1
|
Wilson C, Puerta E, Crnovrsanin T, Di Bartolomeo S, Dunne C. Evaluating and Extending Speedup Techniques for Optimal Crossing Minimization in Layered Graph Drawings. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1061-1071. [PMID: 39259630 DOI: 10.1109/tvcg.2024.3456349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
A layered graph is an important category of graph in which every node is assigned to a layer, and layers are drawn as parallel or radial lines. They are commonly used to display temporal data or hierarchical graphs. Previous research has demonstrated that minimizing edge crossings is the most important criterion to consider when looking to improve the readability of such graphs. While heuristic approaches exist for crossing minimization, we are interested in optimal approaches to the problem that prioritize human readability over computational scalability. We aim to improve the usefulness and applicability of such optimal methods by understanding and improving their scalability to larger graphs. This paper categorizes and evaluates the state-of-the-art linear programming formulations for exact crossing minimization and describes nine new and existing techniques that could plausibly accelerate the optimization algorithm. Through a computational evaluation, we explore each technique's effect on calculation time and how the techniques assist or inhibit one another, allowing researchers and practitioners to adapt them to the characteristics of their graphs. Our best-performing techniques yielded a median improvement of 2.5-17 × depending on the solver used, giving us the capability to create optimal layouts faster and for larger graphs. We provide an open-source implementation of our methodology in Python, where users can pick which combination of techniques to enable according to their use case. A free copy of this paper and all supplemental materials, datasets used, and source code are available at https://osf.io/5vq79.
Collapse
|
2
|
Yu P, Nordman A, Koc-Januchta M, Schonborn K, Besancon L, Vrotsou K. Revealing Interaction Dynamics: Multi-Level Visual Exploration of User Strategies with an Interactive Digital Environment. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:831-841. [PMID: 39255130 DOI: 10.1109/tvcg.2024.3456187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
We present a visual analytics approach for multi-level visual exploration of users' interaction strategies in an interactive digital environment. The use of interactive touchscreen exhibits in informal learning environments, such as museums and science centers, often incorporate frameworks that classify learning processes, such as Bloom's taxonomy, to achieve better user engagement and knowledge transfer. To analyze user behavior within these digital environments, interaction logs are recorded to capture diverse exploration strategies. However, analysis of such logs is challenging, especially in terms of coupling interactions and cognitive learning processes, and existing work within learning and educational contexts remains limited. To address these gaps, we develop a visual analytics approach for analyzing interaction logs that supports exploration at the individual user level and multi-user comparison. The approach utilizes algorithmic methods to identify similarities in users' interactions and reveal their exploration strategies. We motivate and illustrate our approach through an application scenario, using event sequences derived from interaction log data in an experimental study conducted with science center visitors from diverse backgrounds and demographics. The study involves 14 users completing tasks of increasing complexity, designed to stimulate different levels of cognitive learning processes. We implement our approach in an interactive visual analytics prototype system, named VISID, and together with domain experts, discover a set of task-solving exploration strategies, such as "cascading" and "nested-loop", which reflect different levels of learning processes from Bloom's taxonomy. Finally, we discuss the generalizability and scalability of the presented system and the need for further research with data acquired in the wild.
Collapse
|
3
|
Zinat KT, Sakhamuri SN, Chen AS, Liu Z. A Multi-Level Task Framework for Event Sequence Analysis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:842-852. [PMID: 39292571 DOI: 10.1109/tvcg.2024.3456510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Despite the development of numerous visual analytics tools for event sequence data across various domains, including but not limited to healthcare, digital marketing, and user behavior analysis, comparing these domain-specific investigations and transferring the results to new datasets and problem areas remain challenging. Task abstractions can help us go beyond domain-specific details, but existing visualization task abstractions are insufficient for event sequence visual analytics because they primarily focus on multivariate datasets and often overlook automated analytical techniques. To address this gap, we propose a domain-agnostic multi-level task framework for event sequence analytics, derived from an analysis of 58 papers that present event sequence visualization systems. Our framework consists of four levels: objective, intent, strategy, and technique. Overall objectives identify the main goals of analysis. Intents comprises five high-level approaches adopted at each analysis step: augment data, simplify data, configure data, configure visualization, and manage provenance. Each intent is accomplished through a number of strategies, for instance, data simplification can be achieved through aggregation, summarization, or segmentation. Finally, each strategy can be implemented by a set of techniques depending on the input and output components. We further show that each technique can be expressed through a quartet of action-input-output-criteria. We demonstrate the framework's descriptive power through case studies and discuss its similarities and differences with previous event sequence task taxonomies.
Collapse
|
4
|
Scimone A, Eckelt K, Streit M, Hinterreiter A. Marjorie: Visualizing Type 1 Diabetes Data to Support Pattern Exploration. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:1216-1226. [PMID: 37874710 DOI: 10.1109/tvcg.2023.3326936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
In this work we propose Marjorie, a visual analytics approach to address the challenge of analyzing patients' diabetes data during brief regular appointments with their diabetologists. Designed in consultation with diabetologists, Marjorie uses a combination of visual and algorithmic methods to support the exploration of patterns in the data. Patterns of interest include seasonal variations of the glucose profiles, and non-periodic patterns such as fluctuations around mealtimes or periods of hypoglycemia (i.e., glucose levels below the normal range). We introduce a unique representation of glucose data based on modified horizon graphs and hierarchical clustering of adjacent carbohydrate or insulin entries. Semantic zooming allows the exploration of patterns on different levels of temporal detail. We evaluated our solution in a case study, which demonstrated Marjorie's potential to provide valuable insights into therapy parameters and unfavorable eating habits, among others. The study results and informal feedback collected from target users suggest that Marjorie effectively supports patients and diabetologists in the joint exploration of patterns in diabetes data, potentially enabling more informed treatment decisions. A free copy of this paper and all supplemental materials are available at https://osf.io/34t8c/.
Collapse
|
5
|
Floricel C, Wentzel A, Mohamed A, Fuller CD, Canahuate G, Marai GE. Roses Have Thorns: Understanding the Downside of Oncological Care Delivery Through Visual Analytics and Sequential Rule Mining. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:1227-1237. [PMID: 38015695 PMCID: PMC10842255 DOI: 10.1109/tvcg.2023.3326939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Personalized head and neck cancer therapeutics have greatly improved survival rates for patients, but are often leading to understudied long-lasting symptoms which affect quality of life. Sequential rule mining (SRM) is a promising unsupervised machine learning method for predicting longitudinal patterns in temporal data which, however, can output many repetitive patterns that are difficult to interpret without the assistance of visual analytics. We present a data-driven, human-machine analysis visual system developed in collaboration with SRM model builders in cancer symptom research, which facilitates mechanistic knowledge discovery in large scale, multivariate cohort symptom data. Our system supports multivariate predictive modeling of post-treatment symptoms based on during-treatment symptoms. It supports this goal through an SRM, clustering, and aggregation back end, and a custom front end to help develop and tune the predictive models. The system also explains the resulting predictions in the context of therapeutic decisions typical in personalized care delivery. We evaluate the resulting models and system with an interdisciplinary group of modelers and head and neck oncology researchers. The results demonstrate that our system effectively supports clinical and symptom research.
Collapse
|
6
|
Jentner W, Lindholz G, Hauptmann H, El-Assady M, Ma KL, Keim D. Visual Analytics of Co-Occurrences to Discover Subspaces in Structured Data. ACM T INTERACT INTEL 2023. [DOI: 10.1145/3579031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We present an approach that shows all relevant subspaces of categorical data condensed in a single picture. We model the categorical values of the attributes as co-occurrences with data partitions generated from structured data using pattern mining. We show that these co-occurrences are a-priori allowing us to greatly reduce the search space effectively generating the condensed picture where conventional approaches filter out several subspaces as these are deemed insignificant. The task of identifying interesting subspaces is common but difficult due to exponential search spaces and the curse of dimensionality. One application of such a task might be identifying a cohort of patients defined by attributes such as gender, age, and diabetes type that share a common patient history, which is modeled as event sequences. Filtering the data by these attributes is common but cumbersome and often does not allow a comparison of subspaces. We contribute a powerful multi-dimensional pattern exploration approach (MDPE-approach) agnostic to the structured data type that models multiple attributes and their characteristics as co-occurrences, allowing the user to identify and compare thousands of subspaces of interest in a single picture. In our MDPE-approach, we introduce two methods to dramatically reduce the search space, outputting only the boundaries of the search space in the form of two tables. We implement the MDPE-approach in an interactive visual interface (MDPE-vis) that provides a scalable, pixel-based visualization design allowing the identification, comparison, and sense-making of subspaces in structured data. Our case studies using a gold-standard dataset and external domain experts confirm our approach’s and implementation’s applicability. A third use case sheds light on the scalability of our approach and a user study with 15 participants underlines its usefulness and power.
Collapse
Affiliation(s)
| | | | | | | | - Kwan-Liu Ma
- University of California-Davis, United States of America
| | | |
Collapse
|
7
|
di Bartolomeo S, Riedewald M, Gatterbauer W, Dunne C. STRATISFIMAL LAYOUT: A modular optimization model for laying out layered node-link network visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:324-334. [PMID: 34596540 DOI: 10.1109/tvcg.2021.3114756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Node-link visualizations are a familiar and powerful tool for displaying the relationships in a network. The readability of these visualizations highly depends on the spatial layout used for the nodes. In this paper, we focus on computing layered layouts, in which nodes are aligned on a set of parallel axes to better expose hierarchical or sequential relationships. Heuristic-based layouts are widely used as they scale well to larger networks and usually create readable, albeit sub-optimal, visualizations. We instead use a layout optimization model that prioritizes optimality - as compared to scalability - because an optimal solution not only represents the best attainable result, but can also serve as a baseline to evaluate the effectiveness of layout heuristics. We take an important step towards powerful and flexible network visualization by proposing Stratisfimal Layout, a modular integer-linear-programming formulation that can consider several important readability criteria simultaneously - crossing reduction, edge bendiness, and nested and multi-layer groups. The layout can be adapted to diverse use cases through its modularity. Individual features can be enabled and customized depending on the application. We provide open-source and documented implementations of the layout, both for web-based and desktop visualizations. As a proof-of-concept, we apply it to the problem of visualizing complicated SQL queries, which have features that we believe cannot be addressed by existing layout optimization models. We also include a benchmark network generator and the results of an empirical evaluation to assess the performance trade-offs of our design choices. A full version of this paper with all appendices, data, and source code is available at osf.io/qdyt9 with live examples at https://visdunneright.github.io/stratisfimal/.
Collapse
|
8
|
Wu J, Liu D, Guo Z, Xu Q, Wu Y. TacticFlow: Visual Analytics of Ever-Changing Tactics in Racket Sports. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:835-845. [PMID: 34587062 DOI: 10.1109/tvcg.2021.3114832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Event sequence mining is often used to summarize patterns from hundreds of sequences but faces special challenges when handling racket sports data. In racket sports (e.g., tennis and badminton), a player hitting the ball is considered a multivariate event consisting of multiple attributes (e.g., hit technique and ball position). A rally (i.e., a series of consecutive hits beginning with one player serving the ball and ending with one player winning a point) thereby can be viewed as a multivariate event sequence. Mining frequent patterns and depicting how patterns change over time is instructive and meaningful to players who want to learn more short-term competitive strategies (i.e., tactics) that encompass multiple hits. However, players in racket sports usually change their tactics rapidly according to the opponent's reaction, resulting in ever-changing tactic progression. In this work, we introduce a tailored visualization system built on a novel multivariate sequence pattern mining algorithm to facilitate explorative identification and analysis of various tactics and tactic progression. The algorithm can mine multiple non-overlapping multivariate patterns from hundreds of sequences effectively. Based on the mined results, we propose a glyph-based Sankey diagram to visualize the ever-changing tactic progression and support interactive data exploration. Through two case studies with four domain experts in tennis and badminton, we demonstrate that our system can effectively obtain insights about tactic progression in most racket sports. We further discuss the strengths and the limitations of our system based on domain experts' feedback.
Collapse
|
9
|
Wang Y, Peng TQ, Lu H, Wang H, Xie X, Qu H, Wu Y. Seek for Success: A Visualization Approach for Understanding the Dynamics of Academic Careers. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:475-485. [PMID: 34587034 DOI: 10.1109/tvcg.2021.3114790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
How to achieve academic career success has been a long-standing research question in social science research. With the growing availability of large-scale well-documented academic profiles and career trajectories, scholarly interest in career success has been reinvigorated, which has emerged to be an active research domain called the Science of Science (i.e., SciSci). In this study, we adopt an innovative dynamic perspective to examine how individual and social factors will influence career success over time. We propose ACSeeker, an interactive visual analytics approach to explore the potential factors of success and how the influence of multiple factors changes at different stages of academic careers. We first applied a Multi-factor Impact Analysis framework to estimate the effect of different factors on academic career success over time. We then developed a visual analytics system to understand the dynamic effects interactively. A novel timeline is designed to reveal and compare the factor impacts based on the whole population. A customized career line showing the individual career development is provided to allow a detailed inspection. To validate the effectiveness and usability of ACSeeker, we report two case studies and interviews with a social scientist and general researchers.
Collapse
|