1
|
Jin S, Lee H, Park C, Chu H, Tae Y, Choo J, Ko S. A Visual Analytics System for Improving Attention-based Traffic Forecasting Models. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:1102-1112. [PMID: 36155438 DOI: 10.1109/tvcg.2022.3209462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With deep learning (DL) outperforming conventional methods for different tasks, much effort has been devoted to utilizing DL in various domains. Researchers and developers in the traffic domain have also designed and improved DL models for forecasting tasks such as estimation of traffic speed and time of arrival. However, there exist many challenges in analyzing DL models due to the black-box property of DL models and complexity of traffic data (i.e., spatio-temporal dependencies). Collaborating with domain experts, we design a visual analytics system, AttnAnalyzer, that enables users to explore how DL models make predictions by allowing effective spatio-temporal dependency analysis. The system incorporates dynamic time warping (DTW) and Granger causality tests for computational spatio-temporal dependency analysis while providing map, table, line chart, and pixel views to assist user to perform dependency and model behavior analysis. For the evaluation, we present three case studies showing how AttnAnalyzer can effectively explore model behaviors and improve model performance in two different road networks. We also provide domain expert feedback.
Collapse
|
2
|
Cakmak E, Jackle D, Schreck T, Keim DA, Fuchs J. Multiscale Visualization: A Structured Literature Analysis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:4918-4929. [PMID: 34478370 DOI: 10.1109/tvcg.2021.3109387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multiscale visualizations are typically used to analyze multiscale processes and data in various application domains, such as the visual exploration of hierarchical genome structures in molecular biology. However, creating such multiscale visualizations remains challenging due to the plethora of existing work and the expression ambiguity in visualization research. Up to today, there has been little work to compare and categorize multiscale visualizations to understand their design practices. In this article, we present a structured literature analysis to provide an overview of common design practices in multiscale visualization research. We systematically reviewed and categorized 122 published journal or conference articles between 1995 and 2020. We organized the reviewed articles in a taxonomy that reveals common design factors. Researchers and practitioners can use our taxonomy to explore existing work to create new multiscale navigation and visualization techniques. Based on the reviewed articles, we examine research trends and highlight open research challenges.
Collapse
|
3
|
iHELP: interactive hierarchical linear projections for interpreting non-linear projections. J Vis (Tokyo) 2022. [DOI: 10.1007/s12650-022-00900-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Deng Z, Weng D, Liu S, Tian Y, Xu M, Wu Y. A survey of urban visual analytics: Advances and future directions. COMPUTATIONAL VISUAL MEDIA 2022; 9:3-39. [PMID: 36277276 PMCID: PMC9579670 DOI: 10.1007/s41095-022-0275-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/08/2022] [Indexed: 06/16/2023]
Abstract
Developing effective visual analytics systems demands care in characterization of domain problems and integration of visualization techniques and computational models. Urban visual analytics has already achieved remarkable success in tackling urban problems and providing fundamental services for smart cities. To promote further academic research and assist the development of industrial urban analytics systems, we comprehensively review urban visual analytics studies from four perspectives. In particular, we identify 8 urban domains and 22 types of popular visualization, analyze 7 types of computational method, and categorize existing systems into 4 types based on their integration of visualization techniques and computational models. We conclude with potential research directions and opportunities.
Collapse
Affiliation(s)
- Zikun Deng
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Di Weng
- Microsoft Research Asia, Beijing, 100080 China
| | - Shuhan Liu
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Yuan Tian
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Mingliang Xu
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001 China
| | - Yingcai Wu
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
5
|
A Neural Network Model for Color Element Data Analysis for Urban Spatial Environment. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:4674620. [PMID: 36045973 PMCID: PMC9420599 DOI: 10.1155/2022/4674620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022]
Abstract
In this paper, a CNN model for color element data analysis of the urban spatial environment is constructed through an in-depth study of color element data analysis. This paper investigates a high-order structure formed by a few nodes; it proposes a motif-based graph autoencoder MODEL, combining redefined first- and second-order similarities and perfectly integrating motif structure and autoencoder. The algorithm first proposes an efficient graph transformation method to add the influence of central nodes. It then offers a primary awareness mechanism to aggregate the information of noncentral neighbors. Cen GCN_D and Cen GCN_E outperform the latest algorithms in node classification, link prediction, node clustering, and network visualization. As the number of network layers increases, the advantages of these two variants become progressively more prominent. This paper uses a support vector machine to implement classification validation based on CNN. The experimental results show that when 450 images are randomly selected as training data, the classification accuracy obtained by using the features of different CNN output layers is distributed between 91.4% and 95.2%. When the training set of the experiment reaches more than 300, the accuracy can exceed 90%, and the experimental results corresponding to different training sets a more stable trend. Finally, the trained classifier model is obtained in this thesis, which achieves the purpose of fast classification prediction based on CNN for color element data analysis of urban spatial environments.
Collapse
|
6
|
Naveed QN, Alqahtani H, Khan RU, Almakdi S, Alshehri M, Abdul Rasheed MA. An Intelligent Traffic Surveillance System Using Integrated Wireless Sensor Network and Improved Phase Timing Optimization. SENSORS 2022; 22:s22093333. [PMID: 35591023 PMCID: PMC9099745 DOI: 10.3390/s22093333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023]
Abstract
The transportation industry is crucial to the realization of a smart city. However, the current growth in vehicle numbers is not being matched by an increase in road capacity. Congestion may boost the number of accidents, harm economic growth, and result in higher gas emissions. Currently, traffic congestion is seen as a severe threat to urban life. Suffering as a result of increased car traffic, insufficient infrastructure, and inefficient traffic management has exceeded the tolerance limit. Since route decisions are typically made in a short amount of time, the visualization of the data must be presented in a highly conceivable way. Also, the data generated by the transportation system face difficulties in processing and sometimes lack effective usage in certain fields. Hence, to overcome the challenges in computer vision, a novel computer vision-based traffic management system is proposed by integrating a wireless sensor network (WSN) and visual analytics framework. This research aimed to analyze average message delivery, average latency, average access, average energy consumption, and network performance. Wireless sensors are used in the study to collect road metrics, quantify them, and then rank them for entry. For optimization of the traffic data, improved phase timing optimization (IPTO) was used. The whole experimentation was carried out in a virtual environment. It was observed from the experimental results that the proposed approach outperformed other existing approaches.
Collapse
Affiliation(s)
- Quadri Noorulhasan Naveed
- College of Computer Science, King Khalid University, Abha 61413, Saudi Arabia;
- Correspondence: (Q.N.N.); (R.U.K.); (M.A.)
| | - Hamed Alqahtani
- College of Computer Science, King Khalid University, Abha 61413, Saudi Arabia;
| | - Riaz Ullah Khan
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- Correspondence: (Q.N.N.); (R.U.K.); (M.A.)
| | - Sultan Almakdi
- Department of Computer Science, College of Computer Science and Information System, Najran University, Najran 55461, Saudi Arabia;
| | - Mohammed Alshehri
- Department of Computer Science, College of Computer Science and Information System, Najran University, Najran 55461, Saudi Arabia;
- Correspondence: (Q.N.N.); (R.U.K.); (M.A.)
| | | |
Collapse
|
7
|
Abstract
Properties of spatially explicit data are often ignored or inadequately handled in machine learning for spatial domains of application. At the same time, resources that would identify these properties and investigate their influence and methods to handle them in machine learning applications are lagging behind. In this survey of the literature, we seek to identify and discuss spatial properties of data that influence the performance of machine learning. We review some of the best practices in handling such properties in spatial domains and discuss their advantages and disadvantages. We recognize two broad strands in this literature. In the first, the properties of spatial data are developed in the spatial observation matrix without amending the substance of the learning algorithm; in the other, spatial data properties are handled in the learning algorithm itself. While the latter have been far less explored, we argue that they offer the most promising prospects for the future of spatial machine learning.
Collapse
|
8
|
Shao L, Chu Z, Chen X, Lin Y, Zeng W. Modeling layout design for multiple-view visualization via Bayesian inference. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-021-00781-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Hamdi A, Shaban K, Erradi A, Mohamed A, Rumi SK, Salim FD. Spatiotemporal data mining: a survey on challenges and open problems. Artif Intell Rev 2021; 55:1441-1488. [PMID: 33879953 PMCID: PMC8049397 DOI: 10.1007/s10462-021-09994-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
Spatiotemporal data mining (STDM) discovers useful patterns from the dynamic interplay between space and time. Several available surveys capture STDM advances and report a wealth of important progress in this field. However, STDM challenges and problems are not thoroughly discussed and presented in articles of their own. We attempt to fill this gap by providing a comprehensive literature survey on state-of-the-art advances in STDM. We describe the challenging issues and their causes and open gaps of multiple STDM directions and aspects. Specifically, we investigate the challenging issues in regards to spatiotemporal relationships, interdisciplinarity, discretisation, and data characteristics. Moreover, we discuss the limitations in the literature and open research problems related to spatiotemporal data representations, modelling and visualisation, and comprehensiveness of approaches. We explain issues related to STDM tasks of classification, clustering, hotspot detection, association and pattern mining, outlier detection, visualisation, visual analytics, and computer vision tasks. We also highlight STDM issues related to multiple applications including crime and public safety, traffic and transportation, earth and environment monitoring, epidemiology, social media, and Internet of Things.
Collapse
Affiliation(s)
- Ali Hamdi
- School of Computing Technologies, RMIT University, Melbourne, Australia
| | - Khaled Shaban
- Department of Computer Science and Engineering, Qatar University, Doha, Qatar
| | - Abdelkarim Erradi
- Department of Computer Science and Engineering, Qatar University, Doha, Qatar
| | - Amr Mohamed
- Department of Computer Science and Engineering, Qatar University, Doha, Qatar
| | - Shakila Khan Rumi
- School of Computing Technologies, RMIT University, Melbourne, Australia
| | - Flora D. Salim
- School of Computing Technologies, RMIT University, Melbourne, Australia
| |
Collapse
|