1
|
Cao A, Xie X, Zhang R, Tian Y, Fan M, Zhang H, Wu Y. Team-Scouter: Simulative Visual Analytics of Soccer Player Scouting. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1-11. [PMID: 39255095 DOI: 10.1109/tvcg.2024.3456216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In soccer, player scouting aims to find players suitable for a team to increase the winning chance in future matches. To scout suitable players, coaches and analysts need to consider whether the players will perform well in a new team, which is hard to learn directly from their historical performances. Match simulation methods have been introduced to scout players by estimating their expected contributions to a new team. However, they usually focus on the simulation of match results and hardly support interactive analysis to navigate potential target players and compare them in fine-grained simulated behaviors. In this work, we propose a visual analytics method to assist soccer player scouting based on match simulation. We construct a two-level match simulation framework for estimating both match results and player behaviors when a player comes to a new team. Based on the framework, we develop a visual analytics system, Team-Scouter, to facilitate the simulative-based soccer player scouting process through player navigation, comparison, and investigation. With our system, coaches and analysts can find potential players suitable for the team and compare them on historical and expected performances. For an in-depth investigation of the players' expected performances, the system provides a visual comparison between the simulated behaviors of the player and the actual ones. The usefulness and effectiveness of the system are demonstrated by two case studies on a real-world dataset and an expert interview.
Collapse
|
2
|
Cao A, Xie X, Zhou M, Zhang H, Xu M, Wu Y. Action-Evaluator: A Visualization Approach for Player Action Evaluation in Soccer. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:880-890. [PMID: 37878455 DOI: 10.1109/tvcg.2023.3326524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
In soccer, player action evaluation provides a fine-grained method to analyze player performance and plays an important role in improving winning chances in future matches. However, previous studies on action evaluation only provide a score for each action, and hardly support inspecting and comparing player actions integrated with complex match context information such as team tactics and player locations. In this work, we collaborate with soccer analysts and coaches to characterize the domain problems of evaluating player performance based on action scores. We design a tailored visualization of soccer player actions that places the action choice together with the tactic it belongs to as well as the player locations in the same view. Based on the design, we introduce a visual analytics system, Action-Evaluator, to facilitate a comprehensive player action evaluation through player navigation, action investigation, and action explanation. With the system, analysts can find players to be analyzed efficiently, learn how they performed under various match situations, and obtain valuable insights to improve their action choices. The usefulness and effectiveness of this work are demonstrated by two case studies on a real-world dataset and an expert interview.
Collapse
|
3
|
Seebacher D, Polk T, Janetzko H, Keim DA, Schreck T, Stein M. Investigating the Sketchplan: A Novel Way of Identifying Tactical Behavior in Massive Soccer Datasets. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:1920-1936. [PMID: 34898435 DOI: 10.1109/tvcg.2021.3134814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Coaches and analysts prepare for upcoming matches by identifying common patterns in the positioning and movement of the competing teams in specific situations. Existing approaches in this domain typically rely on manual video analysis and formation discussion using whiteboards; or expert systems that rely on state-of-the-art video and trajectory visualization techniques and advanced user interaction. We bridge the gap between these approaches by contributing a light-weight, simplified interaction and visualization system, which we conceptualized in an iterative design study with the coaching team of a European first league soccer team. Our approach is walk-up usable by all domain stakeholders, and at the same time, can leverage advanced data retrieval and analysis techniques: a virtual magnetic tactic-board. Users place and move digital magnets on a virtual tactic-board, and these interactions get translated to spatio-temporal queries, used to retrieve relevant situations from massive team movement data. Despite such seemingly imprecise query input, our approach is highly usable, supports quick user exploration, and retrieval of relevant results via query relaxation. Appropriate simplified result visualization supports in-depth analyses to explore team behavior, such as formation detection, movement analysis, and what-if analysis. We evaluated our approach with several experts from European first league soccer clubs. The results show that our approach makes the complex analytical processes needed for the identification of tactical behavior directly accessible to domain experts for the first time, demonstrating our support of coaches in preparation for future encounters.
Collapse
|
4
|
Cuevas C, Berjón D, García N. A fully automatic method for segmentation of soccer playing fields. Sci Rep 2023; 13:1464. [PMID: 36702910 PMCID: PMC9879963 DOI: 10.1038/s41598-023-28658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
This paper proposes a strategy to segment the playing field in soccer images, suitable for integration in many soccer image analysis applications. The combination of a green chromaticity-based analysis and an analysis of the chromatic distortion using full-color information, both at the pixel-level, allows segmenting the green areas of the images. Then, a fully automatic post-processing block at the region-level discards the green areas that do not belong to the playing field. The strategy has been evaluated with hundreds of annotated images from matches in several stadiums with different grass shades and light conditions. The results obtained have been of great quality in all the images, even in those with the most complex lighting conditions (e.g., high contrast between sunlit and shadowed areas). In addition, these results have improved those obtained with leading state-of-the-art playing field segmentation strategies.
Collapse
Affiliation(s)
- Carlos Cuevas
- grid.5690.a0000 0001 2151 2978Grupo de Tratamiento de Imágenes (GTI), Information Processing and Telecommunications Center (IPTC), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Daniel Berjón
- grid.5690.a0000 0001 2151 2978Grupo de Tratamiento de Imágenes (GTI), Information Processing and Telecommunications Center (IPTC), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Narciso García
- grid.5690.a0000 0001 2151 2978Grupo de Tratamiento de Imágenes (GTI), Information Processing and Telecommunications Center (IPTC), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| |
Collapse
|
5
|
Afzal S, Ghani S, Hittawe MM, Rashid SF, Knio OM, Hadwiger M, Hoteit I. Visualization and Visual Analytics Approaches for Image and Video Datasets: A Survey. ACM T INTERACT INTEL 2023. [DOI: 10.1145/3576935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Image and video data analysis has become an increasingly important research area with applications in different domains such as security surveillance, healthcare, augmented and virtual reality, video and image editing, activity analysis and recognition, synthetic content generation, distance education, telepresence, remote sensing, sports analytics, art, non-photorealistic rendering, search engines, and social media. Recent advances in Artificial Intelligence (AI) and particularly deep learning have sparked new research challenges and led to significant advancements, especially in image and video analysis. These advancements have also resulted in significant research and development in other areas such as visualization and visual analytics, and have created new opportunities for future lines of research. In this survey paper, we present the current state of the art at the intersection of visualization and visual analytics, and image and video data analysis. We categorize the visualization papers included in our survey based on different taxonomies used in visualization and visual analytics research. We review these papers in terms of task requirements, tools, datasets, and application areas. We also discuss insights based on our survey results, trends and patterns, the current focus of visualization research, and opportunities for future research.
Collapse
Affiliation(s)
- Shehzad Afzal
- King Abdullah University of Science & Technology, Saudi Arabia
| | - Sohaib Ghani
- King Abdullah University of Science & Technology, Saudi Arabia
| | | | | | - Omar M Knio
- King Abdullah University of Science & Technology, Saudi Arabia
| | - Markus Hadwiger
- King Abdullah University of Science & Technology, Saudi Arabia
| | - Ibrahim Hoteit
- King Abdullah University of Science & Technology, Saudi Arabia
| |
Collapse
|
6
|
Chen Z, Yang Q, Xie X, Beyer J, Xia H, Wu Y, Pfister H. Sporthesia: Augmenting Sports Videos Using Natural Language. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:918-928. [PMID: 36197856 DOI: 10.1109/tvcg.2022.3209497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Augmented sports videos, which combine visualizations and video effects to present data in actual scenes, can communicate insights engagingly and thus have been increasingly popular for sports enthusiasts around the world. Yet, creating augmented sports videos remains a challenging task, requiring considerable time and video editing skills. On the other hand, sports insights are often communicated using natural language, such as in commentaries, oral presentations, and articles, but usually lack visual cues. Thus, this work aims to facilitate the creation of augmented sports videos by enabling analysts to directly create visualizations embedded in videos using insights expressed in natural language. To achieve this goal, we propose a three-step approach - 1) detecting visualizable entities in the text, 2) mapping these entities into visualizations, and 3) scheduling these visualizations to play with the video - and analyzed 155 sports video clips and the accompanying commentaries for accomplishing these steps. Informed by our analysis, we have designed and implemented Sporthesia, a proof-of-concept system that takes racket-based sports videos and textual commentaries as the input and outputs augmented videos. We demonstrate Sporthesia's applicability in two exemplar scenarios, i.e., authoring augmented sports videos using text and augmenting historical sports videos based on auditory comments. A technical evaluation shows that Sporthesia achieves high accuracy (F1-score of 0.9) in detecting visualizable entities in the text. An expert evaluation with eight sports analysts suggests high utility, effectiveness, and satisfaction with our language-driven authoring method and provides insights for future improvement and opportunities.
Collapse
|
7
|
Wang J, Ma J, Hu K, Zhou Z, Zhang H, Xie X, Wu Y. Tac-Trainer: A Visual Analytics System for IoT-based Racket Sports Training. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:951-961. [PMID: 36179004 DOI: 10.1109/tvcg.2022.3209352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conventional racket sports training highly relies on coaches' knowledge and experience, leading to biases in the guidance. To solve this problem, smart wearable devices based on Internet of Things technology (IoT) have been extensively investigated to support data-driven training. Considerable studies introduced methods to extract valuable information from the sensor data collected by IoT devices. However, the information cannot provide actionable insights for coaches due to the large data volume and high data dimensions. We proposed an IoT + VA framework, Tac-Trainer, to integrate the sensor data, the information, and coaches' knowledge to facilitate racket sports training. Tac-Trainer consists of four components: device configuration, data interpretation, training optimization, and result visualization. These components collect trainees' kinematic data through IoT devices, transform the data into attributes and indicators, generate training suggestions, and provide an interactive visualization interface for exploration, respectively. We further discuss new research opportunities and challenges inspired by our work from two perspectives, VA for IoT and IoT for VA.
Collapse
|
8
|
Wu Y, Deng D, Xie X, He M, Xu J, Zhang H, Zhang H, Wu Y. OBTracker: Visual Analytics of Off-ball Movements in Basketball. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:929-939. [PMID: 36166529 DOI: 10.1109/tvcg.2022.3209373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In a basketball play, players who are not in possession of the ball (i.e., off-ball players) can still effectively contribute to the team's offense, such as making a sudden move to create scoring opportunities. Analyzing the movements of off-ball players can thus facilitate the development of effective strategies for coaches. However, common basketball statistics (e.g., points and assists) primarily focus on what happens around the ball and are mostly result-oriented, making it challenging to objectively assess and fully understand the contributions of off-ball movements. To address these challenges, we collaborate closely with domain experts and summarize the multi-level requirements for off-ball movement analysis in basketball. We first establish an assessment model to quantitatively evaluate the offensive contribution of an off-ball movement considering both the position of players and the team cooperation. Based on the model, we design and develop a visual analytics system called OBTracker to support the multifaceted analysis of off-ball movements. OBTracker enables users to identify the frequency and effectiveness of off-ball movement patterns and learn the performance of different off-ball players. A tailored visualization based on the Voronoi diagram is proposed to help users interpret the contribution of off-ball movements from a temporal perspective. We conduct two case studies based on the tracking data from NBA games and demonstrate the effectiveness and usability of OBTracker through expert feedback.
Collapse
|
9
|
A vector-agent approach to (spatiotemporal) movement modelling and reasoning. Sci Rep 2022; 12:21179. [PMID: 36476602 PMCID: PMC9729300 DOI: 10.1038/s41598-022-22056-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 10/10/2022] [Indexed: 12/12/2022] Open
Abstract
Modelling a complex system of autonomous individuals moving through space and time essentially entails understanding the (heterogeneous) spatiotemporal context, interactions with other individuals, their internal states and making any underlying causal interrelationships explicit, a task for which agents (including vector-agents) are specifically well-suited. Building on a conceptual model of agent space-time and reasoning behaviour, a design guideline for an implemented vector-agent model is presented. The movement of football players was chosen as it is appropriately constrained in space, time and individual actions. Sensitivity-variability analysis was applied to measure the performance of different configurations of system components on the emergent movement patterns. The model output varied more when the condition of the contextual actors (players' role-areas) was manipulated. The current study shows how agent-based modelling can contribute to our understanding of movement and how causally relevant evidence can be produced, illustrated through a spatiotemporally constrained football case-study.
Collapse
|
10
|
Dykes J, Abdul-Rahman A, Archambault D, Bach B, Borgo R, Chen M, Enright J, Fang H, Firat EE, Freeman E, Gönen T, Harris C, Jianu R, John NW, Khan S, Lahiff A, Laramee RS, Matthews L, Mohr S, Nguyen PH, Rahat AAM, Reeve R, Ritsos PD, Roberts JC, Slingsby A, Swallow B, Torsney-Weir T, Turkay C, Turner R, Vidal FP, Wang Q, Wood J, Xu K. Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210299. [PMID: 35965467 PMCID: PMC9376715 DOI: 10.1098/rsta.2021.0299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report on an ongoing collaboration between epidemiological modellers and visualization researchers by documenting and reflecting upon knowledge constructs-a series of ideas, approaches and methods taken from existing visualization research and practice-deployed and developed to support modelling of the COVID-19 pandemic. Structured independent commentary on these efforts is synthesized through iterative reflection to develop: evidence of the effectiveness and value of visualization in this context; open problems upon which the research communities may focus; guidance for future activity of this type and recommendations to safeguard the achievements and promote, advance, secure and prepare for future collaborations of this kind. In describing and comparing a series of related projects that were undertaken in unprecedented conditions, our hope is that this unique report, and its rich interactive supplementary materials, will guide the scientific community in embracing visualization in its observation, analysis and modelling of data as well as in disseminating findings. Equally we hope to encourage the visualization community to engage with impactful science in addressing its emerging data challenges. If we are successful, this showcase of activity may stimulate mutually beneficial engagement between communities with complementary expertise to address problems of significance in epidemiology and beyond. See https://ramp-vis.github.io/RAMPVIS-PhilTransA-Supplement/. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.
Collapse
Affiliation(s)
| | | | | | | | | | - Min Chen
- University of Oxford, Oxford, UK
| | | | - Hui Fang
- Loughborough University, Loughborough, UK
| | | | | | | | - Claire Harris
- Biomathematics and Statistics Scotland, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Qiru Wang
- University of Nottingham, Nottingham, UK
| | - Jo Wood
- City, University of London, London, UK
| | - Kai Xu
- Middlesex University, London, UK
| |
Collapse
|
11
|
Dykes J, Abdul-Rahman A, Archambault D, Bach B, Borgo R, Chen M, Enright J, Fang H, Firat EE, Freeman E, Gönen T, Harris C, Jianu R, John NW, Khan S, Lahiff A, Laramee RS, Matthews L, Mohr S, Nguyen PH, Rahat AAM, Reeve R, Ritsos PD, Roberts JC, Slingsby A, Swallow B, Torsney-Weir T, Turkay C, Turner R, Vidal FP, Wang Q, Wood J, Xu K. Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022. [PMID: 35965467 DOI: 10.6084/m9.figshare.c.6080807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We report on an ongoing collaboration between epidemiological modellers and visualization researchers by documenting and reflecting upon knowledge constructs-a series of ideas, approaches and methods taken from existing visualization research and practice-deployed and developed to support modelling of the COVID-19 pandemic. Structured independent commentary on these efforts is synthesized through iterative reflection to develop: evidence of the effectiveness and value of visualization in this context; open problems upon which the research communities may focus; guidance for future activity of this type and recommendations to safeguard the achievements and promote, advance, secure and prepare for future collaborations of this kind. In describing and comparing a series of related projects that were undertaken in unprecedented conditions, our hope is that this unique report, and its rich interactive supplementary materials, will guide the scientific community in embracing visualization in its observation, analysis and modelling of data as well as in disseminating findings. Equally we hope to encourage the visualization community to engage with impactful science in addressing its emerging data challenges. If we are successful, this showcase of activity may stimulate mutually beneficial engagement between communities with complementary expertise to address problems of significance in epidemiology and beyond. See https://ramp-vis.github.io/RAMPVIS-PhilTransA-Supplement/. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.
Collapse
Affiliation(s)
| | | | | | | | | | - Min Chen
- University of Oxford, Oxford, UK
| | | | - Hui Fang
- Loughborough University, Loughborough, UK
| | | | | | | | - Claire Harris
- Biomathematics and Statistics Scotland, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Qiru Wang
- University of Nottingham, Nottingham, UK
| | - Jo Wood
- City, University of London, London, UK
| | - Kai Xu
- Middlesex University, London, UK
| |
Collapse
|
12
|
Yao L, Bezerianos A, Vuillemot R, Isenberg P. Visualization in Motion: A Research Agenda and Two Evaluations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:3546-3562. [PMID: 35727779 DOI: 10.1109/tvcg.2022.3184993] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We contribute a research agenda for visualization in motion and two experiments to understand how well viewers can read data from moving visualizations. We define visualizations in motion as visual data representations that are used in contexts that exhibit relative motion between a viewer and an entire visualization. Sports analytics, video games, wearable devices, or data physicalizations are example contexts that involve different types of relative motion between a viewer and a visualization. To analyze the opportunities and challenges for designing visualization in motion, we show example scenarios and outline a first research agenda. Motivated primarily by the prevalence of and opportunities for visualizations in sports and video games we started to investigate a small aspect of our research agenda: the impact of two important characteristics of motion-speed and trajectory on a stationary viewer's ability to read data from moving donut and bar charts. We found that increasing speed and trajectory complexity did negatively affect the accuracy of reading values from the charts and that bar charts were more negatively impacted. In practice, however, this impact was small: both charts were still read fairly accurately.
Collapse
|
13
|
Abstract
AbstractPasses are by far football’s (soccer) most frequent event, yet surprisingly little meaningful research has been devoted to quantify them. With the increase in availability of so-called positional data, describing the positioning of players and ball at every moment of the game, our work aims to determine the difficulty of every pass by calculating its success probability based on its surrounding circumstances. As most experts will agree, not all passes are of equal difficulty, however, most traditional metrics count them as such. With our work we can quantify how well players can execute passes, assess their risk profile, and even compute completion probabilities for hypothetical passes by combining physical and machine learning models. Our model uses the first 0.4 seconds of a ball trajectory and the movement vectors of all players to predict the intended target of a pass with an accuracy of $$93.0\%$$
93.0
%
for successful and $$72.0\%$$
72.0
%
for unsuccessful passes much higher than any previously published work. Our extreme gradient boosting model can then quantify the likelihood of a successful pass completion towards the identified target with an area under the curve (AUC) of $$93.4\%$$
93.4
%
. Finally, we discuss several potential applications, like player scouting or evaluating pass decisions.
Collapse
|
14
|
Wu J, Liu D, Guo Z, Xu Q, Wu Y. TacticFlow: Visual Analytics of Ever-Changing Tactics in Racket Sports. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:835-845. [PMID: 34587062 DOI: 10.1109/tvcg.2021.3114832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Event sequence mining is often used to summarize patterns from hundreds of sequences but faces special challenges when handling racket sports data. In racket sports (e.g., tennis and badminton), a player hitting the ball is considered a multivariate event consisting of multiple attributes (e.g., hit technique and ball position). A rally (i.e., a series of consecutive hits beginning with one player serving the ball and ending with one player winning a point) thereby can be viewed as a multivariate event sequence. Mining frequent patterns and depicting how patterns change over time is instructive and meaningful to players who want to learn more short-term competitive strategies (i.e., tactics) that encompass multiple hits. However, players in racket sports usually change their tactics rapidly according to the opponent's reaction, resulting in ever-changing tactic progression. In this work, we introduce a tailored visualization system built on a novel multivariate sequence pattern mining algorithm to facilitate explorative identification and analysis of various tactics and tactic progression. The algorithm can mine multiple non-overlapping multivariate patterns from hundreds of sequences effectively. Based on the mined results, we propose a glyph-based Sankey diagram to visualize the ever-changing tactic progression and support interactive data exploration. Through two case studies with four domain experts in tennis and badminton, we demonstrate that our system can effectively obtain insights about tactic progression in most racket sports. We further discuss the strengths and the limitations of our system based on domain experts' feedback.
Collapse
|
15
|
Fassmeyer D, Anzer G, Bauer P, Brefeld U. Toward Automatically Labeling Situations in Soccer. Front Sports Act Living 2021; 3:725431. [PMID: 34805978 PMCID: PMC8595941 DOI: 10.3389/fspor.2021.725431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
We study the automatic annotation of situations in soccer games. At first sight, this translates nicely into a standard supervised learning problem. However, in a fully supervised setting, predictive accuracies are supposed to correlate positively with the amount of labeled situations: more labeled training data simply promise better performance. Unfortunately, non-trivially annotated situations in soccer games are scarce, expensive and almost always require human experts; a fully supervised approach appears infeasible. Hence, we split the problem into two parts and learn (i) a meaningful feature representation using variational autoencoders on unlabeled data at large scales and (ii) a large-margin classifier acting in this feature space but utilize only a few (manually) annotated examples of the situation of interest. We propose four different architectures of the variational autoencoder and empirically study the detection of corner kicks, crosses and counterattacks. We observe high predictive accuracies above 90% AUC irrespectively of the task.
Collapse
Affiliation(s)
- Dennis Fassmeyer
- Machine Learning Group, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Gabriel Anzer
- Department of Sport Psychology and Research Methods, Institute of Sports Science, University of Tübingen, Tübingen, Germany
- Sportec Solutions AG, Subsidiary of the Deutsche Fußball Liga (DFL), Munich, Germany
| | - Pascal Bauer
- Department of Sport Psychology and Research Methods, Institute of Sports Science, University of Tübingen, Tübingen, Germany
- DFB-Akademie, Deutscher Fußball-Bund e.V. (DFB), Frankfurt, Germany
| | - Ulf Brefeld
- Machine Learning Group, Leuphana University of Lüneburg, Lüneburg, Germany
| |
Collapse
|
16
|
Abstract
We propose to analyse the origin of goals in professional football (soccer) in a purely data-driven approach. Based on positional and event data of 3,457 goals from two seasons German Bundesliga and 2nd Bundesliga (2018/20,219 and 2019/2020), we devise a rich set of 37 features that can be extracted automatically and propose a hierarchical clustering approach to identify group structures. The results consist of 50 interpretable clusters revealing insights into scoring patterns. The hierarchical clustering found 8 alone standing clusters (penalties, direct free kicks, kick and rush, one-two's, assisted by header, assisted by throw-in) and nine categories (e.g., corners) combining more granular patterns (e.g., five subcategories of corner-goals). We provide a thorough discussion of the clustering and show its relevance for practical applications in opponent analysis, player scouting and for long-term investigations. All stages of this work have been supported by professional analysts from clubs and federation.
Collapse
Affiliation(s)
- Gabriel Anzer
- Sportec Solutions AG, Subsidiary of the Deutsche Fußball Liga (DFL), Munich, Germany
- Department of Sport Psychology and Research Methods, Institute of Sports Science, University of Tübingen
| | - Pascal Bauer
- Department of Sport Psychology and Research Methods, Institute of Sports Science, University of Tübingen
- DFB Akademie, Deutscher Fußball-Bund e.V. (DFB), Frankfurt, Germany
| | - Ulf Brefeld
- Machine Learning Group, Institute of Information Systems,Leuphana University of Lüneburg, Germany
| |
Collapse
|
17
|
Abstract
AbstractDetecting counterpressing is an important task for any professional match-analyst in football (soccer), but is being done exclusively manually by observing video footage. The purpose of this paper is not only to automatically identify this strategy, but also to derive metrics that support coaches with the analysis of transition situations. Additionally, we want to infer objective influence factors for its success and assess the validity of peer-created rules of thumb established in by practitioners. Based on a combination of positional and event data we detect counterpressing situations as a supervised machine learning task. Together, with professional match-analysis experts we discussed and consolidated a consistent definition, extracted 134 features and manually labeled more than 20, 000 defensive transition situations from 97 professional football matches. The extreme gradient boosting model—with an area under the curve of $$87.4\%$$
87.4
%
on the labeled test data—enabled us to judge how quickly teams can win the ball back with counterpressing strategies, how many shots they create or allow immediately afterwards and to determine what the most important success drivers are. We applied this automatic detection on all matches from six full seasons of the German Bundesliga and quantified the defensive and offensive consequences when applying counterpressing for each team. Automating the task saves analysts a tremendous amount of time, standardizes the otherwise subjective task, and allows to identify trends within larger data-sets. We present an effective way of how the detection and the lessons learned from this investigation are integrated effectively into common match-analysis processes.
Collapse
|
18
|
Wang J, Wu J, Cao A, Zhou Z, Zhang H, Wu Y. Tac-Miner: Visual Tactic Mining for Multiple Table Tennis Matches. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:2770-2782. [PMID: 33891553 DOI: 10.1109/tvcg.2021.3074576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In table tennis, tactics specified by three consecutive strokes represent the high-level competition strategies in matches. Effective detection and analysis of tactics can reveal the playing styles of players, as well as their strengths and weaknesses. However, tactical analysis in table tennis is challenging as the analysts can often be overwhelmed by the large quantity and high dimension of the data. Statistical charts have been extensively used by researchers to explore and visualize table tennis data. However, these charts cannot support efficient comparative and correlation analysis of complicated tactic attributes. Besides, existing studies are limited to the analysis of one match. However, one player's strategy can change along with his/her opponents in different matches. Therefore, the data of multiple matches can support a more comprehensive tactical analysis. To address these issues, we introduced a visual analytics system called Tac-Miner to allow analysts to effectively analyze, explore, and compare tactics of multiple matches based on the advanced embedding and dimension reduction algorithms along with an interactive glyph. We evaluate our glyph's usability through a user study and demonstrate the system's usefulness through a case study with insights approved by coaches and domain experts.
Collapse
|
19
|
Ye S, Chen Z, Chu X, Wang Y, Fu S, Shen L, Zhou K, Wu Y. ShuttleSpace: Exploring and Analyzing Movement Trajectory in Immersive Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:860-869. [PMID: 33048712 DOI: 10.1109/tvcg.2020.3030392] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present ShuttleSpace, an immersive analytics system to assist experts in analyzing trajectory data in badminton. Trajectories in sports, such as the movement of players and balls, contain rich information on player behavior and thus have been widely analyzed by coaches and analysts to improve the players' performance. However, existing visual analytics systems often present the trajectories in court diagrams that are abstractions of reality, thereby causing difficulty for the experts to imagine the situation on the court and understand why the player acted in a certain way. With recent developments in immersive technologies, such as virtual reality (VR), experts gradually have the opportunity to see, feel, explore, and understand these 3D trajectories from the player's perspective. Yet, few research has studied how to support immersive analysis of sports data from such a perspective. Specific challenges are rooted in data presentation (e.g., how to seamlessly combine 2D and 3D visualizations) and interaction (e.g., how to naturally interact with data without keyboard and mouse) in VR. To address these challenges, we have worked closely with domain experts who have worked for a top national badminton team to design ShuttleSpace. Our system leverages 1) the peripheral vision to combine the 2D and 3D visualizations and 2) the VR controller to support natural interactions via a stroke metaphor. We demonstrate the effectiveness of ShuttleSpace through three case studies conducted by the experts with useful insights. We further conduct interviews with the experts whose feedback confirms that our first-person immersive analytics system is suitable and useful for analyzing badminton data.
Collapse
|