1
|
Kuo YH, Liu D, Ma KL. SpreadLine: Visualizing Egocentric Dynamic Influence. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1050-1060. [PMID: 39269806 DOI: 10.1109/tvcg.2024.3456373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Egocentric networks, often visualized as node-link diagrams, portray the complex relationship (link) dynamics between an entity (node) and others. However, common analytics tasks are multifaceted, encompassing interactions among four key aspects: strength, function, structure, and content. Current node-link visualization designs may fall short, focusing narrowly on certain aspects and neglecting the holistic, dynamic nature of egocentric networks. To bridge this gap, we introduce SpreadLine, a novel visualization framework designed to enable the visual exploration of egocentric networks from these four aspects at the microscopic level. Leveraging the intuitive appeal of storyline visualizations, SpreadLine adopts a storyline-based design to represent entities and their evolving relationships. We further encode essential topological information in the layout and condense the contextual information in a metro map metaphor, allowing for a more engaging and effective way to explore temporal and attribute-based information. To guide our work, with a thorough review of pertinent literature, we have distilled a task taxonomy that addresses the analytical needs specific to egocentric network exploration. Acknowledging the diverse analytical requirements of users, SpreadLine offers customizable encodings to enable users to tailor the framework for their tasks. We demonstrate the efficacy and general applicability of SpreadLine through three diverse real-world case studies (disease surveillance, social media trends, and academic career evolution) and a usability study.
Collapse
|
2
|
Chen Q, Cao S, Wang J, Cao N. How Does Automation Shape the Process of Narrative Visualization: A Survey of Tools. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:4429-4448. [PMID: 37030780 DOI: 10.1109/tvcg.2023.3261320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In recent years, narrative visualization has gained much attention. Researchers have proposed different design spaces for various narrative visualization genres and scenarios to facilitate the creation process. As users' needs grow and automation technologies advance, increasingly more tools have been designed and developed. In this study, we summarized six genres of narrative visualization (annotated charts, infographics, timelines & storylines, data comics, scrollytelling & slideshow, and data videos) based on previous research and four types of tools (design spaces, authoring tools, ML/AI-supported tools and ML/AI-generator tools) based on the intelligence and automation level of the tools. We surveyed 105 papers and tools to study how automation can progressively engage in visualization design and narrative processes to help users easily create narrative visualizations. This research aims to provide an overview of current research and development in the automation involvement of narrative visualization tools. We discuss key research problems in each category and suggest new opportunities to encourage further research in the related domain.
Collapse
|
3
|
Chen Z, Chiappalupi D, Lin T, Yang Y, Beyer J, Pfister H. RL-LABEL: A Deep Reinforcement Learning Approach Intended for AR Label Placement in Dynamic Scenarios. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; PP:1347-1357. [PMID: 37871050 DOI: 10.1109/tvcg.2023.3326568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Labels are widely used in augmented reality (AR) to display digital information. Ensuring the readability of AR labels requires placing them in an occlusion-free manner while keeping visual links legible, especially when multiple labels exist in the scene. Although existing optimization-based methods, such as force-based methods, are effective in managing AR labels in static scenarios, they often struggle in dynamic scenarios with constantly moving objects. This is due to their focus on generating layouts optimal for the current moment, neglecting future moments and leading to sub-optimal or unstable layouts over time. In this work, we present RL-LABEL, a deep reinforcement learning-based method intended for managing the placement of AR labels in scenarios involving moving objects. RL-LABEL considers both the current and predicted future states of objects and labels, such as positions and velocities, as well as the user's viewpoint, to make informed decisions about label placement. It balances the trade-offs between immediate and long-term objectives. We tested RL-LABEL in simulated AR scenarios on two real-world datasets, showing that it effectively learns the decision-making process for long-term optimization, outperforming two baselines (i.e., no view management and a force-based method) by minimizing label occlusions, line intersections, and label movement distance. Additionally, a user study involving 18 participants indicates that, within our simulated environment, RL-LABEL excels over the baselines in aiding users to identify, compare, and summarize data on labels in dynamic scenes.
Collapse
|
4
|
Hulstein G, Pena-Araya V, Bezerianos A. Geo-Storylines: Integrating Maps into Storyline Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:994-1004. [PMID: 36227814 DOI: 10.1109/tvcg.2022.3209480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Storyline visualizations are a powerful way to compactly visualize how the relationships between people evolve over time. Real-world relationships often also involve space, for example the cities that two political rivals visited together or alone over the years. By default, Storyline visualizations only show implicitly geospatial co-occurrence between people (drawn as lines), by bringing their lines together. Even the few designs that do explicitly show geographic locations only do so in abstract ways (e.g., annotations) and do not communicate geospatial information, such as the direction or extent of their political campains. We introduce Geo-Storylines, a collection of visualisation designs that integrate geospatial context into Storyline visualizations, using different strategies for compositing time and space. Our contribution is twofold. First, we present the results of a sketching workshop with 11 participants, that we used to derive a design space for integrating maps into Storylines. Second, by analyzing the strengths and weaknesses of the potential designs of the design space in terms of legibility and ability to scale to multiple relationships, we extract the three most promising: Time Glyphs, Coordinated Views, and Map Glyphs. We compare these three techniques first in a controlled study with 18 participants, under five different geospatial tasks and two maps of different complexity. We additionally collected informal feedback about their usefulness from domain experts in data journalism. Our results indicate that, as expected, detailed performance depends on the task. Nevertheless, Coordinated Views remain a highly effective and preferred technique across the board.
Collapse
|
5
|
Deng D, Wu A, Qu H, Wu Y. DashBot: Insight-Driven Dashboard Generation Based on Deep Reinforcement Learning. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:690-700. [PMID: 36179003 DOI: 10.1109/tvcg.2022.3209468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Analytical dashboards are popular in business intelligence to facilitate insight discovery with multiple charts. However, creating an effective dashboard is highly demanding, which requires users to have adequate data analysis background and be familiar with professional tools, such as Power BI. To create a dashboard, users have to configure charts by selecting data columns and exploring different chart combinations to optimize the communication of insights, which is trial-and-error. Recent research has started to use deep learning methods for dashboard generation to lower the burden of visualization creation. However, such efforts are greatly hindered by the lack of large-scale and high-quality datasets of dashboards. In this work, we propose using deep reinforcement learning to generate analytical dashboards that can use well-established visualization knowledge and the estimation capacity of reinforcement learning. Specifically, we use visualization knowledge to construct a training environment and rewards for agents to explore and imitate human exploration behavior with a well-designed agent network. The usefulness of the deep reinforcement learning model is demonstrated through ablation studies and user studies. In conclusion, our work opens up new opportunities to develop effective ML-based visualization recommenders without beforehand training datasets.
Collapse
|
6
|
Yuan LP, Zeng W, Fu S, Zeng Z, Li H, Fu CW, Qu H. Deep Colormap Extraction From Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:4048-4060. [PMID: 33819157 DOI: 10.1109/tvcg.2021.3070876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article presents a new approach based on deep learning to automatically extract colormaps from visualizations. After summarizing colors in an input visualization image as a Lab color histogram, we pass the histogram to a pre-trained deep neural network, which learns to predict the colormap that produces the visualization. To train the network, we create a new dataset of ∼ 64K visualizations that cover a wide variety of data distributions, chart types, and colormaps. The network adopts an atrous spatial pyramid pooling module to capture color features at multiple scales in the input color histograms. We then classify the predicted colormap as discrete or continuous, and refine the predicted colormap based on its color histogram. Quantitative comparisons to existing methods show the superior performance of our approach on both synthetic and real-world visualizations. We further demonstrate the utility of our method with two use cases, i.e., color transfer and color remapping.
Collapse
|
7
|
Yuan LP, Zhou Z, Zhao J, Guo Y, Du F, Qu H. InfoColorizer: Interactive Recommendation of Color Palettes for Infographics. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:4252-4266. [PMID: 34061743 DOI: 10.1109/tvcg.2021.3085327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
When designing infographics, general users usually struggle with getting desired color palettes using existing infographic authoring tools, which sometimes sacrifice customizability, require design expertise, or neglect the influence of elements' spatial arrangement. We propose a data-driven method that provides flexibility by considering users' preferences, lowers the expertise barrier via automation, and tailors suggested palettes to the spatial layout of elements. We build a recommendation engine by utilizing deep learning techniques to characterize good color design practices from data, and further develop InfoColorizer, a tool that allows users to obtain color palettes for their infographics in an interactive and dynamic manner. To validate our method, we conducted a comprehensive four-part evaluation, including case studies, a controlled user study, a survey study, and an interview study. The results indicate that InfoColorizer can provide compelling palette recommendations with adequate flexibility, allowing users to effectively obtain high-quality color design for input infographics with low effort.
Collapse
|
8
|
Wang Q, Chen Z, Wang Y, Qu H. A Survey on ML4VIS: Applying Machine Learning Advances to Data Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:5134-5153. [PMID: 34437063 DOI: 10.1109/tvcg.2021.3106142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inspired by the great success of machine learning (ML), researchers have applied ML techniques to visualizations to achieve a better design, development, and evaluation of visualizations. This branch of studies, known as ML4VIS, is gaining increasing research attention in recent years. To successfully adapt ML techniques for visualizations, a structured understanding of the integration of ML4VIS is needed. In this article, we systematically survey 88 ML4VIS studies, aiming to answer two motivating questions: "what visualization processes can be assisted by ML?" and "how ML techniques can be used to solve visualization problems? "This survey reveals seven main processes where the employment of ML techniques can benefit visualizations: Data Processing4VIS, Data-VIS Mapping, Insight Communication, Style Imitation, VIS Interaction, VIS Reading, and User Profiling. The seven processes are related to existing visualization theoretical models in an ML4VIS pipeline, aiming to illuminate the role of ML-assisted visualization in general visualizations. Meanwhile, the seven processes are mapped into main learning tasks in ML to align the capabilities of ML with the needs in visualization. Current practices and future opportunities of ML4VIS are discussed in the context of the ML4VIS pipeline and the ML-VIS mapping. While more studies are still needed in the area of ML4VIS, we hope this article can provide a stepping-stone for future exploration. A web-based interactive browser of this survey is available at https://ml4vis.github.io.
Collapse
|
9
|
Khan S, Nguyen PH, Abdul-Rahman A, Bach B, Chen M, Freeman E, Turkay C. Propagating Visual Designs to Numerous Plots and Dashboards. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:86-95. [PMID: 34587060 DOI: 10.1109/tvcg.2021.3114828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In the process of developing an infrastructure for providing visualization and visual analytics (VIS) tools to epidemiologists and modeling scientists, we encountered a technical challenge for applying a number of visual designs to numerous datasets rapidly and reliably with limited development resources. In this paper, we present a technical solution to address this challenge. Operationally, we separate the tasks of data management, visual designs, and plots and dashboard deployment in order to streamline the development workflow. Technically, we utilize: an ontology to bring datasets, visual designs, and deployable plots and dashboards under the same management framework; multi-criteria search and ranking algorithms for discovering potential datasets that match a visual design; and a purposely-design user interface for propagating each visual design to appropriate datasets (often in tens and hundreds) and quality-assuring the propagation before the deployment. This technical solution has been used in the development of the RAMPVIS infrastructure for supporting a consortium of epidemiologists and modeling scientists through visualization.
Collapse
|
10
|
Chen Q, Sun F, Xu X, Chen Z, Wang J, Cao N. VizLinter: A Linter and Fixer Framework for Data Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:206-216. [PMID: 34587044 DOI: 10.1109/tvcg.2021.3114804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite the rising popularity of automated visualization tools, existing systems tend to provide direct results which do not always fit the input data or meet visualization requirements. Therefore, additional specification adjustments are still required in real-world use cases. However, manual adjustments are difficult since most users do not necessarily possess adequate skills or visualization knowledge. Even experienced users might create imperfect visualizations that involve chart construction errors. We present a framework, VizLinter, to help users detect flaws and rectify already-built but defective visualizations. The framework consists of two components, (1) a visualization linter, which applies well-recognized principles to inspect the legitimacy of rendered visualizations, and (2) a visualization fixer, which automatically corrects the detected violations according to the linter. We implement the framework into an online editor prototype based on Vega-Lite specifications. To further evaluate the system, we conduct an in-lab user study. The results prove its effectiveness and efficiency in identifying and fixing errors for data visualizations.
Collapse
|
11
|
Wang Y, Peng TQ, Lu H, Wang H, Xie X, Qu H, Wu Y. Seek for Success: A Visualization Approach for Understanding the Dynamics of Academic Careers. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:475-485. [PMID: 34587034 DOI: 10.1109/tvcg.2021.3114790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
How to achieve academic career success has been a long-standing research question in social science research. With the growing availability of large-scale well-documented academic profiles and career trajectories, scholarly interest in career success has been reinvigorated, which has emerged to be an active research domain called the Science of Science (i.e., SciSci). In this study, we adopt an innovative dynamic perspective to examine how individual and social factors will influence career success over time. We propose ACSeeker, an interactive visual analytics approach to explore the potential factors of success and how the influence of multiple factors changes at different stages of academic careers. We first applied a Multi-factor Impact Analysis framework to estimate the effect of different factors on academic career success over time. We then developed a visual analytics system to understand the dynamic effects interactively. A novel timeline is designed to reveal and compare the factor impacts based on the whole population. A customized career line showing the individual career development is provided to allow a detailed inspection. To validate the effectiveness and usability of ACSeeker, we report two case studies and interviews with a social scientist and general researchers.
Collapse
|
12
|
Tang T, Wu Y, Wu Y, Yu L, Li Y. VideoModerator: A Risk-aware Framework for Multimodal Video Moderation in E-Commerce. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:846-856. [PMID: 34587029 DOI: 10.1109/tvcg.2021.3114781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Video moderation, which refers to remove deviant or explicit content from e-commerce livestreams, has become prevalent owing to social and engaging features. However, this task is tedious and time consuming due to the difficulties associated with watching and reviewing multimodal video content, including video frames and audio clips. To ensure effective video moderation, we propose VideoModerator, a risk-aware framework that seamlessly integrates human knowledge with machine insights. This framework incorporates a set of advanced machine learning models to extract the risk-aware features from multimodal video content and discover potentially deviant videos. Moreover, this framework introduces an interactive visualization interface with three views, namely, a video view, a frame view, and an audio view. In the video view, we adopt a segmented timeline and highlight high-risk periods that may contain deviant information. In the frame view, we present a novel visual summarization method that combines risk-aware features and video context to enable quick video navigation. In the audio view, we employ a storyline-based design to provide a multi-faceted overview which can be used to explore audio content. Furthermore, we report the usage of VideoModerator through a case scenario and conduct experiments and a controlled user study to validate its effectiveness.
Collapse
|
13
|
Shu X, Wu A, Tang J, Bach B, Wu Y, Qu H. What Makes a Data-GIF Understandable? IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1492-1502. [PMID: 33048713 DOI: 10.1109/tvcg.2020.3030396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
GIFs are enjoying increasing popularity on social media as a format for data-driven storytelling with visualization; simple visual messages are embedded in short animations that usually last less than 15 seconds and are played in automatic repetition. In this paper, we ask the question, "What makes a data-GIF understandable?" While other storytelling formats such as data videos, infographics, or data comics are relatively well studied, we have little knowledge about the design factors and principles for "data-GIFs". To close this gap, we provide results from semi-structured interviews and an online study with a total of 118 participants investigating the impact of design decisions on the understandability of data-GIFs. The study and our consequent analysis are informed by a systematic review and structured design space of 108 data-GIFs that we found online. Our results show the impact of design dimensions from our design space such as animation encoding, context preservation, or repetition on viewers understanding of the GIF's core message. The paper concludes with a list of suggestions for creating more effective Data-GIFs.
Collapse
|
14
|
Rubab S, Tang J, Wu Y. Examining interaction techniques in data visualization authoring tools from the perspective of goals and human cognition: a survey. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-020-00705-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|