1
|
Dyken L, Usher W, Kumar S. Interactive Isosurface Visualization in Memory Constrained Environments Using Deep Learning and Speculative Raycasting. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1582-1597. [PMID: 38941206 DOI: 10.1109/tvcg.2024.3420225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
New web technologies have enabled the deployment of powerful GPU-based computational pipelines that run entirely in the web browser, opening a new frontier for accessible scientific visualization applications. However, these new capabilities do not address the memory constraints of lightweight end-user devices encountered when attempting to visualize the massive data sets produced by today's simulations and data acquisition systems. We propose a novel implicit isosurface rendering algorithm for interactive visualization of massive volumes within a small memory footprint. We achieve this by progressively traversing a wavefront of rays through the volume and decompressing blocks of the data on-demand to perform implicit ray-isosurface intersections, displaying intermediate results each pass. We improve the quality of these intermediate results using a pretrained deep neural network that reconstructs the output of early passes, allowing for interactivity with better approximates of the final image. To accelerate rendering and increase GPU utilization, we introduce speculative ray-block intersection into our algorithm, where additional blocks are traversed and intersected speculatively along rays to exploit additional parallelism in the workload. Our algorithm is able to trade-off image quality to greatly decrease rendering time for interactive rendering even on lightweight devices. Our entire pipeline is run in parallel on the GPU to leverage the parallel computing power that is available even on lightweight end-user devices. We compare our algorithm to the state of the art in low-overhead isosurface extraction and demonstrate that it achieves - reductions in memory overhead and up to reductions in data decompressed.
Collapse
|
2
|
Kumar A, Garg S, Dutta S. Uncertainty-Aware Deep Neural Representations for Visual Analysis of Vector Field Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1343-1353. [PMID: 39250384 DOI: 10.1109/tvcg.2024.3456360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The widespread use of Deep Neural Networks (DNNs) has recently resulted in their application to challenging scientific visualization tasks. While advanced DNNs demonstrate impressive generalization abilities, understanding factors like prediction quality, confidence, robustness, and uncertainty is crucial. These insights aid application scientists in making informed decisions. However, DNNs lack inherent mechanisms to measure prediction uncertainty, prompting the creation of distinct frameworks for constructing robust uncertainty-aware models tailored to various visualization tasks. In this work, we develop uncertainty-aware implicit neural representations to model steady-state vector fields effectively. We comprehensively evaluate the efficacy of two principled deep uncertainty estimation techniques: (1) Deep Ensemble and (2) Monte Carlo Dropout, aimed at enabling uncertainty-informed visual analysis of features within steady vector field data. Our detailed exploration using several vector data sets indicate that uncertainty-aware models generate informative visualization results of vector field features. Furthermore, incorporating prediction uncertainty improves the resilience and interpretability of our DNN model, rendering it applicable for the analysis of non-trivial vector field data sets.
Collapse
|
3
|
Li G, Liu Y, Shan G, Cheng S, Cao W, Wang J, Wang KC. ParamsDrag: Interactive Parameter Space Exploration via Image-Space Dragging. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:624-634. [PMID: 39250408 DOI: 10.1109/tvcg.2024.3456338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Numerical simulation serves as a cornerstone in scientific modeling, yet the process of fine-tuning simulation parameters poses significant challenges. Conventionally, parameter adjustment relies on extensive numerical simulations, data analysis, and expert insights, resulting in substantial computational costs and low efficiency. The emergence of deep learning in recent years has provided promising avenues for more efficient exploration of parameter spaces. However, existing approaches often lack intuitive methods for precise parameter adjustment and optimization. To tackle these challenges, we introduce ParamsDrag, a model that facilitates parameter space exploration through direct interaction with visualizations. Inspired by DragGAN, our ParamsDrag model operates in three steps. First, the generative component of ParamsDrag generates visualizations based on the input simulation parameters. Second, by directly dragging structure-related features in the visualizations, users can intuitively understand the controlling effect of different parameters. Third, with the understanding from the earlier step, users can steer ParamsDrag to produce dynamic visual outcomes. Through experiments conducted on real-world simulations and comparisons with state-of-the-art deep learning-based approaches, we demonstrate the efficacy of our solution.
Collapse
|
4
|
Tang K, Wang C. StyleRF-VolVis: Style Transfer of Neural Radiance Fields for Expressive Volume Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:613-623. [PMID: 39255154 DOI: 10.1109/tvcg.2024.3456342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In volume visualization, visualization synthesis has attracted much attention due to its ability to generate novel visualizations without following the conventional rendering pipeline. However, existing solutions based on generative adversarial networks often require many training images and take significant training time. Still, issues such as low quality, consistency, and flexibility persist. This paper introduces StyleRF-VolVis, an innovative style transfer framework for expressive volume visualization (VolVis) via neural radiance field (NeRF). The expressiveness of StyleRF-VolVis is upheld by its ability to accurately separate the underlying scene geometry (i.e., content) and color appearance (i.e., style), conveniently modify color, opacity, and lighting of the original rendering while maintaining visual content consistency across the views, and effectively transfer arbitrary styles from reference images to the reconstructed 3D scene. To achieve these, we design a base NeRF model for scene geometry extraction, a palette color network to classify regions of the radiance field for photorealistic editing, and an unrestricted color network to lift the color palette constraint via knowledge distillation for non-photorealistic editing. We demonstrate the superior quality, consistency, and flexibility of StyleRF-VolVis by experimenting with various volume rendering scenes and reference images and comparing StyleRF-VolVis against other image-based (AdaIN), video-based (ReReVST), and NeRF-based (ARF and SNeRF) style rendering solutions.
Collapse
|
5
|
Afzal S, Ghani S, Hittawe MM, Rashid SF, Knio OM, Hadwiger M, Hoteit I. Visualization and Visual Analytics Approaches for Image and Video Datasets: A Survey. ACM T INTERACT INTEL 2023. [DOI: 10.1145/3576935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Image and video data analysis has become an increasingly important research area with applications in different domains such as security surveillance, healthcare, augmented and virtual reality, video and image editing, activity analysis and recognition, synthetic content generation, distance education, telepresence, remote sensing, sports analytics, art, non-photorealistic rendering, search engines, and social media. Recent advances in Artificial Intelligence (AI) and particularly deep learning have sparked new research challenges and led to significant advancements, especially in image and video analysis. These advancements have also resulted in significant research and development in other areas such as visualization and visual analytics, and have created new opportunities for future lines of research. In this survey paper, we present the current state of the art at the intersection of visualization and visual analytics, and image and video data analysis. We categorize the visualization papers included in our survey based on different taxonomies used in visualization and visual analytics research. We review these papers in terms of task requirements, tools, datasets, and application areas. We also discuss insights based on our survey results, trends and patterns, the current focus of visualization research, and opportunities for future research.
Collapse
Affiliation(s)
- Shehzad Afzal
- King Abdullah University of Science & Technology, Saudi Arabia
| | - Sohaib Ghani
- King Abdullah University of Science & Technology, Saudi Arabia
| | | | | | - Omar M Knio
- King Abdullah University of Science & Technology, Saudi Arabia
| | - Markus Hadwiger
- King Abdullah University of Science & Technology, Saudi Arabia
| | - Ibrahim Hoteit
- King Abdullah University of Science & Technology, Saudi Arabia
| |
Collapse
|
6
|
Jiao C, Bi C, Yang L, Wang Z, Xia Z, Ono K. ESRGAN-based visualization for large-scale volume data. J Vis (Tokyo) 2022. [DOI: 10.1007/s12650-022-00891-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Weiss S, Isk M, Thies J, Westermann R. Learning Adaptive Sampling and Reconstruction for Volume Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:2654-2667. [PMID: 33211659 DOI: 10.1109/tvcg.2020.3039340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A central challenge in data visualization is to understand which data samples are required to generate an image of a data set in which the relevant information is encoded. In this article, we make a first step towards answering the question of whether an artificial neural network can predict where to sample the data with higher or lower density, by learning of correspondences between the data, the sampling patterns and the generated images. We introduce a novel neural rendering pipeline, which is trained end-to-end to generate a sparse adaptive sampling structure from a given low-resolution input image, and reconstructs a high-resolution image from the sparse set of samples. For the first time, to the best of our knowledge, we demonstrate that the selection of structures that are relevant for the final visual representation can be jointly learned together with the reconstruction of this representation from these structures. Therefore, we introduce differentiable sampling and reconstruction stages, which can leverage back-propagation based on supervised losses solely on the final image. We shed light on the adaptive sampling patterns generated by the network pipeline and analyze its use for volume visualization including isosurface and direct volume rendering.
Collapse
|
8
|
Han J, Wang C. SSR-TVD: Spatial Super-Resolution for Time-Varying Data Analysis and Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:2445-2456. [PMID: 33074824 DOI: 10.1109/tvcg.2020.3032123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present SSR-TVD, a novel deep learning framework that produces coherent spatial super-resolution (SSR) of time-varying data (TVD) using adversarial learning. In scientific visualization, SSR-TVD is the first work that applies the generative adversarial network (GAN) to generate high-resolution volumes for three-dimensional time-varying data sets. The design of SSR-TVD includes a generator and two discriminators (spatial and temporal discriminators). The generator takes a low-resolution volume as input and outputs a synthesized high-resolution volume. To capture spatial and temporal coherence in the volume sequence, the two discriminators take the synthesized high-resolution volume(s) as input and produce a score indicating the realness of the volume(s). Our method can work in the in situ visualization setting by downscaling volumetric data from selected time steps as the simulation runs and upscaling downsampled volumes to their original resolution during postprocessing. To demonstrate the effectiveness of SSR-TVD, we show quantitative and qualitative results with several time-varying data sets of different characteristics and compare our method against volume upscaling using bicubic interpolation and a solution solely based on CNN.
Collapse
|
9
|
Han J, Zheng H, Chen DZ, Wang C. STNet: An End-to-End Generative Framework for Synthesizing Spatiotemporal Super-Resolution Volumes. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:270-280. [PMID: 34587051 DOI: 10.1109/tvcg.2021.3114815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present STNet, an end-to-end generative framework that synthesizes spatiotemporal super-resolution volumes with high fidelity for time-varying data. STNet includes two modules: a generator and a spatiotemporal discriminator. The input to the generator is two low-resolution volumes at both ends, and the output is the intermediate and the two-ending spatiotemporal super-resolution volumes. The spatiotemporal discriminator, leveraging convolutional long short-term memory, accepts a spatiotemporal super-resolution sequence as input and predicts a conditional score for each volume based on its spatial (the volume itself) and temporal (the previous volumes) information. We propose an unsupervised pre-training stage using cycle loss to improve the generalization of STNet. Once trained, STNet can generate spatiotemporal super-resolution volumes from low-resolution ones, offering scientists an option to save data storage (i.e., sparsely sampling the simulation output in both spatial and temporal dimensions). We compare STNet with the baseline bicubic+linear interpolation, two deep learning solutions ( SSR+TSF, STD), and a state-of-the-art tensor compression solution (TTHRESH) to show the effectiveness of STNet.
Collapse
|
10
|
Weiss S, Westermann R. Differentiable Direct Volume Rendering. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:562-572. [PMID: 34587023 DOI: 10.1109/tvcg.2021.3114769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present a differentiable volume rendering solution that provides differentiability of all continuous parameters of the volume rendering process. This differentiable renderer is used to steer the parameters towards a setting with an optimal solution of a problem-specific objective function. We have tailored the approach to volume rendering by enforcing a constant memory footprint via analytic inversion of the blending functions. This makes it independent of the number of sampling steps through the volume and facilitates the consideration of small-scale changes. The approach forms the basis for automatic optimizations regarding external parameters of the rendering process and the volumetric density field itself. We demonstrate its use for automatic viewpoint selection using differentiable entropy as objective, and for optimizing a transfer function from rendered images of a given volume. Optimization of per-voxel densities is addressed in two different ways: First, we mimic inverse tomography and optimize a 3D density field from images using an absorption model. This simplification enables comparisons with algebraic reconstruction techniques and state-of-the-art differentiable path tracers. Second, we introduce a novel approach for tomographic reconstruction from images using an emission-absorption model with post-shading via an arbitrary transfer function.
Collapse
|
11
|
Dai H, Tao Y, He X, Lin H. IsoExplorer: an isosurface-driven framework for 3D shape analysis of biomedical volume data. J Vis (Tokyo) 2021; 24:1253-1266. [PMID: 34429686 PMCID: PMC8376112 DOI: 10.1007/s12650-021-00770-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022]
Abstract
Abstract The high-resolution scanning devices developed in recent decades provide biomedical volume datasets that support the study of molecular structure and drug design. Isosurface analysis is an important tool in these studies, and the key is to construct suitable description vectors to support subsequent tasks, such as classification and retrieval. Traditional methods based on handcrafted features are insufficient for dealing with complex structures, while deep learning-based approaches have high memory and computation costs when dealing directly with volume data. To address these problems, we propose IsoExplorer, an isosurface-driven framework for 3D shape analysis of biomedical volume data. We first extract isosurfaces from volume data and split them into individual 3D shapes according to their connectivity. Then, we utilize octree-based convolution to design a variational autoencoder model that learns the latent representations of the shape. Finally, these latent representations are used for low-dimensional isosurface representation and shape retrieval. We demonstrate the effectiveness and usefulness of IsoExplorer via isosurface similarity analysis, shape retrieval of real-world data, and comparison with existing methods. Graphic abstract ![]()
Collapse
Affiliation(s)
- Haoran Dai
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Yubo Tao
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Xiangyang He
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Hai Lin
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Han J, Zheng H, Xing Y, Chen DZ, Wang C. V2V: A Deep Learning Approach to Variable-to-Variable Selection and Translation for Multivariate Time-Varying Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1290-1300. [PMID: 33074812 DOI: 10.1109/tvcg.2020.3030346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present V2V, a novel deep learning framework, as a general-purpose solution to the variable-to-variable (V2V) selection and translation problem for multivariate time-varying data (MTVD) analysis and visualization. V2V leverages a representation learning algorithm to identify transferable variables and utilizes Kullback-Leibler divergence to determine the source and target variables. It then uses a generative adversarial network (GAN) to learn the mapping from the source variable to the target variable via the adversarial, volumetric, and feature losses. V2V takes the pairs of time steps of the source and target variable as input for training, Once trained, it can infer unseen time steps of the target variable given the corresponding time steps of the source variable. Several multivariate time-varying data sets of different characteristics are used to demonstrate the effectiveness of V2V, both quantitatively and qualitatively. We compare V2V against histogram matching and two other deep learning solutions (Pix2Pix and CycleGAN).
Collapse
|