1
|
van den Brandt A, Jonkheer EM, van Workum DJM, van de Wetering H, Smit S, Vilanova A. PanVA: Pangenomic Variant Analysis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:4895-4909. [PMID: 37267130 DOI: 10.1109/tvcg.2023.3282364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Genomics researchers increasingly use multiple reference genomes to comprehensively explore genetic variants underlying differences in detectable characteristics between organisms. Pangenomes allow for an efficient data representation of multiple related genomes and their associated metadata. However, current visual analysis approaches for exploring these complex genotype-phenotype relationships are often based on single reference approaches or lack adequate support for interpreting the variants in the genomic context with heterogeneous (meta)data. This design study introduces PanVA, a visual analytics design for pangenomic variant analysis developed with the active participation of genomics researchers. The design uniquely combines tailored visual representations with interactions such as sorting, grouping, and aggregation, allowing users to navigate and explore different perspectives on complex genotype-phenotype relations. Through evaluation in the context of plants and pathogen research, we show that PanVA helps researchers explore variants in genes and generate hypotheses about their role in phenotypic variation.
Collapse
|
2
|
Dykes J, Abdul-Rahman A, Archambault D, Bach B, Borgo R, Chen M, Enright J, Fang H, Firat EE, Freeman E, Gönen T, Harris C, Jianu R, John NW, Khan S, Lahiff A, Laramee RS, Matthews L, Mohr S, Nguyen PH, Rahat AAM, Reeve R, Ritsos PD, Roberts JC, Slingsby A, Swallow B, Torsney-Weir T, Turkay C, Turner R, Vidal FP, Wang Q, Wood J, Xu K. Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210299. [PMID: 35965467 PMCID: PMC9376715 DOI: 10.1098/rsta.2021.0299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report on an ongoing collaboration between epidemiological modellers and visualization researchers by documenting and reflecting upon knowledge constructs-a series of ideas, approaches and methods taken from existing visualization research and practice-deployed and developed to support modelling of the COVID-19 pandemic. Structured independent commentary on these efforts is synthesized through iterative reflection to develop: evidence of the effectiveness and value of visualization in this context; open problems upon which the research communities may focus; guidance for future activity of this type and recommendations to safeguard the achievements and promote, advance, secure and prepare for future collaborations of this kind. In describing and comparing a series of related projects that were undertaken in unprecedented conditions, our hope is that this unique report, and its rich interactive supplementary materials, will guide the scientific community in embracing visualization in its observation, analysis and modelling of data as well as in disseminating findings. Equally we hope to encourage the visualization community to engage with impactful science in addressing its emerging data challenges. If we are successful, this showcase of activity may stimulate mutually beneficial engagement between communities with complementary expertise to address problems of significance in epidemiology and beyond. See https://ramp-vis.github.io/RAMPVIS-PhilTransA-Supplement/. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.
Collapse
Affiliation(s)
| | | | | | | | | | - Min Chen
- University of Oxford, Oxford, UK
| | | | - Hui Fang
- Loughborough University, Loughborough, UK
| | | | | | | | - Claire Harris
- Biomathematics and Statistics Scotland, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Qiru Wang
- University of Nottingham, Nottingham, UK
| | - Jo Wood
- City, University of London, London, UK
| | - Kai Xu
- Middlesex University, London, UK
| |
Collapse
|
3
|
Dykes J, Abdul-Rahman A, Archambault D, Bach B, Borgo R, Chen M, Enright J, Fang H, Firat EE, Freeman E, Gönen T, Harris C, Jianu R, John NW, Khan S, Lahiff A, Laramee RS, Matthews L, Mohr S, Nguyen PH, Rahat AAM, Reeve R, Ritsos PD, Roberts JC, Slingsby A, Swallow B, Torsney-Weir T, Turkay C, Turner R, Vidal FP, Wang Q, Wood J, Xu K. Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022. [PMID: 35965467 DOI: 10.6084/m9.figshare.c.6080807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We report on an ongoing collaboration between epidemiological modellers and visualization researchers by documenting and reflecting upon knowledge constructs-a series of ideas, approaches and methods taken from existing visualization research and practice-deployed and developed to support modelling of the COVID-19 pandemic. Structured independent commentary on these efforts is synthesized through iterative reflection to develop: evidence of the effectiveness and value of visualization in this context; open problems upon which the research communities may focus; guidance for future activity of this type and recommendations to safeguard the achievements and promote, advance, secure and prepare for future collaborations of this kind. In describing and comparing a series of related projects that were undertaken in unprecedented conditions, our hope is that this unique report, and its rich interactive supplementary materials, will guide the scientific community in embracing visualization in its observation, analysis and modelling of data as well as in disseminating findings. Equally we hope to encourage the visualization community to engage with impactful science in addressing its emerging data challenges. If we are successful, this showcase of activity may stimulate mutually beneficial engagement between communities with complementary expertise to address problems of significance in epidemiology and beyond. See https://ramp-vis.github.io/RAMPVIS-PhilTransA-Supplement/. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.
Collapse
Affiliation(s)
| | | | | | | | | | - Min Chen
- University of Oxford, Oxford, UK
| | | | - Hui Fang
- Loughborough University, Loughborough, UK
| | | | | | | | - Claire Harris
- Biomathematics and Statistics Scotland, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Qiru Wang
- University of Nottingham, Nottingham, UK
| | - Jo Wood
- City, University of London, London, UK
| | - Kai Xu
- Middlesex University, London, UK
| |
Collapse
|
4
|
Musleh M, Chatzimparmpas A, Jusufi I. Visual analysis of blow molding machine multivariate time series data. J Vis (Tokyo) 2022; 25:1329-1342. [PMID: 35845181 PMCID: PMC9273703 DOI: 10.1007/s12650-022-00857-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/25/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022]
Abstract
Abstract The recent development in the data analytics field provides a boost in production for modern industries. Small-sized factories intend to take full advantage of the data collected by sensors used in their machinery. The ultimate goal is to minimize cost and maximize quality, resulting in an increase in profit. In collaboration with domain experts, we implemented a data visualization tool to enable decision-makers in a plastic factory to improve their production process. The tool is an interactive dashboard with multiple coordinated views supporting the exploration from both local and global perspectives. In summary, we investigate three different aspects: methods for preprocessing multivariate time series data, clustering approaches for the already refined data, and visualization techniques that aid domain experts in gaining insights into the different stages of the production process. Here we present our ongoing results grounded in a human-centered development process. We adopt a formative evaluation approach to continuously upgrade our dashboard design that eventually meets partners' requirements and follows the best practices within the field. We also conducted a case study with a domain expert to validate the potential application of the tool in the real-life context. Finally, we assessed the usability and usefulness of the tool with a two-layer summative evaluation that showed encouraging results. Graphical Abstract
Collapse
Affiliation(s)
- Maath Musleh
- Institute of Visual Computing and Human-Centered Technology, TU Wien, 1040 Vienna, Austria
| | - Angelos Chatzimparmpas
- Department of Computer Science and Media Technology, Linnaeus University, Växjö, 351 95 Sweden
| | - Ilir Jusufi
- Department of Computer Science and Media Technology, Linnaeus University, Växjö, 351 95 Sweden
| |
Collapse
|