1
|
Yan Y, Hou Y, Xiao Y, Zhang R, Wang Q. KNowNEt:Guided Health Information Seeking from LLMs via Knowledge Graph Integration. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:547-557. [PMID: 39255106 PMCID: PMC11875928 DOI: 10.1109/tvcg.2024.3456364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The increasing reliance on Large Language Models (LLMs) for health information seeking can pose severe risks due to the potential for misinformation and the complexity of these topics. This paper introduces KnowNet a visualization system that integrates LLMs with Knowledge Graphs (KG) to provide enhanced accuracy and structured exploration. Specifically, for enhanced accuracy, KnowNet extracts triples (e.g., entities and their relations) from LLM outputs and maps them into the validated information and supported evidence in external KGs. For structured exploration, KnowNet provides next-step recommendations based on the neighborhood of the currently explored entities in KGs, aiming to guide a comprehensive understanding without overlooking critical aspects. To enable reasoning with both the structured data in KGs and the unstructured outputs from LLMs, KnowNet conceptualizes the understanding of a subject as the gradual construction of graph visualization. A progressive graph visualization is introduced to monitor past inquiries, and bridge the current query with the exploration history and next-step recommendations. We demonstrate the effectiveness of our system via use cases and expert interviews.
Collapse
Affiliation(s)
- Youfu Yan
- Department of Computer Science and Engineering, University of Minnesota, Twin Cities, MN, USA
| | - Yu Hou
- Medical School, University of Minnesota, Twin Cities, MN, USA
| | - Yongkang Xiao
- Medical School, University of Minnesota, Twin Cities, MN, USA
| | - Rui Zhang
- Medical School, University of Minnesota, Twin Cities, MN, USA
| | - Qianwen Wang
- Department of Computer Science and Engineering, University of Minnesota, Twin Cities, MN, USA
| |
Collapse
|
2
|
Wang X, Yen K, Hu Y, Shen HW. SmartGD: A GAN-Based Graph Drawing Framework for Diverse Aesthetic Goals. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:5666-5678. [PMID: 37594870 DOI: 10.1109/tvcg.2023.3306356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
While a multitude of studies have been conducted on graph drawing, many existing methods only focus on optimizing a single aesthetic aspect of graph layouts, which can lead to sub-optimal results. There are a few existing methods that have attempted to develop a flexible solution for optimizing different aesthetic aspects measured by different aesthetic criteria. Furthermore, thanks to the significant advance in deep learning techniques, several deep learning-based layout methods were proposed recently. These methods have demonstrated the advantages of deep learning approaches for graph drawing. However, none of these existing methods can be directly applied to optimizing non-differentiable criteria without special accommodation. In this work, we propose a novel Generative Adversarial Network (GAN) based deep learning framework for graph drawing, called SmartGD, which can optimize different quantitative aesthetic goals, regardless of their differentiability. To demonstrate the effectiveness and efficiency of SmartGD, we conducted experiments on minimizing stress, minimizing edge crossing, maximizing crossing angle, maximizing shape-based metrics, and a combination of multiple aesthetics. Compared with several popular graph drawing algorithms, the experimental results show that SmartGD achieves good performance both quantitatively and qualitatively.
Collapse
|
3
|
Shen L, Tai Z, Shen E, Wang J. Graph Exploration With Embedding-Guided Layouts. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:3693-3708. [PMID: 37022062 DOI: 10.1109/tvcg.2023.3238909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Node-link diagrams are widely used to visualize graphs. Most graph layout algorithms only use graph topology for aesthetic goals (e.g., minimize node occlusions and edge crossings) or use node attributes for exploration goals (e.g., preserve visible communities). Existing hybrid methods that bind the two perspectives still suffer from various generation restrictions (e.g., limited input types and required manual adjustments and prior knowledge of graphs) and the imbalance between aesthetic and exploration goals. In this article, we propose a flexible embedding-based graph exploration pipeline to enjoy the best of both graph topology and node attributes. First, we leverage embedding algorithms for attributed graphs to encode the two perspectives into latent space. Then, we present an embedding-driven graph layout algorithm, GEGraph, which can achieve aesthetic layouts with better community preservation to support an easy interpretation of the graph structure. Next, graph explorations are extended based on the generated graph layout and insights extracted from the embedding vectors. Illustrated with examples, we build a layout-preserving aggregation method with Focus+Context interaction and a related nodes searching approach with multiple proximity strategies. Finally, we conduct quantitative and qualitative evaluations, a user study, and two case studies to validate our approach.
Collapse
|
4
|
Tiezzi M, Ciravegna G, Gori M. Graph Neural Networks for Graph Drawing. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:4668-4681. [PMID: 35763484 DOI: 10.1109/tnnls.2022.3184967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Graph drawing techniques have been developed in the last few years with the purpose of producing esthetically pleasing node-link layouts. Recently, the employment of differentiable loss functions has paved the road to the massive usage of gradient descent and related optimization algorithms. In this article, we propose a novel framework for the development of Graph Neural Drawers (GNDs), machines that rely on neural computation for constructing efficient and complex maps. GND is Graph Neural Networks (GNNs) whose learning process can be driven by any provided loss function, such as the ones commonly employed in Graph Drawing. Moreover, we prove that this mechanism can be guided by loss functions computed by means of feedforward neural networks, on the basis of supervision hints that express beauty properties, like the minimization of crossing edges. In this context, we show that GNNs can nicely be enriched by positional features to deal also with unlabeled vertexes. We provide a proof-of-concept by constructing a loss function for the edge crossing and provide quantitative and qualitative comparisons among different GNN models working under the proposed framework.
Collapse
|
5
|
Schetinger V, Di Bartolomeo S, El-Assady M, McNutt A, Miller M, Passos JPA, Adams JL. Doom or Deliciousness: Challenges and Opportunities for Visualization in the Age of Generative Models. COMPUTER GRAPHICS FORUM : JOURNAL OF THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS 2023; 42:423-435. [PMID: 38505301 PMCID: PMC10946898 DOI: 10.1111/cgf.14841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Generative text-to-image models (as exemplified by DALL-E, MidJourney, and Stable Diffusion) have recently made enormous technological leaps, demonstrating impressive results in many graphical domains-from logo design to digital painting to photographic composition. However, the quality of these results has led to existential crises in some fields of art, leading to questions about the role of human agency in the production of meaning in a graphical context. Such issues are central to visualization, and while these generative models have yet to be widely applied in visualization, it seems only a matter of time until their integration is manifest. Seeking to circumvent similar ponderous dilemmas, we attempt to understand the roles that generative models might play across visualization. We do so by constructing a framework that characterizes what these technologies offer at various stages of the visualization workflow, augmented and analyzed through semi-structured interviews with 21 experts from related domains. Through this work, we map the space of opportunities and risks that might arise in this intersection, identifying doomsday prophecies and delicious low-hanging fruits that are ripe for research.
Collapse
|
6
|
Song H, Dai Z, Xu P, Ren L. Interactive Visual Pattern Search on Graph Data via Graph Representation Learning. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:335-345. [PMID: 34587078 DOI: 10.1109/tvcg.2021.3114857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Graphs are a ubiquitous data structure to model processes and relations in a wide range of domains. Examples include control-flow graphs in programs and semantic scene graphs in images. Identifying subgraph patterns in graphs is an important approach to understand their structural properties. We propose a visual analytics system GraphQ to support human-in-the-loop, example-based, subgraph pattern search in a database containing many individual graphs. To support fast, interactive queries, we use graph neural networks (GNNs) to encode a graph as fixed-length latent vector representation, and perform subgraph matching in the latent space. Due to the complexity of the problem, it is still difficult to obtain accurate one-to-one node correspondences in the matching results that are crucial for visualization and interpretation. We, therefore, propose a novel GNN for node-alignment called NeuroAlign, to facilitate easy validation and interpretation of the query results. GraphQ provides a visual query interface with a query editor and a multi-scale visualization of the results, as well as a user feedback mechanism for refining the results with additional constraints. We demonstrate GraphQ through two example usage scenarios: analyzing reusable subroutines in program workflows and semantic scene graph search in images. Quantitative experiments show that NeuroAlign achieves 19%-29% improvement in node-alignment accuracy compared to baseline GNN and provides up to 100× speedup compared to combinatorial algorithms. Our qualitative study with domain experts confirms the effectiveness for both usage scenarios.
Collapse
|
7
|
Wu A, Wang Y, Zhou M, He X, Zhang H, Qu H, Zhang D. MultiVision: Designing Analytical Dashboards with Deep Learning Based Recommendation. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:162-172. [PMID: 34587058 DOI: 10.1109/tvcg.2021.3114826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We contribute a deep-learning-based method that assists in designing analytical dashboards for analyzing a data table. Given a data table, data workers usually need to experience a tedious and time-consuming process to select meaningful combinations of data columns for creating charts. This process is further complicated by the needs of creating dashboards composed of multiple views that unveil different perspectives of data. Existing automated approaches for recommending multiple-view visualizations mainly build on manually crafted design rules, producing sub-optimal or irrelevant suggestions. To address this gap, we present a deep learning approach for selecting data columns and recommending multiple charts. More importantly, we integrate the deep learning models into a mixed-initiative system. Our model could make recommendations given optional user-input selections of data columns. The model, in turn, learns from provenance data of authoring logs in an offline manner. We compare our deep learning model with existing methods for visualization recommendation and conduct a user study to evaluate the usefulness of the system.
Collapse
|
8
|
Li H, Wang Y, Zhang S, Song Y, Qu H. KG4Vis: A Knowledge Graph-Based Approach for Visualization Recommendation. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:195-205. [PMID: 34587080 DOI: 10.1109/tvcg.2021.3114863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Visualization recommendation or automatic visualization generation can significantly lower the barriers for general users to rapidly create effective data visualizations, especially for those users without a background in data visualizations. However, existing rule-based approaches require tedious manual specifications of visualization rules by visualization experts. Other machine learning-based approaches often work like black-box and are difficult to understand why a specific visualization is recommended, limiting the wider adoption of these approaches. This paper fills the gap by presenting KG4Vis, a knowledge graph (KG)-based approach for visualization recommendation. It does not require manual specifications of visualization rules and can also guarantee good explainability. Specifically, we propose a framework for building knowledge graphs, consisting of three types of entities (i.e., data features, data columns and visualization design choices) and the relations between them, to model the mapping rules between data and effective visualizations. A TransE-based embedding technique is employed to learn the embeddings of both entities and relations of the knowledge graph from existing dataset-visualization pairs. Such embeddings intrinsically model the desirable visualization rules. Then, given a new dataset, effective visualizations can be inferred from the knowledge graph with semantically meaningful rules. We conducted extensive evaluations to assess the proposed approach, including quantitative comparisons, case studies and expert interviews. The results demonstrate the effectiveness of our approach.
Collapse
|
9
|
Wang X, Yen K, Hu Y, Shen HW. DeepGD: A Deep Learning Framework for Graph Drawing Using GNN. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2021; 41:32-44. [PMID: 34232870 DOI: 10.1109/mcg.2021.3093908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the past decades, many graph drawing techniques have been proposed for generating aesthetically pleasing graph layouts. However, it remains a challenging task since different layout methods tend to highlight different characteristics of the graphs. Recently, studies on deep-learning-based graph drawing algorithms have emerged but they are often not generalizable to arbitrary graphs without retraining. In this article, we propose a Convolutional-Graph-Neural-Network-based deep learning framework, DeepGD, which can draw arbitrary graphs once trained. It attempts to generate layouts by compromising among multiple prespecified aesthetics considering a good graph layout usually complies with multiple aesthetics simultaneously. In order to balance the tradeoff, we propose two adaptive training strategies, which adjust the weight factor of each aesthetic dynamically during training. The quantitative and qualitative assessment of DeepGD demonstrates that it is capable of drawing arbitrary graphs effectively, while being flexible at accommodating different aesthetic criteria.
Collapse
|
10
|
Xie T, Ma Y, Tong H, Thai MT, Maciejewski R. Auditing the Sensitivity of Graph-based Ranking with Visual Analytics. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1459-1469. [PMID: 33027000 DOI: 10.1109/tvcg.2020.3028958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Graph mining plays a pivotal role across a number of disciplines, and a variety of algorithms have been developed to answer who/what type questions. For example, what items shall we recommend to a given user on an e-commerce platform? The answers to such questions are typically returned in the form of a ranked list, and graph-based ranking methods are widely used in industrial information retrieval settings. However, these ranking algorithms have a variety of sensitivities, and even small changes in rank can lead to vast reductions in product sales and page hits. As such, there is a need for tools and methods that can help model developers and analysts explore the sensitivities of graph ranking algorithms with respect to perturbations within the graph structure. In this paper, we present a visual analytics framework for explaining and exploring the sensitivity of any graph-based ranking algorithm by performing perturbation-based what-if analysis. We demonstrate our framework through three case studies inspecting the sensitivity of two classic graph-based ranking algorithms (PageRank and HITS) as applied to rankings in political news media and social networks.
Collapse
|
11
|
Zhu M, Chen W, Hu Y, Hou Y, Liu L, Zhang K. DRGraph: An Efficient Graph Layout Algorithm for Large-scale Graphs by Dimensionality Reduction. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1666-1676. [PMID: 33275582 DOI: 10.1109/tvcg.2020.3030447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Efficient layout of large-scale graphs remains a challenging problem: the force-directed and dimensionality reduction-based methods suffer from high overhead for graph distance and gradient computation. In this paper, we present a new graph layout algorithm, called DRGraph, that enhances the nonlinear dimensionality reduction process with three schemes: approximating graph distances by means of a sparse distance matrix, estimating the gradient by using the negative sampling technique, and accelerating the optimization process through a multi-level layout scheme. DRGraph achieves a linear complexity for the computation and memory consumption, and scales up to large-scale graphs with millions of nodes. Experimental results and comparisons with state-of-the-art graph layout methods demonstrate that DRGraph can generate visually comparable layouts with a faster running time and a lower memory requirement.
Collapse
|
12
|
Tang T, Li R, Wu X, Liu S, Knittel J, Koch S, Yu L, Ren P, Ertl T, Wu Y. PlotThread: Creating Expressive Storyline Visualizations using Reinforcement Learning. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:294-303. [PMID: 33048748 DOI: 10.1109/tvcg.2020.3030467] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Storyline visualizations are an effective means to present the evolution of plots and reveal the scenic interactions among characters. However, the design of storyline visualizations is a difficult task as users need to balance between aesthetic goals and narrative constraints. Despite that the optimization-based methods have been improved significantly in terms of producing aesthetic and legible layouts, the existing (semi-) automatic methods are still limited regarding 1) efficient exploration of the storyline design space and 2) flexible customization of storyline layouts. In this work, we propose a reinforcement learning framework to train an AI agent that assists users in exploring the design space efficiently and generating well-optimized storylines. Based on the framework, we introduce PlotThread, an authoring tool that integrates a set of flexible interactions to support easy customization of storyline visualizations. To seamlessly integrate the AI agent into the authoring process, we employ a mixed-initiative approach where both the agent and designers work on the same canvas to boost the collaborative design of storylines. We evaluate the reinforcement learning model through qualitative and quantitative experiments and demonstrate the usage of PlotThread using a collection of use cases.
Collapse
|
13
|
Liu Z, Itoh T, Dawson JQ, Munzner T. The Sprawlter Graph Readability Metric: Combining Sprawl and Area-Aware Clutter. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:2180-2191. [PMID: 32012018 DOI: 10.1109/tvcg.2020.2970523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graph drawing readability metrics are routinely used to assess and create node-link layouts of network data. Existing readability metrics fall short in three ways. The many count-based metrics such as edge-edge or node-edge crossings simply provide integer counts, missing the opportunity to quantify the amount of overlap between items, which may vary in size, at a more fine-grained level. Current metrics focus solely on single-level topological structure, ignoring the possibility of multi-level structure such as large and thus highly salient metanodes. Most current metrics focus on the measurement of clutter in the form of crossings and overlaps, and do not take into account the trade-off between the clutter and the information sparsity of the drawing, which we refer to as sprawl. We propose an area-aware approach to clutter metrics that tracks the extent of geometric overlaps between node-node, node-edge, and edge-edge pairs in detail. It handles variable-size nodes and explicitly treats metanodes and leaf nodes uniformly. We call the combination of a sprawl metric and an area-aware clutter metric a sprawlter metric. We present an instantiation of the sprawlter metrics featuring a formal and thorough discussion of the crucial component, the penalty mapping function. We implement and validate our proposed metrics with extensive computational analysis of graph layouts, considering four layout algorithms and 56 layouts encompassing both real-world data and synthetic examples illustrating specific configurations of interest.
Collapse
|