1
|
Hosseinpour H, Matzen LE, Divis KM, Castro SC, Padilla L. Examining Limits of Small Multiples: Frame Quantity Impacts Judgments With Line Graphs. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1875-1887. [PMID: 38437093 DOI: 10.1109/tvcg.2024.3372620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Small multiples are a popular visualization method, displaying different views of a dataset using multiple frames, often with the same scale and axes. However, there is a need to address their potential constraints, especially in the context of human cognitive capacity limits. These limits dictate the maximum information our mind can process at once. We explore the issue of capacity limitation by testing competing theories that describe how the number of frames shown in a display, the scale of the frames, and time constraints impact user performance with small multiples of line charts in an energy grid scenario. In two online studies (Experiment 1 n = 141 and Experiment 2 n = 360) and a follow-up eye-tracking analysis (n = 5), we found a linear decline in accuracy with increasing frames across seven tasks, which was not fully explained by differences in frame size, suggesting visual search challenges. Moreover, the studies demonstrate that highlighting specific frames can mitigate some visual search difficulties but, surprisingly, not eliminate them. This research offers insights into optimizing the utility of small multiples by aligning them with human limitations.
Collapse
|
2
|
Lange D, Judson-Torres R, Zangle TA, Lex A. Aardvark: Composite Visualizations of Trees, Time-Series, and Images. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1290-1300. [PMID: 39255114 DOI: 10.1109/tvcg.2024.3456193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
How do cancer cells grow, divide, proliferate, and die? How do drugs influence these processes? These are difficult questions that we can attempt to answer with a combination of time-series microscopy experiments, classification algorithms, and data visualization. However, collecting this type of data and applying algorithms to segment and track cells and construct lineages of proliferation is error-prone; and identifying the errors can be challenging since it often requires cross-checking multiple data types. Similarly, analyzing and communicating the results necessitates synthesizing different data types into a single narrative. State-of-the-art visualization methods for such data use independent line charts, tree diagrams, and images in separate views. However, this spatial separation requires the viewer of these charts to combine the relevant pieces of data in memory. To simplify this challenging task, we describe design principles for weaving cell images, time-series data, and tree data into a cohesive visualization. Our design principles are based on choosing a primary data type that drives the layout and integrates the other data types into that layout. We then introduce Aardvark, a system that uses these principles to implement novel visualization techniques. Based on Aardvark, we demonstrate the utility of each of these approaches for discovery, communication, and data debugging in a series of case studies.
Collapse
|
3
|
Wu DY, Le TNH, Yao SY, Lin YC, Lee TY. Image Collage on Arbitrary Shape via Shape-Aware Slicing and Optimization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:4449-4463. [PMID: 37030778 DOI: 10.1109/tvcg.2023.3262039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Image collage is a very useful tool for visualizing an image collection. Most of the existing methods and commercial applications for generating image collages are designed on simple shapes, such as rectangular and circular layouts. This greatly limits the use of image collages in some artistic and creative settings. Although there are some methods that can generate irregularly-shaped image collages, they often suffer from severe image overlapping and excessive blank space. This prevents such methods from being effective information communication tools. In this article, we present a shape slicing algorithm and an optimization scheme that can create image collages of arbitrary shapes in an informative and visually pleasing manner given an input shape and an image collection. To overcome the challenge of irregular shapes, we propose a novel algorithm, called Shape-Aware Slicing, which partitions the input shape into cells based on medial axis and binary slicing tree. Shape-Aware Slicing,which is designed specifically for irregular shapes, takes human perception and shape structure into account to generate visually pleasing partitions. Then, the layout is optimized by analyzing input images with the goal of maximizing the total salient regions of the images. To evaluate our method, we conduct extensive experiments and compare our results against previous work. The evaluations show that our proposed algorithm can efficiently arrange image collections on irregular shapes and create visually superior results than prior work and existing commercial tools.
Collapse
|
4
|
In S, Lin T, North C, Pfister H, Yang Y. This is the Table I Want! Interactive Data Transformation on Desktop and in Virtual Reality. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:5635-5650. [PMID: 37506003 DOI: 10.1109/tvcg.2023.3299602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Data transformation is an essential step in data science. While experts primarily use programming to transform their data, there is an increasing need to support non-programmers with user interface-based tools. With the rapid development in interaction techniques and computing environments, we report our empirical findings about the effects of interaction techniques and environments on performing data transformation tasks. Specifically, we studied the potential benefits of direct interaction and virtual reality (VR) for data transformation. We compared gesture interaction versus a standard WIMP user interface, each on the desktop and in VR. With the tested data and tasks, we found time performance was similar between desktop and VR. Meanwhile, VR demonstrates preliminary evidence to better support provenance and sense-making throughout the data transformation process. Our exploration of performing data transformation in VR also provides initial affirmation for enabling an iterative and fully immersive data science workflow.
Collapse
|
5
|
Dennig FL, Miller M, Keim DA, El-Assady M. FS/DS: A Theoretical Framework for the Dual Analysis of Feature Space and Data Space. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:5165-5182. [PMID: 37342951 DOI: 10.1109/tvcg.2023.3288356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
With the surge of data-driven analysis techniques, there is a rising demand for enhancing the exploration of large high-dimensional data by enabling interactions for the joint analysis of features (i.e., dimensions). Such a dual analysis of the feature space and data space is characterized by three components, 1) a view visualizing feature summaries, 2) a view that visualizes the data records, and 3) a bidirectional linking of both plots triggered by human interaction in one of both visualizations, e.g., Linking & Brushing. Dual analysis approaches span many domains, e.g., medicine, crime analysis, and biology. The proposed solutions encapsulate various techniques, such as feature selection or statistical analysis. However, each approach establishes a new definition of dual analysis. To address this gap, we systematically reviewed published dual analysis methods to investigate and formalize the key elements, such as the techniques used to visualize the feature space and data space, as well as the interaction between both spaces. From the information elicited during our review, we propose a unified theoretical framework for dual analysis, encompassing all existing approaches extending the field. We apply our proposed formalization describing the interactions between each component and relate them to the addressed tasks. Additionally, we categorize the existing approaches using our framework and derive future research directions to advance dual analysis by including state-of-the-art visual analysis techniques to improve data exploration.
Collapse
|
6
|
Langer CCH, Mitter M, Stocsits RR, Gerlich DW. HiCognition: a visual exploration and hypothesis testing tool for 3D genomics. Genome Biol 2023; 24:158. [PMID: 37408019 PMCID: PMC10320903 DOI: 10.1186/s13059-023-02996-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/25/2023] [Indexed: 07/07/2023] Open
Abstract
Genome browsers facilitate integrated analysis of multiple genomics datasets yet visualize only a few regions at a time and lack statistical functions for extracting meaningful information. We present HiCognition, a visual exploration and machine-learning tool based on a new genomic region set concept, enabling detection of patterns and associations between 3D chromosome conformation and collections of 1D genomics profiles of any type. By revealing how transcription and cohesion subunit isoforms contribute to chromosome conformation, we showcase how the flexible user interface and machine learning tools of HiCognition help to understand the relationship between the structure and function of the genome.
Collapse
Affiliation(s)
- Christoph C H Langer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Michael Mitter
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Roman R Stocsits
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
7
|
Wang Q, L'Yi S, Gehlenborg N. DRAVA: Aligning Human Concepts with Machine Learning Latent Dimensions for the Visual Exploration of Small Multiples. PROCEEDINGS OF THE SIGCHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS. CHI CONFERENCE 2023; 2023:833. [PMID: 38074525 PMCID: PMC10707479 DOI: 10.1145/3544548.3581127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Latent vectors extracted by machine learning (ML) are widely used in data exploration (e.g., t-SNE) but suffer from a lack of interpretability. While previous studies employed disentangled representation learning (DRL) to enable more interpretable exploration, they often overlooked the potential mismatches between the concepts of humans and the semantic dimensions learned by DRL. To address this issue, we propose Drava, a visual analytics system that supports users in 1) relating the concepts of humans with the semantic dimensions of DRL and identifying mismatches, 2) providing feedback to minimize the mismatches, and 3) obtaining data insights from concept-driven exploration. Drava provides a set of visualizations and interactions based on visual piles to help users understand and refine concepts and conduct concept-driven exploration. Meanwhile, Drava employs a concept adaptor model to fine-tune the semantic dimensions of DRL based on user refinement. The usefulness of Drava is demonstrated through application scenarios and experimental validation.
Collapse
Affiliation(s)
| | - Sehi L'Yi
- Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
8
|
Hulstein G, Pena-Araya V, Bezerianos A. Geo-Storylines: Integrating Maps into Storyline Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:994-1004. [PMID: 36227814 DOI: 10.1109/tvcg.2022.3209480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Storyline visualizations are a powerful way to compactly visualize how the relationships between people evolve over time. Real-world relationships often also involve space, for example the cities that two political rivals visited together or alone over the years. By default, Storyline visualizations only show implicitly geospatial co-occurrence between people (drawn as lines), by bringing their lines together. Even the few designs that do explicitly show geographic locations only do so in abstract ways (e.g., annotations) and do not communicate geospatial information, such as the direction or extent of their political campains. We introduce Geo-Storylines, a collection of visualisation designs that integrate geospatial context into Storyline visualizations, using different strategies for compositing time and space. Our contribution is twofold. First, we present the results of a sketching workshop with 11 participants, that we used to derive a design space for integrating maps into Storylines. Second, by analyzing the strengths and weaknesses of the potential designs of the design space in terms of legibility and ability to scale to multiple relationships, we extract the three most promising: Time Glyphs, Coordinated Views, and Map Glyphs. We compare these three techniques first in a controlled study with 18 participants, under five different geospatial tasks and two maps of different complexity. We additionally collected informal feedback about their usefulness from domain experts in data journalism. Our results indicate that, as expected, detailed performance depends on the task. Nevertheless, Coordinated Views remain a highly effective and preferred technique across the board.
Collapse
|