1
|
Ma Q, Wang X, Niu S, Zeng H, Ullah S. Analysis on congestion mechanism of CAVs around traffic accident zones. ACCIDENT; ANALYSIS AND PREVENTION 2024; 205:107663. [PMID: 38901162 DOI: 10.1016/j.aap.2024.107663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/18/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
Unexpected traffic accidents cause traffic congestion and aggravate the unsafe situation on the roadways. Reducing the impact of such congestion by introducing Connected and Autonomous Vehicles (CAVs) into the traditional traffic flow is possible. It requires estimating the incident's duration and analyzing the incident's impact area to determine the appropriate strategy. To guide the driver in making efficient and accurate judgments and avoiding secondary traffic congestion, the Cooperative Adaptive Cruise Control (CACC) model with dynamic safety distance and the Intelligent Driver Model (IDM) based on the safety potential field theory are introduced to build the evolution model of accidental traffic congestion under diversion interference and non-interference. The Huatao Interchange section of the Inner Ring Highway in the Banan District of Chongqing, China, was selected as the test section for simulating mixed traffic flow under different CAVs permeability (Pc). The relationship between the evacuation time, evacuation traffic volume, and the accident impact degree index (including the farthest queue length and accident duration) under the diversion intervention scenario was analyzed, respectively. The results of the study indicate that the higher the penetration of CAVs, the more significant the improvement in traffic flow occupancy, flow, and speed. Diversion interventions reduce congestion, about 50 % of the duration without interventions, when Pc ≤ 80 %. The traffic volume of diversion interference is non-linearly positively correlated with the maximum queue length, and the earlier the interference time, the stronger the positive correlation. The negative correlation between the interference time and queue length is weak at low evacuation traffic volume. With the increase in evacuation traffic volume, the influence of evacuation time on queue length becomes stronger. The maximum queue length value interval under different conditions is [348 m, 3140 m], and the shortest evacuation time is [1649 s, 2834 s]. The traffic flow data obtained from the simulation are imported into the episodic traffic congestion evolution model. The congestion evaluation indexes are calculated under non-interference and interference measures and compared with the simulation results. The maximum relative error is within 5.38 %. The results can be of great significance in relieving congestion caused by traffic accidents and promptly restoring road capacity.
Collapse
Affiliation(s)
- Qinglu Ma
- Department of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Xinyu Wang
- Department of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China
| | - Shengping Niu
- Department of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China
| | - Haowei Zeng
- Sichuan Chongqing Transportation Co., LTD, CNPC Chuanqing Drilling Engineering Company Limited., Chongqing 401147, China
| | - Saleem Ullah
- Department of Engineering & Information Technology, Khwaja Fareed University, Punjab 64200, Pakistan
| |
Collapse
|
2
|
Liao L, Li Z, Lai S, Jiang W, Zou F, Yu X, Xu Z. An expressway traffic congestion measurement under the influence of service areas. PLoS One 2023; 18:e0279966. [PMID: 36607901 PMCID: PMC9821720 DOI: 10.1371/journal.pone.0279966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Identifying traffic congestion accurately is crucial for improving the expressway service level. Because the distributions of microscopic traffic quantities are highly sensitive to slight changes, the traffic congestion measurement is affected by many factors. As an essential part of the expressway, service areas should be considered when measuring the traffic state. Although existing studies pay increasing attention to service areas, the impact caused by service areas is hard to measure for evaluating traffic congestion events. By merging ETC transaction datasets and service area entrance data, this work proposes a traffic congestion measurement with the influence of expressway service areas. In this model, the traffic congestion with the influence of service areas is corrected by three modules: 1) the pause rate prediction module; 2) the fitting module for the relationship between effect and pause rate; 3) the measurement module with correction terms. Extensive experiments were conducted on the real dataset of the Fujian Expressway, and the results show that the proposed method can be applied to measure the effect caused by service areas in the absence of service area entry data. The model can also provide references for other traffic indicator measurements under the effect of the service area.
Collapse
Affiliation(s)
- Lyuchao Liao
- School of Transportation, Fujian University of Technology, Fuzhou, Fujian, China
| | - Zhengrong Li
- School of Transportation, Fujian University of Technology, Fuzhou, Fujian, China
| | - Shukun Lai
- Fujian Provincial Expressway Information Technology Co., Ltd, Fuzhou, Fujian, China
| | - Wenxia Jiang
- School of Transportation, Fujian University of Technology, Fuzhou, Fujian, China
| | - Fumin Zou
- Fujian Provincial Key Laboratory of Automotive Electronics and Electric Drive, Fujian University of Technology, Fuzhou, Fujian, China
| | - Xiang Yu
- Fujian Provincial Key Laboratory of Automotive Electronics and Electric Drive, Fujian University of Technology, Fuzhou, Fujian, China
| | - Zhiyu Xu
- Fujian Provincial Expressway Information Technology Co., Ltd, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Jin S, Lee H, Park C, Chu H, Tae Y, Choo J, Ko S. A Visual Analytics System for Improving Attention-based Traffic Forecasting Models. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:1102-1112. [PMID: 36155438 DOI: 10.1109/tvcg.2022.3209462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With deep learning (DL) outperforming conventional methods for different tasks, much effort has been devoted to utilizing DL in various domains. Researchers and developers in the traffic domain have also designed and improved DL models for forecasting tasks such as estimation of traffic speed and time of arrival. However, there exist many challenges in analyzing DL models due to the black-box property of DL models and complexity of traffic data (i.e., spatio-temporal dependencies). Collaborating with domain experts, we design a visual analytics system, AttnAnalyzer, that enables users to explore how DL models make predictions by allowing effective spatio-temporal dependency analysis. The system incorporates dynamic time warping (DTW) and Granger causality tests for computational spatio-temporal dependency analysis while providing map, table, line chart, and pixel views to assist user to perform dependency and model behavior analysis. For the evaluation, we present three case studies showing how AttnAnalyzer can effectively explore model behaviors and improve model performance in two different road networks. We also provide domain expert feedback.
Collapse
|
4
|
Effect of Driving-Restriction Policies Based on System Dynamics, the Back Propagation Neural Network, and Gray System Theory. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Deng Z, Weng D, Liu S, Tian Y, Xu M, Wu Y. A survey of urban visual analytics: Advances and future directions. COMPUTATIONAL VISUAL MEDIA 2022; 9:3-39. [PMID: 36277276 PMCID: PMC9579670 DOI: 10.1007/s41095-022-0275-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/08/2022] [Indexed: 06/16/2023]
Abstract
Developing effective visual analytics systems demands care in characterization of domain problems and integration of visualization techniques and computational models. Urban visual analytics has already achieved remarkable success in tackling urban problems and providing fundamental services for smart cities. To promote further academic research and assist the development of industrial urban analytics systems, we comprehensively review urban visual analytics studies from four perspectives. In particular, we identify 8 urban domains and 22 types of popular visualization, analyze 7 types of computational method, and categorize existing systems into 4 types based on their integration of visualization techniques and computational models. We conclude with potential research directions and opportunities.
Collapse
Affiliation(s)
- Zikun Deng
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Di Weng
- Microsoft Research Asia, Beijing, 100080 China
| | - Shuhan Liu
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Yuan Tian
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Mingliang Xu
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001 China
| | - Yingcai Wu
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
6
|
Deng Z, Weng D, Liang Y, Bao J, Zheng Y, Schreck T, Xu M, Wu Y. Visual Cascade Analytics of Large-Scale Spatiotemporal Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:2486-2499. [PMID: 33822726 DOI: 10.1109/tvcg.2021.3071387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many spatiotemporal events can be viewed as contagions. These events implicitly propagate across space and time by following cascading patterns, expanding their influence, and generating event cascades that involve multiple locations. Analyzing such cascading processes presents valuable implications in various urban applications, such as traffic planning and pollution diagnostics. Motivated by the limited capability of the existing approaches in mining and interpreting cascading patterns, we propose a visual analytics system called VisCas. VisCas combines an inference model with interactive visualizations and empowers analysts to infer and interpret the latent cascading patterns in the spatiotemporal context. To develop VisCas, we address three major challenges 1) generalized pattern inference; 2) implicit influence visualization; and 3) multifaceted cascade analysis. For the first challenge, we adapt the state-of-the-art cascading network inference technique to general urban scenarios, where cascading patterns can be reliably inferred from large-scale spatiotemporal data. For the second and third challenges, we assemble a set of effective visualizations to support location navigation, influence inspection, and cascading exploration, and facilitate the in-depth cascade analysis. We design a novel influence view based on a three-fold optimization strategy for analyzing the implicit influences of the inferred patterns. We demonstrate the capability and effectiveness of VisCas with two case studies conducted on real-world traffic congestion and air pollution datasets with domain experts.
Collapse
|
7
|
Deng Z, Weng D, Xie X, Bao J, Zheng Y, Xu M, Chen W, Wu Y. Compass: Towards Better Causal Analysis of Urban Time Series. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:1051-1061. [PMID: 34596550 DOI: 10.1109/tvcg.2021.3114875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The spatial time series generated by city sensors allow us to observe urban phenomena like environmental pollution and traffic congestion at an unprecedented scale. However, recovering causal relations from these observations to explain the sources of urban phenomena remains a challenging task because these causal relations tend to be time-varying and demand proper time series partitioning for effective analyses. The prior approaches extract one causal graph given long-time observations, which cannot be directly applied to capturing, interpreting, and validating dynamic urban causality. This paper presents Compass, a novel visual analytics approach for in-depth analyses of the dynamic causality in urban time series. To develop Compass, we identify and address three challenges: detecting urban causality, interpreting dynamic causal relations, and unveiling suspicious causal relations. First, multiple causal graphs over time among urban time series are obtained with a causal detection framework extended from the Granger causality test. Then, a dynamic causal graph visualization is designed to reveal the time-varying causal relations across these causal graphs and facilitate the exploration of the graphs along the time. Finally, a tailored multi-dimensional visualization is developed to support the identification of spurious causal relations, thereby improving the reliability of causal analyses. The effectiveness of Compass is evaluated with two case studies conducted on the real-world urban datasets, including the air pollution and traffic speed datasets, and positive feedback was received from domain experts.
Collapse
|