1
|
Chen Q, Chen Y, Zou R, Shuai W, Guo Y, Wang J, Cao N. Chart2Vec: A Universal Embedding of Context-Aware Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:2167-2181. [PMID: 38551829 DOI: 10.1109/tvcg.2024.3383089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The advances in AI-enabled techniques have accelerated the creation and automation of visualizations in the past decade. However, presenting visualizations in a descriptive and generative format remains a challenge. Moreover, current visualization embedding methods focus on standalone visualizations, neglecting the importance of contextual information for multi-view visualizations. To address this issue, we propose a new representation model, Chart2Vec, to learn a universal embedding of visualizations with context-aware information. Chart2Vec aims to support a wide range of downstream visualization tasks such as recommendation and storytelling. Our model considers both structural and semantic information of visualizations in declarative specifications. To enhance the context-aware capability, Chart2Vec employs multi-task learning on both supervised and unsupervised tasks concerning the cooccurrence of visualizations. We evaluate our method through an ablation study, a user study, and a quantitative comparison. The results verified the consistency of our embedding method with human cognition and showed its advantages over existing methods.
Collapse
|
2
|
Zhao Y, Zhang Y, Zhang Y, Zhao X, Wang J, Shao Z, Turkay C, Chen S. LEVA: Using Large Language Models to Enhance Visual Analytics. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1830-1847. [PMID: 38437130 DOI: 10.1109/tvcg.2024.3368060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Visual analytics supports data analysis tasks within complex domain problems. However, due to the richness of data types, visual designs, and interaction designs, users need to recall and process a significant amount of information when they visually analyze data. These challenges emphasize the need for more intelligent visual analytics methods. Large language models have demonstrated the ability to interpret various forms of textual data, offering the potential to facilitate intelligent support for visual analytics. We propose LEVA, a framework that uses large language models to enhance users' VA workflows at multiple stages: onboarding, exploration, and summarization. To support onboarding, we use large language models to interpret visualization designs and view relationships based on system specifications. For exploration, we use large language models to recommend insights based on the analysis of system status and data to facilitate mixed-initiative exploration. For summarization, we present a selective reporting strategy to retrace analysis history through a stream visualization and generate insight reports with the help of large language models. We demonstrate how LEVA can be integrated into existing visual analytics systems. Two usage scenarios and a user study suggest that LEVA effectively aids users in conducting visual analytics.
Collapse
|
3
|
Wei Z, Qu H, Xu X. Telling Data Stories with the Hero's Journey: Design Guidance for Creating Data Videos. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:962-972. [PMID: 39255131 DOI: 10.1109/tvcg.2024.3456330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Data videos increasingly becoming a popular data storytelling form represented by visual and audio integration. In recent years, more and more researchers have explored many narrative structures for effective and attractive data storytelling. Meanwhile, the Hero's Journey provides a classic narrative framework specific to the Hero's story that has been adopted by various mediums. There are continuous discussions about applying Hero's Journey to data stories. However, so far, little systematic and practical guidance on how to create a data video for a specific story type like the Hero's Journey, as well as how to manipulate its sound and visual designs simultaneously. To fulfill this gap, we first identified 48 data videos aligned with the Hero's Journey as the common storytelling from 109 high-quality data videos. Then, we examined how existing practices apply Hero's Journey for creating data videos. We coded the 48 data videos in terms of the narrative stages, sound design, and visual design according to the Hero's Journey structure. Based on our findings, we proposed a design space to provide practical guidance on the narrative, visual, and sound custom design for different narrative segments of the hero's journey (i.e., Departure, Initiation, Return) through data video creation. To validate our proposed design space, we conducted a user study where 20 participants were invited to design data videos with and without our design space guidance, which was evaluated by two experts. Results show that our design space provides useful and practical guidance for data storytellers effectively creating data videos with the Hero's Journey.
Collapse
|
4
|
Chen Q, Cao S, Wang J, Cao N. How Does Automation Shape the Process of Narrative Visualization: A Survey of Tools. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:4429-4448. [PMID: 37030780 DOI: 10.1109/tvcg.2023.3261320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In recent years, narrative visualization has gained much attention. Researchers have proposed different design spaces for various narrative visualization genres and scenarios to facilitate the creation process. As users' needs grow and automation technologies advance, increasingly more tools have been designed and developed. In this study, we summarized six genres of narrative visualization (annotated charts, infographics, timelines & storylines, data comics, scrollytelling & slideshow, and data videos) based on previous research and four types of tools (design spaces, authoring tools, ML/AI-supported tools and ML/AI-generator tools) based on the intelligence and automation level of the tools. We surveyed 105 papers and tools to study how automation can progressively engage in visualization design and narrative processes to help users easily create narrative visualizations. This research aims to provide an overview of current research and development in the automation involvement of narrative visualization tools. We discuss key research problems in each category and suggest new opportunities to encourage further research in the related domain.
Collapse
|
5
|
Liu C, Guo Y, Yuan X. AutoTitle: An Interactive Title Generator for Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:5276-5288. [PMID: 37384476 DOI: 10.1109/tvcg.2023.3290241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
We propose AutoTitle, an interactive visualization title generator satisfying multifarious user requirements. Factors making a good title, namely, the feature importance, coverage, preciseness, general information richness, conciseness, and non-technicality, are summarized based on the feedback from user interviews. Visualization authors need to trade off among these factors to fit specific scenarios, resulting in a wide design space of visualization titles. AutoTitle generates various titles through the process of visualization facts traversing, deep learning-based fact-to-title generation, and quantitative evaluation of the six factors. AutoTitle also provides users with an interactive interface to explore the desired titles by filtering the metrics. We conduct a user study to validate the quality of generated titles as well as the rationality and helpfulness of these metrics.
Collapse
|
6
|
Fu Y, Stasko J. More Than Data Stories: Broadening the Role of Visualization in Contemporary Journalism. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:5240-5259. [PMID: 37339040 DOI: 10.1109/tvcg.2023.3287585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Data visualization and journalism are deeply connected. From early infographics to recent data-driven storytelling, visualization has become an integrated part of contemporary journalism, primarily as a communication artifact to inform the general public. Data journalism, harnessing the power of data visualization, has emerged as a bridge between the growing volume of data and our society. Visualization research that centers around data storytelling has sought to understand and facilitate such journalistic endeavors. However, a recent metamorphosis in journalism has brought broader challenges and opportunities that extend beyond mere communication of data. We present this article to enhance our understanding of such transformations and thus broaden visualization research's scope and practical contribution to this evolving field. We first survey recent significant shifts, emerging challenges, and computational practices in journalism. We then summarize six roles of computing in journalism and their implications. Based on these implications, we provide propositions for visualization research concerning each role. Ultimately, by mapping the roles and propositions onto a proposed ecological model and contextualizing existing visualization research, we surface seven general topics and a series of research agendas that can guide future visualization research at this intersection.
Collapse
|
7
|
Zhao J, Xu S, Chandrasegaran S, Bryan C, Du F, Mishra A, Qian X, Li Y, Ma KL. ChartStory: Automated Partitioning, Layout, and Captioning of Charts into Comic-Style Narratives. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:1384-1399. [PMID: 34559655 DOI: 10.1109/tvcg.2021.3114211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Visual data storytelling is gaining importance as a means of presenting data-driven information or analysis results, especially to the general public. This has resulted in design principles being proposed for data-driven storytelling, and new authoring tools being created to aid such storytelling. However, data analysts typically lack sufficient background in design and storytelling to make effective use of these principles and authoring tools. To assist this process, we present ChartStory for crafting data stories from a collection of user-created charts, using a style akin to comic panels to imply the underlying sequence and logic of data-driven narratives. Our approach is to operationalize established design principles into an advanced pipeline that characterizes charts by their properties and similarities to each other, and recommends ways to partition, layout, and caption story pieces to serve a narrative. ChartStory also augments this pipeline with intuitive user interactions for visual refinement of generated data comics. We extensively and holistically evaluate ChartStory via a trio of studies. We first assess how the tool supports data comic creation in comparison to a manual baseline tool. Data comics from this study are subsequently compared and evaluated to ChartStory's automated recommendations by a team of narrative visualization practitioners. This is followed by a pair of interview studies with data scientists using their own datasets and charts who provide an additional assessment of the system. We find that ChartStory provides cogent recommendations for narrative generation, resulting in data comics that compare favorably to manually-created ones.
Collapse
|
8
|
Chen Z, Yang Q, Xie X, Beyer J, Xia H, Wu Y, Pfister H. Sporthesia: Augmenting Sports Videos Using Natural Language. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:918-928. [PMID: 36197856 DOI: 10.1109/tvcg.2022.3209497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Augmented sports videos, which combine visualizations and video effects to present data in actual scenes, can communicate insights engagingly and thus have been increasingly popular for sports enthusiasts around the world. Yet, creating augmented sports videos remains a challenging task, requiring considerable time and video editing skills. On the other hand, sports insights are often communicated using natural language, such as in commentaries, oral presentations, and articles, but usually lack visual cues. Thus, this work aims to facilitate the creation of augmented sports videos by enabling analysts to directly create visualizations embedded in videos using insights expressed in natural language. To achieve this goal, we propose a three-step approach - 1) detecting visualizable entities in the text, 2) mapping these entities into visualizations, and 3) scheduling these visualizations to play with the video - and analyzed 155 sports video clips and the accompanying commentaries for accomplishing these steps. Informed by our analysis, we have designed and implemented Sporthesia, a proof-of-concept system that takes racket-based sports videos and textual commentaries as the input and outputs augmented videos. We demonstrate Sporthesia's applicability in two exemplar scenarios, i.e., authoring augmented sports videos using text and augmenting historical sports videos based on auditory comments. A technical evaluation shows that Sporthesia achieves high accuracy (F1-score of 0.9) in detecting visualizable entities in the text. An expert evaluation with eight sports analysts suggests high utility, effectiveness, and satisfaction with our language-driven authoring method and provides insights for future improvement and opportunities.
Collapse
|
9
|
Deng D, Wu A, Qu H, Wu Y. DashBot: Insight-Driven Dashboard Generation Based on Deep Reinforcement Learning. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:690-700. [PMID: 36179003 DOI: 10.1109/tvcg.2022.3209468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Analytical dashboards are popular in business intelligence to facilitate insight discovery with multiple charts. However, creating an effective dashboard is highly demanding, which requires users to have adequate data analysis background and be familiar with professional tools, such as Power BI. To create a dashboard, users have to configure charts by selecting data columns and exploring different chart combinations to optimize the communication of insights, which is trial-and-error. Recent research has started to use deep learning methods for dashboard generation to lower the burden of visualization creation. However, such efforts are greatly hindered by the lack of large-scale and high-quality datasets of dashboards. In this work, we propose using deep reinforcement learning to generate analytical dashboards that can use well-established visualization knowledge and the estimation capacity of reinforcement learning. Specifically, we use visualization knowledge to construct a training environment and rewards for agents to explore and imitate human exploration behavior with a well-designed agent network. The usefulness of the deep reinforcement learning model is demonstrated through ablation studies and user studies. In conclusion, our work opens up new opportunities to develop effective ML-based visualization recommenders without beforehand training datasets.
Collapse
|
10
|
Bach B, Freeman E, Abdul-Rahman A, Turkay C, Khan S, Fan Y, Chen M. Dashboard Design Patterns. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:342-352. [PMID: 36155447 DOI: 10.1109/tvcg.2022.3209448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This paper introduces design patterns for dashboards to inform dashboard design processes. Despite a growing number of public examples, case studies, and general guidelines there is surprisingly little design guidance for dashboards. Such guidance is necessary to inspire designs and discuss tradeoffs in, e.g., screenspace, interaction, or information shown. Based on a systematic review of 144 dashboards, we report on eight groups of design patterns that provide common solutions in dashboard design. We discuss combinations of these patterns in "dashboard genres" such as narrative, analytical, or embedded dashboard. We ran a 2-week dashboard design workshop with 23 participants of varying expertise working on their own data and dashboards. We discuss the application of patterns for the dashboard design processes, as well as general design tradeoffs and common challenges. Our work complements previous surveys and aims to support dashboard designers and researchers in co-creation, structured design decisions, as well as future user evaluations about dashboard design guidelines. Detailed pattern descriptions and workshop material can be found online: https://dashboarddesignpatterns.github.io.
Collapse
|
11
|
Sun M, Cai L, Cui W, Wu Y, Shi Y, Cao N. Erato: Cooperative Data Story Editing via Fact Interpolation. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:983-993. [PMID: 36155449 DOI: 10.1109/tvcg.2022.3209428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As an effective form of narrative visualization, visual data stories are widely used in data-driven storytelling to communicate complex insights and support data understanding. Although important, they are difficult to create, as a variety of interdisciplinary skills, such as data analysis and design, are required. In this work, we introduce Erato, a human-machine cooperative data story editing system, which allows users to generate insightful and fluent data stories together with the computer. Specifically, Erato only requires a number of keyframes provided by the user to briefly describe the topic and structure of a data story. Meanwhile, our system leverages a novel interpolation algorithm to help users insert intermediate frames between the keyframes to smooth the transition. We evaluated the effectiveness and usefulness of the Erato system via a series of evaluations including a Turing test, a controlled user study, a performance validation, and interviews with three expert users. The evaluation results showed that the proposed interpolation technique was able to generate coherent story content and help users create data stories more efficiently.
Collapse
|
12
|
Yuan LP, Zhou Z, Zhao J, Guo Y, Du F, Qu H. InfoColorizer: Interactive Recommendation of Color Palettes for Infographics. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:4252-4266. [PMID: 34061743 DOI: 10.1109/tvcg.2021.3085327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
When designing infographics, general users usually struggle with getting desired color palettes using existing infographic authoring tools, which sometimes sacrifice customizability, require design expertise, or neglect the influence of elements' spatial arrangement. We propose a data-driven method that provides flexibility by considering users' preferences, lowers the expertise barrier via automation, and tailors suggested palettes to the spatial layout of elements. We build a recommendation engine by utilizing deep learning techniques to characterize good color design practices from data, and further develop InfoColorizer, a tool that allows users to obtain color palettes for their infographics in an interactive and dynamic manner. To validate our method, we conducted a comprehensive four-part evaluation, including case studies, a controlled user study, a survey study, and an interview study. The results indicate that InfoColorizer can provide compelling palette recommendations with adequate flexibility, allowing users to effectively obtain high-quality color design for input infographics with low effort.
Collapse
|
13
|
Wu A, Wang Y, Shu X, Moritz D, Cui W, Zhang H, Zhang D, Qu H. AI4VIS: Survey on Artificial Intelligence Approaches for Data Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:5049-5070. [PMID: 34310306 DOI: 10.1109/tvcg.2021.3099002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Visualizations themselves have become a data format. Akin to other data formats such as text and images, visualizations are increasingly created, stored, shared, and (re-)used with artificial intelligence (AI) techniques. In this survey, we probe the underlying vision of formalizing visualizations as an emerging data format and review the recent advance in applying AI techniques to visualization data (AI4VIS). We define visualization data as the digital representations of visualizations in computers and focus on data visualization (e.g., charts and infographics). We build our survey upon a corpus spanning ten different fields in computer science with an eye toward identifying important common interests. Our resulting taxonomy is organized around WHAT is visualization data and its representation, WHY and HOW to apply AI to visualization data. We highlight a set of common tasks that researchers apply to the visualization data and present a detailed discussion of AI approaches developed to accomplish those tasks. Drawing upon our literature review, we discuss several important research questions surrounding the management and exploitation of visualization data, as well as the role of AI in support of those processes. We make the list of surveyed papers and related material available online at.
Collapse
|
14
|
Wang Q, Chen Z, Wang Y, Qu H. A Survey on ML4VIS: Applying Machine Learning Advances to Data Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:5134-5153. [PMID: 34437063 DOI: 10.1109/tvcg.2021.3106142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inspired by the great success of machine learning (ML), researchers have applied ML techniques to visualizations to achieve a better design, development, and evaluation of visualizations. This branch of studies, known as ML4VIS, is gaining increasing research attention in recent years. To successfully adapt ML techniques for visualizations, a structured understanding of the integration of ML4VIS is needed. In this article, we systematically survey 88 ML4VIS studies, aiming to answer two motivating questions: "what visualization processes can be assisted by ML?" and "how ML techniques can be used to solve visualization problems? "This survey reveals seven main processes where the employment of ML techniques can benefit visualizations: Data Processing4VIS, Data-VIS Mapping, Insight Communication, Style Imitation, VIS Interaction, VIS Reading, and User Profiling. The seven processes are related to existing visualization theoretical models in an ML4VIS pipeline, aiming to illuminate the role of ML-assisted visualization in general visualizations. Meanwhile, the seven processes are mapped into main learning tasks in ML to align the capabilities of ML with the needs in visualization. Current practices and future opportunities of ML4VIS are discussed in the context of the ML4VIS pipeline and the ML-VIS mapping. While more studies are still needed in the area of ML4VIS, we hope this article can provide a stepping-stone for future exploration. A web-based interactive browser of this survey is available at https://ml4vis.github.io.
Collapse
|
15
|
Pandey A, Srinivasan A, Setlur V. MEDLEY: Intent-based Recommendations to Support Dashboard Composition. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; PP:1135-1145. [PMID: 36194711 DOI: 10.1109/tvcg.2022.3209421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite the ever-growing popularity of dashboards across a wide range of domains, their authoring still remains a tedious and complex process. Current tools offer considerable support for creating individual visualizations but provide limited support for discovering groups of visualizations that can be collectively useful for composing analytic dashboards. To address this problem, we present MEDLEY, a mixed-initiative interface that assists in dashboard composition by recommending dashboard collections (i.e., a logically grouped set of views and filtering widgets) that map to specific analytical intents. Users can specify dashboard intents (namely, measure analysis, change analysis, category analysis, or distribution analysis) explicitly through an input panel in the interface or implicitly by selecting data attributes and views of interest. The system recommends collections based on these analytic intents, and views and widgets can be selected to compose a variety of dashboards. MEDLEY also provides a lightweight direct manipulation interface to configure interactions between views in a dashboard. Based on a study with 13 participants performing both targeted and open-ended tasks, we discuss how MEDLEY's recommendations guide dashboard composition and facilitate different user workflows. Observations from the study identify potential directions for future work, including combining manual view specification with dashboard recommendations and designing natural language interfaces for dashboard authoring.
Collapse
|
16
|
Shen L, Shen E, Tai Z, Xu Y, Dong J, Wang J. Visual Data Analysis with Task-Based Recommendations. DATA SCIENCE AND ENGINEERING 2022; 7:354-369. [PMID: 36117680 PMCID: PMC9470074 DOI: 10.1007/s41019-022-00195-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
General visualization recommendation systems typically make design decisions for the dataset automatically. However, most of them can only prune meaningless visualizations but fail to recommend targeted results. This paper contributes TaskVis, a task-oriented visualization recommendation system that allows users to select their tasks precisely on the interface. We first summarize a task base with 18 classical analytic tasks by a survey both in academia and industry. On this basis, we maintain a rule base, which extends empirical wisdom with our targeted modeling of the analytic tasks. Then, our rule-based approach enumerates all the candidate visualizations through answer set programming. After that, the generated charts can be ranked by four ranking schemes. Furthermore, we introduce a task-based combination recommendation strategy, leveraging a set of visualizations to give a brief view of the dataset collaboratively. Finally, we evaluate TaskVis through a series of use cases and a user study.
Collapse
Affiliation(s)
| | | | | | - Yihao Xu
- Tsinghua University, Beijing, China
| | | | | |
Collapse
|
17
|
Traboco L, Pandian H, Nikiphorou E, Gupta L. Designing Infographics: Visual Representations for Enhancing Education, Communication, and Scientific Research. J Korean Med Sci 2022; 37:e214. [PMID: 35818705 PMCID: PMC9274103 DOI: 10.3346/jkms.2022.37.e214] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Infographics are graphic visual representations of educational content, used to deliver complex information, disseminate scientific research, and drive behavioral change. Herein, we review some of the factors pertinent to designing infographics and the potential for automation in the future. To guide high-impact design, it is vital to clearly define the objectives of the infographic and its target audience. Designing an effective infographic necessitates careful consideration of the layout, colors, font, and context. More recently, technical support to develop infographics are increasingly available through online software (Canva, Adobe, and Venngage) and emerging artificial intelligence programs. References can also become a visual representation of trends in scientific discovery. It is crucial for clinicians, researchers and scientists to have the knowledge and skills to design compelling infographics. In the era of social media, the uptake and effects of infographics for disseminating scientific research and public health education need to be further studied to understand their full potential.
Collapse
Affiliation(s)
- Lisa Traboco
- Department of Medicine, Section of Rheumatology, St. Luke's Medical Center-Global City, Taguig, Philippines
| | - Haridha Pandian
- Department of Rheumatology, Royal Wolverhampton Hospitals NHS Trust, Wolverhampton, UK
| | - Elena Nikiphorou
- Department of Rheumatology, King's College Hospital & Centre for Rheumatic Diseases, Division of Inflammation Biology, King's College London, London, UK
| | - Latika Gupta
- Department of Rheumatology, Royal Wolverhampton Hospitals NHS Trust, Wolverhampton, UK
- Division of Musculoskeletal and Dermatological Sciences, Centre for Musculoskeletal Research, School of Biological Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
18
|
Zeng Z, Moh P, Du F, Hoffswell J, Lee TY, Malik S, Koh E, Battle L. An Evaluation-Focused Framework for Visualization Recommendation Algorithms. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:346-356. [PMID: 34587050 DOI: 10.1109/tvcg.2021.3114814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although we have seen a proliferation of algorithms for recommending visualizations, these algorithms are rarely compared with one another, making it difficult to ascertain which algorithm is best for a given visual analysis scenario. Though several formal frameworks have been proposed in response, we believe this issue persists because visualization recommendation algorithms are inadequately specified from an evaluation perspective. In this paper, we propose an evaluation-focused framework to contextualize and compare a broad range of visualization recommendation algorithms. We present the structure of our framework, where algorithms are specified using three components: (1) a graph representing the full space of possible visualization designs, (2) the method used to traverse the graph for potential candidates for recommendation, and (3) an oracle used to rank candidate designs. To demonstrate how our framework guides the formal comparison of algorithmic performance, we not only theoretically compare five existing representative recommendation algorithms, but also empirically compare four new algorithms generated based on our findings from the theoretical comparison. Our results show that these algorithms behave similarly in terms of user performance, highlighting the need for more rigorous formal comparisons of recommendation algorithms to further clarify their benefits in various analysis scenarios.
Collapse
|
19
|
Lundgard A, Satyanarayan A. Accessible Visualization via Natural Language Descriptions: A Four-Level Model of Semantic Content. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:1073-1083. [PMID: 34591762 DOI: 10.1109/tvcg.2021.3114770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Natural language descriptions sometimes accompany visualizations to better communicate and contextualize their insights, and to improve their accessibility for readers with disabilities. However, it is difficult to evaluate the usefulness of these descriptions, and how effectively they improve access to meaningful information, because we have little understanding of the semantic content they convey, and how different readers receive this content. In response, we introduce a conceptual model for the semantic content conveyed by natural language descriptions of visualizations. Developed through a grounded theory analysis of 2,147 sentences, our model spans four levels of semantic content: enumerating visualization construction properties (e.g., marks and encodings); reporting statistical concepts and relations (e.g., extrema and correlations); identifying perceptual and cognitive phenomena (e.g., complex trends and patterns); and elucidating domain-specific insights (e.g., social and political context). To demonstrate how our model can be applied to evaluate the effectiveness of visualization descriptions, we conduct a mixed-methods evaluation with 30 blind and 90 sighted readers, and find that these reader groups differ significantly on which semantic content they rank as most useful. Together, our model and findings suggest that access to meaningful information is strongly reader-specific, and that research in automatic visualization captioning should orient toward descriptions that more richly communicate overall trends and statistics, sensitive to reader preferences. Our work further opens a space of research on natural language as a data interface coequal with visualization.
Collapse
|
20
|
Wu A, Wang Y, Zhou M, He X, Zhang H, Qu H, Zhang D. MultiVision: Designing Analytical Dashboards with Deep Learning Based Recommendation. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:162-172. [PMID: 34587058 DOI: 10.1109/tvcg.2021.3114826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We contribute a deep-learning-based method that assists in designing analytical dashboards for analyzing a data table. Given a data table, data workers usually need to experience a tedious and time-consuming process to select meaningful combinations of data columns for creating charts. This process is further complicated by the needs of creating dashboards composed of multiple views that unveil different perspectives of data. Existing automated approaches for recommending multiple-view visualizations mainly build on manually crafted design rules, producing sub-optimal or irrelevant suggestions. To address this gap, we present a deep learning approach for selecting data columns and recommending multiple charts. More importantly, we integrate the deep learning models into a mixed-initiative system. Our model could make recommendations given optional user-input selections of data columns. The model, in turn, learns from provenance data of authoring logs in an offline manner. We compare our deep learning model with existing methods for visualization recommendation and conduct a user study to evaluate the usefulness of the system.
Collapse
|
21
|
Ying L, Tangl T, Luo Y, Shen L, Xie X, Yu L, Wu Y. GlyphCreator: Towards Example-based Automatic Generation of Circular Glyphs. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:400-410. [PMID: 34596552 DOI: 10.1109/tvcg.2021.3114877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Circular glyphs are used across disparate fields to represent multidimensional data. However, although these glyphs are extremely effective, creating them is often laborious, even for those with professional design skills. This paper presents GlyphCreator, an interactive tool for the example-based generation of circular glyphs. Given an example circular glyph and multidimensional input data, GlyphCreator promptly generates a list of design candidates, any of which can be edited to satisfy the requirements of a particular representation. To develop GlyphCreator, we first derive a design space of circular glyphs by summarizing relationships between different visual elements. With this design space, we build a circular glyph dataset and develop a deep learning model for glyph parsing. The model can deconstruct a circular glyph bitmap into a series of visual elements. Next, we introduce an interface that helps users bind the input data attributes to visual elements and customize visual styles. We evaluate the parsing model through a quantitative experiment, demonstrate the use of GlyphCreator through two use scenarios, and validate its effectiveness through user interviews.
Collapse
|
22
|
Cui W, Wang J, Huang H, Wang Y, Lin CY, Zhang H, Zhang D. A Mixed-Initiative Approach to Reusing Infographic Charts. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:173-183. [PMID: 34699361 DOI: 10.1109/tvcg.2021.3114856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Infographic bar charts have been widely adopted for communicating numerical information because of their attractiveness and memorability. However, these infographics are often created manually with general tools, such as PowerPoint and Adobe Illustrator, and merely composed of primitive visual elements, such as text blocks and shapes. With the absence of chart models, updating or reusing these infographics requires tedious and error-prone manual edits. In this paper, we propose a mixed-initiative approach to mitigate this pain point. On one hand, machines are adopted to perform precise and trivial operations, such as mapping numerical values to shape attributes and aligning shapes. On the other hand, we rely on humans to perform subjective and creative tasks, such as changing embellishments or approving the edits made by machines. We encapsulate our technique in a PowerPoint add-in prototype and demonstrate the effectiveness by applying our technique on a diverse set of infographic bar chart examples.
Collapse
|
23
|
Chen Z, Ye S, Chu X, Xia H, Zhang H, Qu H, Wu Y. Augmenting Sports Videos with VisCommentator. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:824-834. [PMID: 34587045 DOI: 10.1109/tvcg.2021.3114806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Visualizing data in sports videos is gaining traction in sports analytics, given its ability to communicate insights and explicate player strategies engagingly. However, augmenting sports videos with such data visualizations is challenging, especially for sports analysts, as it requires considerable expertise in video editing. To ease the creation process, we present a design space that characterizes augmented sports videos at an element-level (what the constituents are) and clip-level (how those constituents are organized). We do so by systematically reviewing 233 examples of augmented sports videos collected from TV channels, teams, and leagues. The design space guides selection of data insights and visualizations for various purposes. Informed by the design space and close collaboration with domain experts, we design VisCommentator, a fast prototyping tool, to eases the creation of augmented table tennis videos by leveraging machine learning-based data extractors and design space-based visualization recommendations. With VisCommentator, sports analysts can create an augmented video by selecting the data to visualize instead of manually drawing the graphical marks. Our system can be generalized to other racket sports (e.g., tennis, badminton) once the underlying datasets and models are available. A user study with seven domain experts shows high satisfaction with our system, confirms that the participants can reproduce augmented sports videos in a short period, and provides insightful implications into future improvements and opportunities.
Collapse
|
24
|
Yang L, Xu X, Lan X, Liu Z, Guo S, Shi Y, Qu H, Cao N. A Design Space for Applying the Freytag's Pyramid Structure to Data Stories. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:922-932. [PMID: 34587025 DOI: 10.1109/tvcg.2021.3114774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Data stories integrate compelling visual content to communicate data insights in the form of narratives. The narrative structure of a data story serves as the backbone that determines its expressiveness, and it can largely influence how audiences perceive the insights. Freytag's Pyramid is a classic narrative structure that has been widely used in film and literature. While there are continuous recommendations and discussions about applying Freytag's Pyramid to data stories, little systematic and practical guidance is available on how to use Freytag's Pyramid for creating structured data stories. To bridge this gap, we examined how existing practices apply Freytag's Pyramid by analyzing stories extracted from 103 data videos. Based on our findings, we proposed a design space of narrative patterns, data flows, and visual communications to provide practical guidance on achieving narrative intents, organizing data facts, and selecting visual design techniques through story creation. We evaluated the proposed design space through a workshop with 25 participants. Results show that our design space provides a clear framework for rapid storyboarding of data stories with Freytag's Pyramid.
Collapse
|
25
|
Shi D, Xu X, Sun F, Shi Y, Cao N. Calliope: Automatic Visual Data Story Generation from a Spreadsheet. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:453-463. [PMID: 33048717 DOI: 10.1109/tvcg.2020.3030403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Visual data stories shown in the form of narrative visualizations such as a poster or a data video, are frequently used in data-oriented storytelling to facilitate the understanding and memorization of the story content. Although useful, technique barriers, such as data analysis, visualization, and scripting, make the generation of a visual data story difficult. Existing authoring tools rely on users' skills and experiences, which are usually inefficient and still difficult. In this paper, we introduce a novel visual data story generating system, Calliope, which creates visual data stories from an input spreadsheet through an automatic process and facilities the easy revision of the generated story based on an online story editor. Particularly, Calliope incorporates a new logic-oriented Monte Carlo tree search algorithm that explores the data space given by the input spreadsheet to progressively generate story pieces (i.e., data facts) and organize them in a logical order. The importance of data facts is measured based on information theory, and each data fact is visualized in a chart and captioned by an automatically generated description. We evaluate the proposed technique through three example stories, two controlled experiments, and a series of interviews with 10 domain experts. Our evaluation shows that Calliope is beneficial to efficient visual data story generation.
Collapse
|
26
|
Lumina: an adaptive, automated and extensible prototype for exploring, enriching and visualizing data. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-020-00718-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|