1
|
Mildau K, Ehlers H, Meisenburg M, Del Pup E, Koetsier RA, Torres Ortega LR, de Jonge NF, Singh KS, Ferreira D, Othibeng K, Tugizimana F, Huber F, van der Hooft JJJ. Effective data visualization strategies in untargeted metabolomics. Nat Prod Rep 2024. [PMID: 39620439 PMCID: PMC11610048 DOI: 10.1039/d4np00039k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Indexed: 12/11/2024]
Abstract
Covering: 2014 to 2023 for metabolomics, 2002 to 2023 for information visualizationLC-MS/MS-based untargeted metabolomics is a rapidly developing research field spawning increasing numbers of computational metabolomics tools assisting researchers with their complex data processing, analysis, and interpretation tasks. In this article, we review the entire untargeted metabolomics workflow from the perspective of information visualization, visual analytics and visual data integration. Data visualization is a crucial step at every stage of the metabolomics workflow, where it provides core components of data inspection, evaluation, and sharing capabilities. However, due to the large number of available data analysis tools and corresponding visualization components, it is hard for both users and developers to get an overview of what is already available and which tools are suitable for their analysis. In addition, there is little cross-pollination between the fields of data visualization and metabolomics, leaving visual tools to be designed in a secondary and mostly ad hoc fashion. With this review, we aim to bridge the gap between the fields of untargeted metabolomics and data visualization. First, we introduce data visualization to the untargeted metabolomics field as a topic worthy of its own dedicated research, and provide a primer on cutting-edge visualization research into data visualization for both researchers as well as developers active in metabolomics. We extend this primer with a discussion of best practices for data visualization as they have emerged from data visualization studies. Second, we provide a practical roadmap to the visual tool landscape and its use within the untargeted metabolomics field. Here, for several computational analysis stages within the untargeted metabolomics workflow, we provide an overview of commonly used visual strategies with practical examples. In this context, we will also outline promising areas for further research and development. We end the review with a set of recommendations for developers and users on how to make the best use of visualizations for more effective and transparent communication of results.
Collapse
Affiliation(s)
- Kevin Mildau
- Bioinformatics Group, Wageningen University & Research, Wageningen, The Netherlands.
| | - Henry Ehlers
- Visualization Group, Institute of Visual Computing and Human-Centered Technology, TU Wien, Vienna, Austria.
| | - Mara Meisenburg
- Adaptation Physiology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Elena Del Pup
- Bioinformatics Group, Wageningen University & Research, Wageningen, The Netherlands.
| | - Robert A Koetsier
- Bioinformatics Group, Wageningen University & Research, Wageningen, The Netherlands.
| | | | - Niek F de Jonge
- Bioinformatics Group, Wageningen University & Research, Wageningen, The Netherlands.
| | - Kumar Saurabh Singh
- Bioinformatics Group, Wageningen University & Research, Wageningen, The Netherlands.
- Maastricht University Faculty of Science and Engineering, Plant Functional Genomics Maastricht, Limburg, The Netherlands
- Faculty of Environment, Science and Economy, University of Exeter, Penryl Cornwall, UK
| | | | - Kgalaletso Othibeng
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Florian Huber
- Centre for Digitalisation and Digitality, Düsseldorf University of Applied Sciences, Düsseldorf, Germany
| | - Justin J J van der Hooft
- Bioinformatics Group, Wageningen University & Research, Wageningen, The Netherlands.
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
2
|
Warchol S, Troidl J, Muhlich J, Krueger R, Hoffer J, Lin T, Beyer J, Glassman E, Sorger PK, Pfister H. psudo: Exploring Multi-Channel Biomedical Image Data with Spatially and Perceptually Optimized Pseudocoloring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589087. [PMID: 38659870 PMCID: PMC11042212 DOI: 10.1101/2024.04.11.589087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Over the past century, multichannel fluorescence imaging has been pivotal in myriad scientific breakthroughs by enabling the spatial visualization of proteins within a biological sample. With the shift to digital methods and visualization software, experts can now flexibly pseudocolor and combine image channels, each corresponding to a different protein, to explore their spatial relationships. We thus propose psudo, an interactive system that allows users to create optimal color palettes for multichannel spatial data. In psudo, a novel optimization method generates palettes that maximize the perceptual differences between channels while mitigating confusing color blending in overlapping channels. We integrate this method into a system that allows users to explore multi-channel image data and compare and evaluate color palettes for their data. An interactive lensing approach provides on-demand feedback on channel overlap and a color confusion metric while giving context to the underlying channel values. Color palettes can be applied globally or, using the lens, to local regions of interest. We evaluate our palette optimization approach using three graphical perception tasks in a crowdsourced user study with 150 participants, showing that users are more accurate at discerning and comparing the underlying data using our approach. Additionally, we showcase psudo in a case study exploring the complex immune responses in cancer tissue data with a biologist.
Collapse
Affiliation(s)
- Simon Warchol
- Harvard John A. Paulson School Of Engineering And Applied Sciences
- Visual Computing Group, Harvard University
- Laboratory of Systems Pharmacology, Harvard Medical School
| | - Jakob Troidl
- Harvard John A. Paulson School Of Engineering And Applied Sciences
- Visual Computing Group, Harvard University
| | - Jeremy Muhlich
- Department of Systems Biology, Harvard Medical School
- Visual Computing Group, Harvard University
| | - Robert Krueger
- Laboratory of Systems Pharmacology, Harvard Medical School
| | - John Hoffer
- Department of Systems Biology, Harvard Medical School
- Laboratory of Systems Pharmacology, Harvard Medical School
| | - Tica Lin
- Harvard John A. Paulson School Of Engineering And Applied Sciences
- Visual Computing Group, Harvard University
| | - Johanna Beyer
- Harvard John A. Paulson School Of Engineering And Applied Sciences
- Visual Computing Group, Harvard University
| | - Elena Glassman
- Harvard John A. Paulson School Of Engineering And Applied Sciences
| | - Peter K Sorger
- Department of Systems Biology, Harvard Medical School
- Laboratory of Systems Pharmacology, Harvard Medical School
| | - Hanspeter Pfister
- Harvard John A. Paulson School Of Engineering And Applied Sciences
- Visual Computing Group, Harvard University
- Laboratory of Systems Pharmacology, Harvard Medical School
| |
Collapse
|
3
|
Bragard C, Baptista P, Chatzivassiliou E, Di Serio F, Gonthier P, Jaques Miret JA, Fejer Justesen A, MacLeod A, Magnusson CS, Navas‐Cortes JA, Parnell S, Potting R, Reignault PL, Stefani E, Thulke H, Vicent Civera A, Van der Werf W, Yuen J, Zappalà L, Gutierrez AP, Loomans A, Ponti L, Crotta M, Maiorano A, Mosbach‐Schulz O, Rossi E, Stancanelli G, Milonas P. Assessment of the probability of introduction of Thaumatotibia leucotreta into the European Union with import of cut roses. EFSA J 2023; 21:e08107. [PMID: 37869253 PMCID: PMC10585611 DOI: 10.2903/j.efsa.2023.8107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Plant Health performed a quantitative pest risk assessment to assess whether the import of cut roses provides a pathway for the introduction of Thaumatotibia leucotreta (Lepidoptera: Tortricidae) into the EU. The assessment was limited to the entry and establishment steps. A pathway model was used to assess how many T. leucotreta individuals would survive and emerge as adults from commercial or household wastes in an EU NUTS2 region climatically suitable in a specific season. This pathway model for entry consisted of three components: a cut roses distribution model, a T. leucotreta developmental model and a waste model. Four scenarios of timing from initial disposal of the cut roses until waste treatment (3, 7, 14 and 28 days) were considered. The estimated median number of adults escaping per year from imported cut roses in all the climatically suitable NUTS2 regions of the EU varied from 49,867 (90% uncertainty between 5,298 and 234,393) up to 143,689 (90% uncertainty between 21,126 and 401,458) for the 3- and 28-day scenarios. Assuming that, on average, a successful mating will happen for every 435 escaping moths, the estimated median number of T. leucotreta mated females per year from imported cut roses in all the climatically suitable NUTS2 regions of the EU would vary from 115 (90% uncertainty between 12 and 538) up to 330 (90% uncertainty between 49 and 923) for the 3- and 28-day scenarios. Due to the extreme polyphagia of T. leucotreta, host availability will not be a limiting factor for establishment. Climatic suitability assessment, using a physiologically based demographic modelling approach, identified the coastline extending from the northwest of the Iberian Peninsula through the Mediterranean as area suitable for establishment of T. leucotreta. This assessment indicates that cut roses provide a pathway for the introduction of T. leucotreta into the EU.
Collapse
|
4
|
Ware C, Stone M, Szafir DA, Rhyne TM. Rainbow Colormaps Are Not All Bad. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2023; 43:88-93. [PMID: 37195830 DOI: 10.1109/mcg.2023.3246111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Some 15 years ago, Visualization Viewpoints published an influential article titled Rainbow Color Map (Still) Considered Harmful (Borland and Taylor, 2007). The paper argued that the "rainbow colormap's characteristics of confusing the viewer, obscuring the data and actively misleading interpretation make it a poor choice for visualization." Subsequent articles often repeat and extend these arguments, so much so that avoiding rainbow colormaps, along with their derivatives, has become dogma in the visualization community. Despite this loud and persistent recommendation, scientists continue to use rainbow colormaps. Have we failed to communicate our message, or do rainbow colormaps offer advantages that have not been fully appreciated? We argue that rainbow colormaps have properties that are underappreciated by existing design conventions. We explore key critiques of the rainbow in the context of recent research to understand where and how rainbows might be misunderstood. Choosing a colormap is a complex task, and rainbow colormaps can be useful for selected applications.
Collapse
|
5
|
Zeng Q, Zhao Y, Wang Y, Zhang J, Cao Y, Tu C, Viola I, Wang Y. Data-Driven Colormap Adjustment for Exploring Spatial Variations in Scalar Fields. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:4902-4917. [PMID: 34469302 DOI: 10.1109/tvcg.2021.3109014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colormapping is an effective and popular visualization technique for analyzing patterns in scalar fields. Scientists usually adjust a default colormap to show hidden patterns by shifting the colors in a trial-and-error process. To improve efficiency, efforts have been made to automate the colormap adjustment process based on data properties (e.g., statistical data value or histogram distribution). However, as the data properties have no direct correlation to the spatial variations, previous methods may be insufficient to reveal the dynamic range of spatial variations hidden in the data. To address the above issues, we conduct a pilot analysis with domain experts and summarize three requirements for the colormap adjustment process. Based on the requirements, we formulate colormap adjustment as an objective function, composed of a boundary term and a fidelity term, which is flexible enough to support interactive functionalities. We compare our approach with alternative methods under a quantitative measure and a qualitative user study (25 participants), based on a set of data with broad distribution diversity. We further evaluate our approach via three case studies with six domain experts. Our method is not necessarily more optimal than alternative methods of revealing patterns, but rather is an additional color adjustment option for exploring data with a dynamic range of spatial variations.
Collapse
|
6
|
Reda K. Rainbow Colormaps: What are they good and bad for? IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; PP:5496-5510. [PMID: 36240035 DOI: 10.1109/tvcg.2022.3214771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Guidelines for color use in quantitative visualizations have strongly discouraged the use of rainbow colormaps, arguing instead for smooth designs that do not induce visual discontinuities or implicit color categories. However, the empirical evidence behind this argument has been mixed and, at times, even contradictory. In practice, rainbow colormaps are widely used, raising questions about the true utility or dangers of such designs. We study how color categorization impacts the interpretation of scalar fields. We first introduce an approach to detect latent categories in colormaps. We hypothesize that the appearance of color categories in scalar visualizations can be beneficial in that they enhance the perception of certain features, although at the cost of rendering other features less noticeable. In three crowdsourced experiments, we show that observers are more likely to discriminate global, distributional features when viewing colorful scales that induce categorization (e.g., rainbow or diverging schemes). Conversely, when seeing the same data through a less colorful representation, observers are more likely to report localized features defined by small variations in the data. Participants showed awareness of these different affordances, and exhibited bias for exploiting the more discriminating colormap, given a particular feature type. Our results demonstrate costs and benefits for rainbows (and similarly colorful schemes), suggesting that their complementary utility for analyzing scalar data should not be dismissed. In addition to explaining potentially valid uses of rainbow, our study provides actionable guidelines, including on when such designs can be more harmful than useful. Data and materials are available at https://osf.io/xjhtf.
Collapse
|
7
|
Surov IA. Quantum core affect. Color-emotion structure of semantic atom. Front Psychol 2022; 13:838029. [PMID: 36248471 PMCID: PMC9554469 DOI: 10.3389/fpsyg.2022.838029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
Psychology suffers from the absence of mathematically-formalized primitives. As a result, conceptual and quantitative studies lack an ontological basis that would situate them in the company of natural sciences. The article addresses this problem by describing a minimal psychic structure, expressed in the algebra of quantum theory. The structure is demarcated into categories of emotion and color, renowned as elementary psychological phenomena. This is achieved by means of quantum-theoretic qubit state space, isomorphic to emotion and color experiences both in meaning and math. In particular, colors are mapped to the qubit states through geometric affinity between the HSL-RGB color solids and the Bloch sphere, widely used in physics. The resulting correspondence aligns with the recent model of subjective experience, producing a unified spherical map of emotions and colors. This structure is identified as a semantic atom of natural thinking-a unit of affectively-colored personal meaning, involved in elementary acts of a binary decision. The model contributes to finding a unified ontology of both inert and living Nature, bridging previously disconnected fields of research. In particular, it enables theory-based coordination of emotion, decision, and cybernetic sciences, needed to achieve new levels of practical impact.
Collapse
|
8
|
Lautenschlager S. True colours or red herrings?: colour maps for finite-element analysis in palaeontological studies to enhance interpretation and accessibility. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211357. [PMID: 34804580 PMCID: PMC8596014 DOI: 10.1098/rsos.211357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Accessibility is a key aspect for the presentation of research data. In palaeontology, new data is routinely obtained with computational techniques, such as finite-element analysis (FEA). FEA is used to calculate stress and deformation in objects when subjected to external forces. Results are displayed using contour plots in which colour information is used to convey the underlying biomechanical data. The Rainbow colour map is nearly exclusively used for these contour plots in palaeontological studies. However, numerous studies in other disciplines have shown the Rainbow map to be problematic due to uneven colour representation and its inaccessibility for those with colour vision deficiencies. Here, different colour maps were tested for their accuracy in representing values of FEA models. Differences in stress magnitudes (ΔS) and colour values (ΔE) of subsequent points from the FEA models were compared and their correlation was used as a measure of accuracy. The results confirm that the Rainbow colour map is not well suited to represent the underlying stress distribution of FEA models with other colour maps showing a higher discriminative power. As the performance of the colour maps varied with tested scenarios/stress types, it is recommended to use different colour maps for specific purposes.
Collapse
Affiliation(s)
- Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|