1
|
Kumar A, Garg S, Dutta S. Uncertainty-Aware Deep Neural Representations for Visual Analysis of Vector Field Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1343-1353. [PMID: 39250384 DOI: 10.1109/tvcg.2024.3456360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The widespread use of Deep Neural Networks (DNNs) has recently resulted in their application to challenging scientific visualization tasks. While advanced DNNs demonstrate impressive generalization abilities, understanding factors like prediction quality, confidence, robustness, and uncertainty is crucial. These insights aid application scientists in making informed decisions. However, DNNs lack inherent mechanisms to measure prediction uncertainty, prompting the creation of distinct frameworks for constructing robust uncertainty-aware models tailored to various visualization tasks. In this work, we develop uncertainty-aware implicit neural representations to model steady-state vector fields effectively. We comprehensively evaluate the efficacy of two principled deep uncertainty estimation techniques: (1) Deep Ensemble and (2) Monte Carlo Dropout, aimed at enabling uncertainty-informed visual analysis of features within steady vector field data. Our detailed exploration using several vector data sets indicate that uncertainty-aware models generate informative visualization results of vector field features. Furthermore, incorporating prediction uncertainty improves the resilience and interpretability of our DNN model, rendering it applicable for the analysis of non-trivial vector field data sets.
Collapse
|
2
|
Zhang X, Mao B, Che Y, Kang J, Luo M, Qiao A, Liu Y, Anzai H, Ohta M, Guo Y, Li G. Physics-informed neural networks (PINNs) for 4D hemodynamics prediction: An investigation of optimal framework based on vascular morphology. Comput Biol Med 2023; 164:107287. [PMID: 37536096 DOI: 10.1016/j.compbiomed.2023.107287] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/06/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
Hemodynamic parameters are of great significance in the clinical diagnosis and treatment of cardiovascular diseases. However, noninvasive, real-time and accurate acquisition of hemodynamics remains a challenge for current invasive detection and simulation algorithms. Here, we integrate computational fluid dynamics with our customized analysis framework based on a multi-attribute point cloud dataset and physics-informed neural networks (PINNs)-aided deep learning modules. This combination is implemented by our workflow that generates flow field datasets within two types of patient personalized models - aorta with fine coronary branches and abdominal aorta. Deep learning modules with or without an antecedent hierarchical structure model the flow field development and complete the mapping from spatial and temporal dimensions to 4D hemodynamics. 88,000 cases on 4 randomized partitions in 16 controlled trials reveal the hemodynamic landscape of spatio-temporal anisotropy within two types of personalized models, which demonstrates the effectiveness of PINN in predicting the space-time behavior of flow fields and gives the optimal deep learning framework for different blood vessels in terms of balancing the training cost and accuracy dimensions. The proposed framework shows intentional performance in computational cost, accuracy and visualization compared to currently prevalent methods, and has the potential for generalization to model flow fields and corresponding clinical metrics within vessels at different locations. We expect our framework to push the 4D hemodynamic predictions to the real-time level, and in statistically significant fashion, applicable to morphologically variable vessels.
Collapse
Affiliation(s)
- Xuelan Zhang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Baoyan Mao
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yue Che
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiaheng Kang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Mingyao Luo
- Department of Vascular Surgery, Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100037, China; Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, 650102, China
| | - Aike Qiao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Youjun Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Hitomi Anzai
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Makoto Ohta
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Yuting Guo
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto, 615-8540, Japan
| | - Gaoyang Li
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| |
Collapse
|
3
|
Nilsson E, Lukasczyk J, Masood TB, Garth C, Hotz I. Towards Benchmark Data Generation for Feature Tracking in Scalar Fields. 2022 TOPOLOGICAL DATA ANALYSIS AND VISUALIZATION (TOPOINVIS) 2022. [DOI: 10.1109/topoinvis57755.2022.00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
4
|
Abstract
Computational methods in fluid research have been progressing during the past few years, driven by the incorporation of massive amounts of data, either in textual or graphical form, generated from multi-scale simulations, laboratory experiments, and real data from the field. Artificial Intelligence (AI) and its adjacent field, Machine Learning (ML), are about to reach standardization in most fields of computational science and engineering, as they provide multiple ways for extracting information from data that turn into knowledge, with the aid of portable software implementations that are easy to adopt. There is ample information on the historical and mathematical background of all aspects of AI/ML in the literature. Thus, this review article focuses mainly on their impact on fluid research at present, highlighting advances and opportunities, recognizing techniques and methods having been proposed, tabulating, and testing some of the most popular algorithms that have shown significant accuracy and performance on fluid applications. We also investigate algorithmic accuracy on several fluid datasets that correspond to simulation results for the transport properties of fluids and suggest that non-linear, decision tree-based methods have shown remarkable performance on reproducing fluid properties.
Collapse
|
5
|
Gu P, Han J, Chen DZ, Wang C. Reconstructing Unsteady Flow Data From Representative Streamlines via Diffusion and Deep-Learning-Based Denoising. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2021; 41:111-121. [PMID: 34133274 DOI: 10.1109/mcg.2021.3089627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We propose VFR-UFD, a new deep learning framework that performs vector field reconstruction (VFR) for unsteady flow data (UFD). Given integral flow lines (i.e., streamlines), we first generate low-quality UFD via diffusion. VFR-UFD then leverages a convolutional neural network to reconstruct spatiotemporally coherent, high-quality UFD. The core of VFR-UFD lies in recurrent residual blocks that iteratively refine and denoise the input vector fields at different scales, both locally and globally. We take consecutive time steps as input to capture temporal coherence and apply streamline-based optimization to preserve spatial coherence. To show the effectiveness of VFR-UFD, we experiment with several vector field data sets to report quantitative and qualitative results and compare VFR-UFD with two VFR methods and one compression algorithm.
Collapse
|