1
|
Saijilafu, Ye LC, Li H, Li H, Lin X, Hu K, Huang Z, Chimedtseren C, Fang L, Saijilahu, Xu RJ. A bibliometric analysis of the top 100 most cited articles on corticospinal tract regeneration from 2004 to 2024. Front Neurosci 2025; 18:1509850. [PMID: 39935762 PMCID: PMC11811756 DOI: 10.3389/fnins.2024.1509850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/23/2024] [Indexed: 02/13/2025] Open
Abstract
Objective Here, bibliometric and visual analytical techniques were employed to assess the key features of the 100 most cited publications concerning corticospinal tract (CST) regeneration. Methods Research was conducted within the Web of Science Core Collection to pinpoint the 100 most cited publications on CST regeneration. From these, comprehensive data encompassing titles, authorship, key terms, publication venues, release timelines, geographic origins, and institutional affiliations were extracted, followed by an in-depth bibliometric examination. Results The 100 most cited publications were all published between 2004 and 2024. These seminal papers amassed an aggregate of 18,321 citations, with individual citation counts ranging from 83 to 871 and a median of 136 citations per paper. Schwab M. E., stood out as the most prominent contributor, with significant authorship in 9 of the 100 papers. The United States dominated the geographical distribution, accounting for 49 of the articles. With 17 publications, the University of California System led the institutional rankings. A thorough keyword analysis revealed pivotal themes in the field, encompassing the optic nerve, gene expression, CST integrity and regeneration, diffusion tensor imaging, myelin-associated glycoproteins, inhibitors of neurite outgrowth, and methods of electrical and intracortical microstimulation. Conclusion This investigation provides a bibliometric analysis of CST regeneration, underscoring the significant contribution of the United States to this field. Our findings unveiled the dynamics and trends within the field of CST regeneration, providing a scientific foundation for advancing clinical applications. Building on this analysis, the clinical application of CST regeneration should be optimized through interdisciplinary collaboration, enabling the exploration and validation of a variety of therapeutic approaches, including the use of neurotrophic factors, stem cell therapies, biomaterials, and electrical stimulation. Concurrently, additional clinical trials are necessary to test the safety and efficacy of these therapeutic methods and develop assessment tools for monitoring the recovery of patients. Furthermore, rehabilitation strategies should be refined, and professional education and training should be provided to enhance the understanding of CST regeneration treatments among both medical professionals and patients. The implementation of these strategies promises to enhance therapeutic outcomes and the quality of life of patients with spinal cord injury (SCI).
Collapse
Affiliation(s)
- Saijilafu
- Hangzhou Lin’an Traditional Chinese Medicine Hospital, Affiliated Hospital, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Ling-Chen Ye
- Department of Orthopaedics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Huanyi Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Haokun Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Xinyi Lin
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Kehui Hu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Zekai Huang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | | | - Linjun Fang
- Hangzhou Lin’an Traditional Chinese Medicine Hospital, Affiliated Hospital, Hangzhou City University, Hangzhou, China
| | - Saijilahu
- Tongliao Centers for Disease Control and Prevention, Tongliao, China
| | - Ren-Jie Xu
- Department of Orthopaedics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
2
|
Mildau K, Ehlers H, Meisenburg M, Del Pup E, Koetsier RA, Torres Ortega LR, de Jonge NF, Singh KS, Ferreira D, Othibeng K, Tugizimana F, Huber F, van der Hooft JJJ. Effective data visualization strategies in untargeted metabolomics. Nat Prod Rep 2024. [PMID: 39620439 PMCID: PMC11610048 DOI: 10.1039/d4np00039k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Indexed: 12/11/2024]
Abstract
Covering: 2014 to 2023 for metabolomics, 2002 to 2023 for information visualizationLC-MS/MS-based untargeted metabolomics is a rapidly developing research field spawning increasing numbers of computational metabolomics tools assisting researchers with their complex data processing, analysis, and interpretation tasks. In this article, we review the entire untargeted metabolomics workflow from the perspective of information visualization, visual analytics and visual data integration. Data visualization is a crucial step at every stage of the metabolomics workflow, where it provides core components of data inspection, evaluation, and sharing capabilities. However, due to the large number of available data analysis tools and corresponding visualization components, it is hard for both users and developers to get an overview of what is already available and which tools are suitable for their analysis. In addition, there is little cross-pollination between the fields of data visualization and metabolomics, leaving visual tools to be designed in a secondary and mostly ad hoc fashion. With this review, we aim to bridge the gap between the fields of untargeted metabolomics and data visualization. First, we introduce data visualization to the untargeted metabolomics field as a topic worthy of its own dedicated research, and provide a primer on cutting-edge visualization research into data visualization for both researchers as well as developers active in metabolomics. We extend this primer with a discussion of best practices for data visualization as they have emerged from data visualization studies. Second, we provide a practical roadmap to the visual tool landscape and its use within the untargeted metabolomics field. Here, for several computational analysis stages within the untargeted metabolomics workflow, we provide an overview of commonly used visual strategies with practical examples. In this context, we will also outline promising areas for further research and development. We end the review with a set of recommendations for developers and users on how to make the best use of visualizations for more effective and transparent communication of results.
Collapse
Affiliation(s)
- Kevin Mildau
- Bioinformatics Group, Wageningen University & Research, Wageningen, The Netherlands.
| | - Henry Ehlers
- Visualization Group, Institute of Visual Computing and Human-Centered Technology, TU Wien, Vienna, Austria.
| | - Mara Meisenburg
- Adaptation Physiology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Elena Del Pup
- Bioinformatics Group, Wageningen University & Research, Wageningen, The Netherlands.
| | - Robert A Koetsier
- Bioinformatics Group, Wageningen University & Research, Wageningen, The Netherlands.
| | | | - Niek F de Jonge
- Bioinformatics Group, Wageningen University & Research, Wageningen, The Netherlands.
| | - Kumar Saurabh Singh
- Bioinformatics Group, Wageningen University & Research, Wageningen, The Netherlands.
- Maastricht University Faculty of Science and Engineering, Plant Functional Genomics Maastricht, Limburg, The Netherlands
- Faculty of Environment, Science and Economy, University of Exeter, Penryl Cornwall, UK
| | | | - Kgalaletso Othibeng
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Florian Huber
- Centre for Digitalisation and Digitality, Düsseldorf University of Applied Sciences, Düsseldorf, Germany
| | - Justin J J van der Hooft
- Bioinformatics Group, Wageningen University & Research, Wageningen, The Netherlands.
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
3
|
Dennig FL, Miller M, Keim DA, El-Assady M. FS/DS: A Theoretical Framework for the Dual Analysis of Feature Space and Data Space. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:5165-5182. [PMID: 37342951 DOI: 10.1109/tvcg.2023.3288356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
With the surge of data-driven analysis techniques, there is a rising demand for enhancing the exploration of large high-dimensional data by enabling interactions for the joint analysis of features (i.e., dimensions). Such a dual analysis of the feature space and data space is characterized by three components, 1) a view visualizing feature summaries, 2) a view that visualizes the data records, and 3) a bidirectional linking of both plots triggered by human interaction in one of both visualizations, e.g., Linking & Brushing. Dual analysis approaches span many domains, e.g., medicine, crime analysis, and biology. The proposed solutions encapsulate various techniques, such as feature selection or statistical analysis. However, each approach establishes a new definition of dual analysis. To address this gap, we systematically reviewed published dual analysis methods to investigate and formalize the key elements, such as the techniques used to visualize the feature space and data space, as well as the interaction between both spaces. From the information elicited during our review, we propose a unified theoretical framework for dual analysis, encompassing all existing approaches extending the field. We apply our proposed formalization describing the interactions between each component and relate them to the addressed tasks. Additionally, we categorize the existing approaches using our framework and derive future research directions to advance dual analysis by including state-of-the-art visual analysis techniques to improve data exploration.
Collapse
|
4
|
Cortes CAT, Thurow S, Ong A, Sharples JJ, Bednarz T, Stevens G, Favero DD. Analysis of Wildfire Visualization Systems for Research and Training: Are They Up for the Challenge of the Current State of Wildfires? IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:4285-4303. [PMID: 37030767 DOI: 10.1109/tvcg.2023.3258440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Wildfires affect many regions across the world. The accelerated progression of global warming has amplified their frequency and scale, deepening their impact on human life, the economy, and the environment. The temperature rise has been driving wildfires to behave unpredictably compared to those previously observed, challenging researchers and fire management agencies to understand the factors behind this behavioral change. Furthermore, this change has rendered fire personnel training outdated and lost its ability to adequately prepare personnel to respond to these new fires. Immersive visualization can play a key role in tackling the growing issue of wildfires. Therefore, this survey reviews various studies that use immersive and non-immersive data visualization techniques to depict wildfire behavior and train first responders and planners. This paper identifies the most useful characteristics of these systems. While these studies support knowledge creation for certain situations, there is still scope to comprehensively improve immersive systems to address the unforeseen dynamics of wildfires.
Collapse
|
5
|
Oral E, Chawla R, Wijkstra M, Mahyar N, Dimara E. From Information to Choice: A Critical Inquiry Into Visualization Tools for Decision Making. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:359-369. [PMID: 37871054 DOI: 10.1109/tvcg.2023.3326593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In the face of complex decisions, people often engage in a three-stage process that spans from (1) exploring and analyzing pertinent information (intelligence); (2) generating and exploring alternative options (design); and ultimately culminating in (3) selecting the optimal decision by evaluating discerning criteria (choice). We can fairly assume that all good visualizations aid in the "intelligence" stage by enabling data exploration and analysis. Yet, to what degree and how do visualization systems currently support the other decision making stages, namely "design" and "choice"? To further explore this question, we conducted a comprehensive review of decision-focused visualization tools by examining publications in major visualization journals and conferences, including VIS, EuroVis, and CHI, spanning all available years. We employed a deductive coding method and in-depth analysis to assess whether and how visualization tools support design and choice. Specifically, we examined each visualization tool by (i) its degree of visibility for displaying decision alternatives, criteria, and preferences, and (ii) its degree of flexibility for offering means to manipulate the decision alternatives, criteria, and preferences with interactions such as adding, modifying, changing mapping, and filtering. Our review highlights the opportunities and challenges that decision-focused visualization tools face in realizing their full potential to support all stages of the decision making process. It reveals a surprising scarcity of tools that support all stages, and while most tools excel in offering visibility for decision criteria and alternatives, the degree of flexibility to manipulate these elements is often limited, and the lack of tools that accommodate decision preferences and their elicitation is notable. Based on our findings, to better support the choice stage, future research could explore enhancing flexibility levels and variety, exploring novel visualization paradigms, increasing algorithmic support, and ensuring that this automation is user-controlled via the enhanced flexibility I evels. Our curated list of the 88 surveyed visualization tools is available in the OSF link (https://osf.io/nrasz/?view_only=b92a90a34ae241449b5f2cd33383bfcb).
Collapse
|
6
|
Daneshzand F, Perin C, Carpendale S. KiriPhys: Exploring New Data Physicalization Opportunities. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:225-235. [PMID: 36191106 DOI: 10.1109/tvcg.2022.3209365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We present KiriPhys, a new type of data physicalization based on kirigami, a traditional Japanese art form that uses paper-cutting. Within the kirigami possibilities, we investigate how different aspects of cutting patterns offer opportunities for mapping data to both independent and dependent physical variables. As a first step towards understanding the data physicalization opportunities in KiriPhys, we conducted a qualitative study in which 12 participants interacted with four KiriPhys examples. Our observations of how people interact with, understand, and respond to KiriPhys suggest that KiriPhys: 1) provides new opportunities for interactive, layered data exploration, 2) introduces elastic expansion as a new sensation that can reveal data, and 3) offers data mapping possibilities while providing a pleasurable experience that stimulates curiosity and engagement.
Collapse
|
7
|
Li Y, Qi Y, Shi Y, Chen Q, Cao N, Chen S. Diverse Interaction Recommendation for Public Users Exploring Multi-view Visualization using Deep Learning. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:95-105. [PMID: 36155443 DOI: 10.1109/tvcg.2022.3209461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Interaction is an important channel to offer users insights in interactive visualization systems. However, which interaction to operate and which part of data to explore are hard questions for public users facing a multi-view visualization for the first time. Making these decisions largely relies on professional experience and analytic abilities, which is a huge challenge for non-professionals. To solve the problem, we propose a method aiming to provide diverse, insightful, and real-time interaction recommendations for novice users. Building on the Long-Short Term Memory Model (LSTM) structure, our model captures users' interactions and visual states and encodes them in numerical vectors to make further recommendations. Through an illustrative example of a visualization system about Chinese poets in the museum scenario, the model is proven to be workable in systems with multi-views and multiple interaction types. A further user study demonstrates the method's capability to help public users conduct more insightful and diverse interactive explorations and gain more accurate data insights.
Collapse
|
8
|
Tong W, Chen Z, Xia M, Lo LYH, Yuan L, Bach B, Qu H. Exploring Interactions with Printed Data Visualizations in Augmented Reality. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:418-428. [PMID: 36166542 DOI: 10.1109/tvcg.2022.3209386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This paper presents a design space of interaction techniques to engage with visualizations that are printed on paper and augmented through Augmented Reality. Paper sheets are widely used to deploy visualizations and provide a rich set of tangible affordances for interactions, such as touch, folding, tilting, or stacking. At the same time, augmented reality can dynamically update visualization content to provide commands such as pan, zoom, filter, or detail on demand. This paper is the first to provide a structured approach to mapping possible actions with the paper to interaction commands. This design space and the findings of a controlled user study have implications for future designs of augmented reality systems involving paper sheets and visualizations. Through workshops ( N=20) and ideation, we identified 81 interactions that we classify in three dimensions: 1) commands that can be supported by an interaction, 2) the specific parameters provided by an (inter)action with paper, and 3) the number of paper sheets involved in an interaction. We tested user preference and viability of 11 of these interactions with a prototype implementation in a controlled study ( N=12, HoloLens 2) and found that most of the interactions are intuitive and engaging to use. We summarized interactions (e.g., tilt to pan) that have strong affordance to complement "point" for data exploration, physical limitations and properties of paper as a medium, cases requiring redundancy and shortcuts, and other implications for design.
Collapse
|
9
|
Crisan A, Fisher SE, Gardy JL, Munzner T. GEViTRec: Data Reconnaissance Through Recommendation Using a Domain-Specific Visualization Prevalence Design Space. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:4855-4872. [PMID: 34449391 DOI: 10.1109/tvcg.2021.3107749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Genomic Epidemiology (genEpi) is a branch of public health that uses many different data types including tabular, network, genomic, and geographic, to identify and contain outbreaks of deadly diseases. Due to the volume and variety of data, it is challenging for genEpi domain experts to conduct data reconnaissance; that is, have an overview of the data they have and make assessments toward its quality, completeness, and suitability. We present an algorithm for data reconnaissance through automatic visualization recommendation, GEViTRec. Our approach handles a broad variety of dataset types and automatically generates visually coherent combinations of charts, in contrast to existing systems that primarily focus on singleton visual encodings of tabular datasets. We automatically detect linkages across multiple input datasets by analyzing non-numeric attribute fields, creating a data source graph within which we analyze and rank paths. For each high-ranking path, we specify chart combinations with positional and color alignments between shared fields, using a gradual binding approach to transform initial partial specifications of singleton charts to complete specifications that are aligned and oriented consistently. A novel aspect of our approach is its combination of domain-agnostic elements with domain-specific information that is captured through a domain-specific visualization prevalence design space. Our implementation is applied to both synthetic data and real Ebola outbreak data. We compare GEViTRec's output to what previous visualization recommendation systems would generate, and to manually crafted visualizations used by practitioners. We conducted formative evaluations with ten genEpi experts to assess the relevance and interpretability of our results. Code, Data, and Study Materials Availability: https://github.com/amcrisan/GEVitRec.
Collapse
|
10
|
Wang Q, Chen Z, Wang Y, Qu H. A Survey on ML4VIS: Applying Machine Learning Advances to Data Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:5134-5153. [PMID: 34437063 DOI: 10.1109/tvcg.2021.3106142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inspired by the great success of machine learning (ML), researchers have applied ML techniques to visualizations to achieve a better design, development, and evaluation of visualizations. This branch of studies, known as ML4VIS, is gaining increasing research attention in recent years. To successfully adapt ML techniques for visualizations, a structured understanding of the integration of ML4VIS is needed. In this article, we systematically survey 88 ML4VIS studies, aiming to answer two motivating questions: "what visualization processes can be assisted by ML?" and "how ML techniques can be used to solve visualization problems? "This survey reveals seven main processes where the employment of ML techniques can benefit visualizations: Data Processing4VIS, Data-VIS Mapping, Insight Communication, Style Imitation, VIS Interaction, VIS Reading, and User Profiling. The seven processes are related to existing visualization theoretical models in an ML4VIS pipeline, aiming to illuminate the role of ML-assisted visualization in general visualizations. Meanwhile, the seven processes are mapped into main learning tasks in ML to align the capabilities of ML with the needs in visualization. Current practices and future opportunities of ML4VIS are discussed in the context of the ML4VIS pipeline and the ML-VIS mapping. While more studies are still needed in the area of ML4VIS, we hope this article can provide a stepping-stone for future exploration. A web-based interactive browser of this survey is available at https://ml4vis.github.io.
Collapse
|
11
|
Dimara E, Zhang H, Tory M, Franconeri S. The Unmet Data Visualization Needs of Decision Makers Within Organizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:4101-4112. [PMID: 33872153 DOI: 10.1109/tvcg.2021.3074023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
When an organization chooses one course of action over alternatives, this task typically falls on a decision maker with relevant knowledge, experience, and understanding of context. Decision makers rely on data analysis, which is either delegated to analysts, or done on their own. Often the decision maker combines data, likely uncertain or incomplete, with non-formalized knowledge within a multi-objective problem space, weighing the recommendations of analysts within broader contexts and goals. As most past research in visual analytics has focused on understanding the needs and challenges of data analysts, less is known about the tasks and challenges of organizational decision makers, and how visualization support tools might help. Here we characterize the decision maker as a domain expert, review relevant literature in management theories, and report the results of an empirical survey and interviews with people who make organizational decisions. We identify challenges and opportunities for novel visualization tools, including trade-off overviews, scenario-based analysis, interrogation tools, flexible data input and collaboration support. Our findings stress the need to expand visualization design beyond data analysis into tools for information management.
Collapse
|
12
|
Halladjian S, Kouril D, Miao H, Groller ME, Viola I, Isenberg T. Multiscale Unfolding: Illustratively Visualizing the Whole Genome at a Glance. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:3456-3470. [PMID: 33705319 DOI: 10.1109/tvcg.2021.3065443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present Multiscale Unfolding, an interactive technique for illustratively visualizing multiple hierarchical scales of DNA in a single view, showing the genome at different scales and demonstrating how one scale spatially folds into the next. The DNA's extremely long sequential structure-arranged differently on several distinct scale levels-is often lost in traditional 3D depictions, mainly due to its multiple levels of dense spatial packing and the resulting occlusion. Furthermore, interactive exploration of this complex structure is cumbersome, requiring visibility management like cut-aways. In contrast to existing temporally controlled multiscale data exploration, we allow viewers to always see and interact with any of the involved scales. For this purpose we separate the depiction into constant-scale and scale transition zones. Constant-scale zones maintain a single-scale representation, while still linearly unfolding the DNA. Inspired by illustration, scale transition zones connect adjacent constant-scale zones via level unfolding, scaling, and transparency. We thus represent the spatial structure of the whole DNA macro-molecule, maintain its local organizational characteristics, linearize its higher-level organization, and use spatially controlled, understandable interpolation between neighboring scales. We also contribute interaction techniques that provide viewers with a coarse-to-fine control for navigating within our all-scales-in-one-view representations and visual aids to illustrate the size differences. Overall, Multiscale Unfolding allows viewers to grasp the DNA's structural composition from chromosomes to the atoms, with increasing levels of "unfoldedness," and can be applied in data-driven illustration and communication.
Collapse
|
13
|
Cheng B. Visual Art Design of Digital Works Guided by Big Data. MOBILE INFORMATION SYSTEMS 2022; 2022:1-9. [DOI: 10.1155/2022/5636449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
With the rapid development of digital technology, the development speed of digital media is also relatively fast. Digital media technology has a great impact on people’s lifestyles and aesthetic concepts, and it also has a greater impact on visual art, creative thinking communication methods, and expression methods. In this study, the quality enhancement of digital images has been intensively studied based on the guidance of big data of eye-movement gaze points. A large amount of visual data are collected from public social resources, and the optimization research of image sensory quality is carried out in-depth using the acquired big data. Next, the region of interest (ROI) is obtained by combining the data with a two-dimensional Gaussian distribution model-fitting method, and the obtained data clustered and improved based on the K-means clustering algorithm to obtain ROI fixation points. Finally, discontinuities in the choice of sharpness in graphics and video playback are pointed out, and the final fixation data analysis is utilized. Results show that targeted optimization is very effective in improving the quality of digital images and saving space, enabling users to enjoy higher-quality visual digital images. The proposed method can be used to improve the dynamic resolution of images and videos.
Collapse
Affiliation(s)
- Bin Cheng
- Digital Media Design Department of Shanghai Institute of Design, China Academy of Art, Shanghai 201203, China
| |
Collapse
|
14
|
Dunne M, Mohammadi H, Challenor P, Borgo R, Porphyre T, Vernon I, Firat EE, Turkay C, Torsney-Weir T, Goldstein M, Reeve R, Fang H, Swallow B. Complex model calibration through emulation, a worked example for a stochastic epidemic model. Epidemics 2022; 39:100574. [PMID: 35617882 PMCID: PMC9109972 DOI: 10.1016/j.epidem.2022.100574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 12/03/2022] Open
Abstract
Uncertainty quantification is a formal paradigm of statistical estimation that aims to account for all uncertainties inherent in the modelling process of real-world complex systems. The methods are directly applicable to stochastic models in epidemiology, however they have thus far not been widely used in this context. In this paper, we provide a tutorial on uncertainty quantification of stochastic epidemic models, aiming to facilitate the use of the uncertainty quantification paradigm for practitioners with other complex stochastic simulators of applied systems. We provide a formal workflow including the important decisions and considerations that need to be taken, and illustrate the methods over a simple stochastic epidemic model of UK SARS-CoV-2 transmission and patient outcome. We also present new approaches to visualisation of outputs from sensitivity analyses and uncertainty quantification more generally in high input and/or output dimensions.
Collapse
Affiliation(s)
- Michael Dunne
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Hossein Mohammadi
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Peter Challenor
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Rita Borgo
- Department of Informatics, King's College London, London, UK
| | - Thibaud Porphyre
- Laboratoire de Biométrie et Biologie Evolutive, VetAgro Sup, Marcy l'Etoile, France
| | - Ian Vernon
- Department of Mathematical Sciences, Durham University, Durham, UK
| | - Elif E Firat
- Department of Computer Science, University of Nottingham, Nottingham, UK
| | - Cagatay Turkay
- Centre for Interdisciplinary Methodologies, University of Warwick, Coventry, UK
| | - Thomas Torsney-Weir
- VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH, Vienna, Austria
| | | | - Richard Reeve
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Hui Fang
- Department of Computer Science, Loughborough University, Loughborough, UK
| | - Ben Swallow
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK.
| |
Collapse
|
15
|
Dimara E, Stasko J. A Critical Reflection on Visualization Research: Where Do Decision Making Tasks Hide? IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:1128-1138. [PMID: 34587049 DOI: 10.1109/tvcg.2021.3114813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It has been widely suggested that a key goal of visualization systems is to assist decision making, but is this true? We conduct a critical investigation on whether the activity of decision making is indeed central to the visualization domain. By approaching decision making as a user task, we explore the degree to which decision tasks are evident in visualization research and user studies. Our analysis suggests that decision tasks are not commonly found in current visualization task taxonomies and that the visualization field has yet to leverage guidance from decision theory domains on how to study such tasks. We further found that the majority of visualizations addressing decision making were not evaluated based on their ability to assist decision tasks. Finally, to help expand the impact of visual analytics in organizational as well as casual decision making activities, we initiate a research agenda on how decision making assistance could be elevated throughout visualization research.
Collapse
|
16
|
Rubab S, Tang J, Wu Y. Examining interaction techniques in data visualization authoring tools from the perspective of goals and human cognition: a survey. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-020-00705-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Zhang SH, Cai Y, Li J. Visualization of COVID-19 spread based on spread and extinction indexes. SCIENCE CHINA INFORMATION SCIENCES 2020; 63:164102. [PMCID: PMC7235974 DOI: 10.1007/s11432-020-2828-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/12/2020] [Indexed: 06/15/2023]
Affiliation(s)
- Song-Hai Zhang
- Department of Computer Science and Technology, Tsinghua University, Beijing, 100084 China
- Beijing National Research Center for Information Science and Technology (BNRist), Beijing, 100084 China
| | - Yun Cai
- Department of Computer Science and Technology, Tsinghua University, Beijing, 100084 China
| | - Jian Li
- Department of Computer Science and Technology, Tsinghua University, Beijing, 100084 China
| |
Collapse
|