1
|
Deng D, Zhang C, Zheng H, Pu Y, Ji S, Wu Y. AdversaFlow: Visual Red Teaming for Large Language Models with Multi-Level Adversarial Flow. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:492-502. [PMID: 39283796 DOI: 10.1109/tvcg.2024.3456150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Large Language Models (LLMs) are powerful but also raise significant security concerns, particularly regarding the harm they can cause, such as generating fake news that manipulates public opinion on social media and providing responses to unethical activities. Traditional red teaming approaches for identifying AI vulnerabilities rely on manual prompt construction and expertise. This paper introduces AdversaFlow, a novel visual analytics system designed to enhance LLM security against adversarial attacks through human-AI collaboration. AdversaFlow involves adversarial training between a target model and a red model, featuring unique multi-level adversarial flow and fluctuation path visualizations. These features provide insights into adversarial dynamics and LLM robustness, enabling experts to identify and mitigate vulnerabilities effectively. We present quantitative evaluations and case studies validating our system's utility and offering insights for future AI security solutions. Our method can enhance LLM security, supporting downstream scenarios like social media regulation by enabling more effective detection, monitoring, and mitigation of harmful content and behaviors.
Collapse
|
2
|
Wang J, Zhang W, Yang H, Yeh CCM, Wang L. Visual Analytics for RNN-Based Deep Reinforcement Learning. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:4141-4155. [PMID: 33929961 DOI: 10.1109/tvcg.2021.3076749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Deep reinforcement learning (DRL) targets to train an autonomous agent to interact with a pre-defined environment and strives to achieve specific goals through deep neural networks (DNN). Recurrent neural network (RNN) based DRL has demonstrated superior performance, as RNNs can effectively capture the temporal evolution of the environment and respond with proper agent actions. However, apart from the outstanding performance, little is known about how RNNs understand the environment internally and what has been memorized over time. Revealing these details is extremely important for deep learning experts to understand and improve DRLs, which in contrast, is also challenging due to the complicated data transformations inside these models. In this article, we propose Deep Reinforcement Learning Interactive Visual Explorer (DRLIVE), a visual analytics system to effectively explore, interpret, and diagnose RNN-based DRLs. Having focused on DRL agents trained for different Atari games, DRLIVE accomplishes three tasks: game episode exploration, RNN hidden/cell state examination, and interactive model perturbation. Using the system, one can flexibly explore a DRL agent through interactive visualizations, discover interpretable RNN cells by prioritizing RNN hidden/cell states with a set of metrics, and further diagnose the DRL model by interactively perturbing its inputs. Through concrete studies with multiple deep learning experts, we validated the efficacy of DRLIVE.
Collapse
|
3
|
Liu H, Dai H, Chen J, Xu J, Tao Y, Lin H. Interactive similar patient retrieval for visual summary of patient outcomes. J Vis (Tokyo) 2022. [DOI: 10.1007/s12650-022-00898-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Chatzimparmpas A, Martins RM, Kucher K, Kerren A. FeatureEnVi: Visual Analytics for Feature Engineering Using Stepwise Selection and Semi-Automatic Extraction Approaches. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:1773-1791. [PMID: 34990365 DOI: 10.1109/tvcg.2022.3141040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The machine learning (ML) life cycle involves a series of iterative steps, from the effective gathering and preparation of the data-including complex feature engineering processes-to the presentation and improvement of results, with various algorithms to choose from in every step. Feature engineering in particular can be very beneficial for ML, leading to numerous improvements such as boosting the predictive results, decreasing computational times, reducing excessive noise, and increasing the transparency behind the decisions taken during the training. Despite that, while several visual analytics tools exist to monitor and control the different stages of the ML life cycle (especially those related to data and algorithms), feature engineering support remains inadequate. In this paper, we present FeatureEnVi, a visual analytics system specifically designed to assist with the feature engineering process. Our proposed system helps users to choose the most important feature, to transform the original features into powerful alternatives, and to experiment with different feature generation combinations. Additionally, data space slicing allows users to explore the impact of features on both local and global scales. FeatureEnVi utilizes multiple automatic feature selection techniques; furthermore, it visually guides users with statistical evidence about the influence of each feature (or subsets of features). The final outcome is the extraction of heavily engineered features, evaluated by multiple validation metrics. The usefulness and applicability of FeatureEnVi are demonstrated with two use cases and a case study. We also report feedback from interviews with two ML experts and a visualization researcher who assessed the effectiveness of our system.
Collapse
|
5
|
Pu J, Shao H, Gao B, Zhu Z, Zhu Y, Rao Y, Xiang Y. matExplorer: Visual Exploration on Predicting Ionic Conductivity for Solid-state Electrolytes. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:65-75. [PMID: 34587048 DOI: 10.1109/tvcg.2021.3114812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lithium ion batteries (LIBs) are widely used as important energy sources for mobile phones, electric vehicles, and drones. Experts have attempted to replace liquid electrolytes with solid electrolytes that have wider electrochemical window and higher stability due to the potential safety risks, such as electrolyte leakage, flammable solvents, poor thermal stability, and many side reactions caused by liquid electrolytes. However, finding suitable alternative materials using traditional approaches is very difficult due to the incredibly high cost in searching. Machine learning (ML)-based methods are currently introduced and used for material prediction. However, learning tools designed for domain experts to conduct intuitive performance comparison and analysis of ML models are rare. In this case, we propose an interactive visualization system for experts to select suitable ML models and understand and explore the predication results comprehensively. Our system uses a multifaceted visualization scheme designed to support analysis from various perspectives, such as feature distribution, data similarity, model performance, and result presentation. Case studies with actual lab experiments have been conducted by the experts, and the final results confirmed the effectiveness and helpfulness of our system.
Collapse
|
6
|
He W, Zou L, Shekar AK, Gou L, Ren L. Where Can We Help? A Visual Analytics Approach to Diagnosing and Improving Semantic Segmentation of Movable Objects. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:1040-1050. [PMID: 34587077 DOI: 10.1109/tvcg.2021.3114855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Semantic segmentation is a critical component in autonomous driving and has to be thoroughly evaluated due to safety concerns. Deep neural network (DNN) based semantic segmentation models are widely used in autonomous driving. However, it is challenging to evaluate DNN-based models due to their black-box-like nature, and it is even more difficult to assess model performance for crucial objects, such as lost cargos and pedestrians, in autonomous driving applications. In this work, we propose VASS, a Visual Analytics approach to diagnosing and improving the accuracy and robustness of Semantic Segmentation models, especially for critical objects moving in various driving scenes. The key component of our approach is a context-aware spatial representation learning that extracts important spatial information of objects, such as position, size, and aspect ratio, with respect to given scene contexts. Based on this spatial representation, we first use it to create visual summarization to analyze models' performance. We then use it to guide the generation of adversarial examples to evaluate models' spatial robustness and obtain actionable insights. We demonstrate the effectiveness of VASS via two case studies of lost cargo detection and pedestrian detection in autonomous driving. For both cases, we show quantitative evaluation on the improvement of models' performance with actionable insights obtained from VASS.
Collapse
|
7
|
Ferreira MD, Cantareira GD, de Mello RF, Paulovich FV. Neural network training fingerprint: visual analytics of the training process in classification neural networks. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-021-00809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Cao K, Liu M, Su H, Wu J, Zhu J, Liu S. Analyzing the Noise Robustness of Deep Neural Networks. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:3289-3304. [PMID: 31985427 DOI: 10.1109/tvcg.2020.2969185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Adversarial examples, generated by adding small but intentionally imperceptible perturbations to normal examples, can mislead deep neural networks (DNNs) to make incorrect predictions. Although much work has been done on both adversarial attack and defense, a fine-grained understanding of adversarial examples is still lacking. To address this issue, we present a visual analysis method to explain why adversarial examples are misclassified. The key is to compare and analyze the datapaths of both the adversarial and normal examples. A datapath is a group of critical neurons along with their connections. We formulate the datapath extraction as a subset selection problem and solve it by constructing and training a neural network. A multi-level visualization consisting of a network-level visualization of data flows, a layer-level visualization of feature maps, and a neuron-level visualization of learned features, has been designed to help investigate how datapaths of adversarial and normal examples diverge and merge in the prediction process. A quantitative evaluation and a case study were conducted to demonstrate the promise of our method to explain the misclassification of adversarial examples.
Collapse
|
9
|
Chatzimparmpas A, Martins RM, Kucher K, Kerren A. StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1547-1557. [PMID: 33048687 DOI: 10.1109/tvcg.2020.3030352] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In machine learning (ML), ensemble methods-such as bagging, boosting, and stacking-are widely-established approaches that regularly achieve top-notch predictive performance. Stacking (also called "stacked generalization") is an ensemble method that combines heterogeneous base models, arranged in at least one layer, and then employs another metamodel to summarize the predictions of those models. Although it may be a highly-effective approach for increasing the predictive performance of ML, generating a stack of models from scratch can be a cumbersome trial-and-error process. This challenge stems from the enormous space of available solutions, with different sets of data instances and features that could be used for training, several algorithms to choose from, and instantiations of these algorithms using diverse parameters (i.e., models) that perform differently according to various metrics. In this work, we present a knowledge generation model, which supports ensemble learning with the use of visualization, and a visual analytics system for stacked generalization. Our system, StackGenVis, assists users in dynamically adapting performance metrics, managing data instances, selecting the most important features for a given data set, choosing a set of top-performant and diverse algorithms, and measuring the predictive performance. In consequence, our proposed tool helps users to decide between distinct models and to reduce the complexity of the resulting stack by removing overpromising and underperforming models. The applicability and effectiveness of StackGenVis are demonstrated with two use cases: a real-world healthcare data set and a collection of data related to sentiment/stance detection in texts. Finally, the tool has been evaluated through interviews with three ML experts.
Collapse
|
10
|
Ma Y, Fan A, He J, Nelakurthi AR, Maciejewski R. A Visual Analytics Framework for Explaining and Diagnosing Transfer Learning Processes. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1385-1395. [PMID: 33035164 DOI: 10.1109/tvcg.2020.3028888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many statistical learning models hold an assumption that the training data and the future unlabeled data are drawn from the same distribution. However, this assumption is difficult to fulfill in real-world scenarios and creates barriers in reusing existing labels from similar application domains. Transfer Learning is intended to relax this assumption by modeling relationships between domains, and is often applied in deep learning applications to reduce the demand for labeled data and training time. Despite recent advances in exploring deep learning models with visual analytics tools, little work has explored the issue of explaining and diagnosing the knowledge transfer process between deep learning models. In this paper, we present a visual analytics framework for the multi-level exploration of the transfer learning processes when training deep neural networks. Our framework establishes a multi-aspect design to explain how the learned knowledge from the existing model is transferred into the new learning task when training deep neural networks. Based on a comprehensive requirement and task analysis, we employ descriptive visualization with performance measures and detailed inspections of model behaviors from the statistical, instance, feature, and model structure levels. We demonstrate our framework through two case studies on image classification by fine-tuning AlexNets to illustrate how analysts can utilize our framework.
Collapse
|
11
|
Zhang H, Cheng N, Zhang Y, Li Z. Label flipping attacks against Naive Bayes on spam filtering systems. APPL INTELL 2021. [DOI: 10.1007/s10489-020-02086-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|