generate end-to-end ML pipelines. While these techniques facilitate the creation of models, given their black-box nature, the complexity of the underlying algorithms, and the large number of pipelines they derive, they are difficult for developers to debug. It is also challenging for machine learning experts to select an AutoML system that is well suited for a given problem. In this paper, we present the Pipeline Profiler, an interactive visualization tool that allows the exploration and comparison of the solution space of machine learning (ML) pipelines produced by AutoML systems. PipelineProfiler is integrated with Jupyter Notebook and can be combined with common data science tools to enable a rich set of analyses of the ML pipelines, providing users a better understanding of the algorithms that generated them as well as insights into how they can be improved. We demonstrate the utility of our tool through use cases where PipelineProfiler is used to better understand and improve a real-world AutoML system. Furthermore, we validate our approach by presenting a detailed analysis of a think-aloud experiment with six data scientists who develop and evaluate AutoML tools.
Collapse
|