1
|
Grela J, Drogosz Z, Janarek J, Ochab JK, Cifre I, Gudowska-Nowak E, Nowak MA, Oświęcimka P, Chialvo DR. Using space-filling curves and fractals to reveal spatial and temporal patterns in neuroimaging data. J Neural Eng 2025; 22:016016. [PMID: 39773918 DOI: 10.1088/1741-2552/ada705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Objective. Magnetic resonance imaging (MRI), functional MRI (fMRI) and other neuroimaging techniques are routinely used in medical diagnosis, cognitive neuroscience or recently in brain decoding. They produce three- or four-dimensional scans reflecting the geometry of brain tissue or activity, which is highly correlated temporally and spatially. While there exist numerous theoretically guided methods for analyzing correlations in one-dimensional data, they often cannot be readily generalized to the multidimensional geometrically embedded setting.Approach. We present a novel method, Fractal Space-Curve Analysis (FSCA), which combines Space-Filling Curve (SFC) mapping for dimensionality reduction with fractal Detrended Fluctuation Analysis. We conduct extensive feasibility studies on diverse, artificially generated data with known fractal characteristics: the fractional Brownian motion, Cantor sets, and Gaussian processes. We compare the suitability of dimensionality reduction via Hilbert SFC and a data-driven alternative. FSCA is then successfully applied to real-world MRI and fMRI scans.Main results. The method utilizing Hilbert curves is optimized for computational efficiency, proven robust against boundary effects typical in experimental data analysis, and resistant to data sub-sampling. It is able to correctly quantify and discern correlations in both stationary and dynamic two-dimensional images. In MRI Alzheimer's dataset, patients reveal a progression of the disease associated with a systematic decrease of the Hurst exponent. In fMRI recording of breath-holding task, the change in the exponent allows distinguishing different experimental phases.Significance. This study introduces a robust method for fractal characterization of spatial and temporal correlations in many types of multidimensional neuroimaging data. Very few assumptions allow it to be generalized to more dimensions than typical for neuroimaging and utilized in other scientific fields. The method can be particularly useful in analyzing fMRI experiments to compute markers of pathological conditions resulting from neurodegeneration. We also showcase its potential for providing insights into brain dynamics in task-related experiments.
Collapse
Affiliation(s)
- Jacek Grela
- Institute of Theoretical Physics, Jagiellonian University, 30-348 Kraków, Poland
- Mark Kac Center for Complex Systems Research, Jagiellonian University, 30-348 Kraków, Poland
| | - Zbigniew Drogosz
- Institute of Theoretical Physics, Jagiellonian University, 30-348 Kraków, Poland
| | - Jakub Janarek
- Institute of Theoretical Physics, Jagiellonian University, 30-348 Kraków, Poland
| | - Jeremi K Ochab
- Institute of Theoretical Physics, Jagiellonian University, 30-348 Kraków, Poland
- Mark Kac Center for Complex Systems Research, Jagiellonian University, 30-348 Kraków, Poland
| | - Ignacio Cifre
- Facultat de Psicologia, Ciències de l'educació i de l'Esport, Blanquerna, Universitat Ramon Llull, Barcelona, Spain
| | - Ewa Gudowska-Nowak
- Institute of Theoretical Physics, Jagiellonian University, 30-348 Kraków, Poland
- Mark Kac Center for Complex Systems Research, Jagiellonian University, 30-348 Kraków, Poland
| | - Maciej A Nowak
- Institute of Theoretical Physics, Jagiellonian University, 30-348 Kraków, Poland
- Mark Kac Center for Complex Systems Research, Jagiellonian University, 30-348 Kraków, Poland
| | - Paweł Oświęcimka
- Institute of Theoretical Physics, Jagiellonian University, 30-348 Kraków, Poland
- Mark Kac Center for Complex Systems Research, Jagiellonian University, 30-348 Kraków, Poland
- Complex Systems Theory Department, Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Kraków, Poland
| | - Dante R Chialvo
- Center for Complex Systems & Brain Sciences (CEMSC3), Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
2
|
Hong J, Hnatyshyn R, Santos EAD, Maciejewski R, Isenberg T. A Survey of Designs for Combined 2D+3D Visual Representations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:2888-2902. [PMID: 38648152 DOI: 10.1109/tvcg.2024.3388516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We examine visual representations of data that make use of combinations of both 2D and 3D data mappings. Combining 2D and 3D representations is a common technique that allows viewers to understand multiple facets of the data with which they are interacting. While 3D representations focus on the spatial character of the data or the dedicated 3D data mapping, 2D representations often show abstract data properties and take advantage of the unique benefits of mapping to a plane. Many systems have used unique combinations of both types of data mappings effectively. Yet there are no systematic reviews of the methods in linking 2D and 3D representations. We systematically survey the relationships between 2D and 3D visual representations in major visualization publications-IEEE VIS, IEEE TVCG, and EuroVis-from 2012 to 2022. We closely examined 105 articles where 2D and 3D representations are connected visually, interactively, or through animation. These approaches are designed based on their visual environment, the relationships between their visual representations, and their possible layouts. Through our analysis, we introduce a design space as well as provide design guidelines for effectively linking 2D and 3D visual representations.
Collapse
|
3
|
Kopp W, Weinkauf T. Temporal Merge Tree Maps: A Topology-Based Static Visualization for Temporal Scalar Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:1157-1167. [PMID: 36155442 DOI: 10.1109/tvcg.2022.3209387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Creating a static visualization for a time-dependent scalar field is a non-trivial task, yet very insightful as it shows the dynamics in one picture. Existing approaches are based on a linearization of the domain or on feature tracking. Domain linearizations use space-filling curves to place all sample points into a 1D domain, thereby breaking up individual features. Feature tracking methods explicitly respect feature continuity in space and time, but generally neglect the data context in which those features live. We present a feature-based linearization of the spatial domain that keeps features together and preserves their context by involving all data samples. We use augmented merge trees to linearize the domain and show that our linearized function has the same merge tree as the original data. A greedy optimization scheme aligns the trees over time providing temporal continuity. This leads to a static 2D visualization with one temporal dimension, and all spatial dimensions compressed into one. We compare our method against other domain linearizations as well as feature-tracking approaches, and apply it to several real-world data sets.
Collapse
|
4
|
Hagrid: using Hilbert and Gosper curves to gridify scatterplots. J Vis (Tokyo) 2022. [DOI: 10.1007/s12650-022-00854-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Abstract
A common enhancement of scatterplots represents points as small multiples, glyphs, or thumbnail images. As this encoding often results in overlaps, a general strategy is to alter the position of the data points, for instance, to a grid-like structure. Previous approaches rely on solving expensive optimization problems or on dividing the space that alter the global structure of the scatterplot. To find a good balance between efficiency and neighborhood and layout preservation, we propose Hagrid, a technique that uses space-filling curves (SFCs) to “gridify” a scatterplot without employing expensive collision detection and handling mechanisms. Using SFCs ensures that the points are plotted close to their original position, retaining approximately the same global structure. The resulting scatterplot is mapped onto a rectangular or hexagonal grid, using Hilbert and Gosper curves. We discuss and evaluate the theoretic runtime of our approach and quantitatively compare our approach to three state-of-the-art gridifying approaches, DGrid, Small multiples with gaps SMWG, and CorrelatedMultiples CMDS, in an evaluation comprising 339 scatterplots. Here, we compute several quality measures for neighborhood preservation together with an analysis of the actual runtimes. The main results show that, compared to the best other technique, Hagrid is faster by a factor of four, while achieving similar or even better quality of the gridified layout. Due to its computational efficiency, our approach also allows novel applications of gridifying approaches in interactive settings, such as removing local overlap upon hovering over a scatterplot.
Graphical abstract
Collapse
|
5
|
Zhou L, Fan M, Hansen C, Johnson CR, Weiskopf D. A Review of Three-Dimensional Medical Image Visualization. HEALTH DATA SCIENCE 2022; 2022:9840519. [PMID: 38487486 PMCID: PMC10880180 DOI: 10.34133/2022/9840519] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/17/2022] [Indexed: 03/17/2024]
Abstract
Importance. Medical images are essential for modern medicine and an important research subject in visualization. However, medical experts are often not aware of the many advanced three-dimensional (3D) medical image visualization techniques that could increase their capabilities in data analysis and assist the decision-making process for specific medical problems. Our paper provides a review of 3D visualization techniques for medical images, intending to bridge the gap between medical experts and visualization researchers.Highlights. Fundamental visualization techniques are revisited for various medical imaging modalities, from computational tomography to diffusion tensor imaging, featuring techniques that enhance spatial perception, which is critical for medical practices. The state-of-the-art of medical visualization is reviewed based on a procedure-oriented classification of medical problems for studies of individuals and populations. This paper summarizes free software tools for different modalities of medical images designed for various purposes, including visualization, analysis, and segmentation, and it provides respective Internet links.Conclusions. Visualization techniques are a useful tool for medical experts to tackle specific medical problems in their daily work. Our review provides a quick reference to such techniques given the medical problem and modalities of associated medical images. We summarize fundamental techniques and readily available visualization tools to help medical experts to better understand and utilize medical imaging data. This paper could contribute to the joint effort of the medical and visualization communities to advance precision medicine.
Collapse
Affiliation(s)
- Liang Zhou
- National Institute of Health Data Science, Peking University, Beijing, China
| | - Mengjie Fan
- National Institute of Health Data Science, Peking University, Beijing, China
| | - Charles Hansen
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, USA
| | - Chris R. Johnson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, USA
| | - Daniel Weiskopf
- Visualization Research Center (VISUS), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
6
|
Weiskopf D. Uncertainty Visualization: Concepts, Methods, and Applications in Biological Data Visualization. FRONTIERS IN BIOINFORMATICS 2022; 2:793819. [PMID: 36304261 PMCID: PMC9580861 DOI: 10.3389/fbinf.2022.793819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
This paper provides an overview of uncertainty visualization in general, along with specific examples of applications in bioinformatics. Starting from a processing and interaction pipeline of visualization, components are discussed that are relevant for handling and visualizing uncertainty introduced with the original data and at later stages in the pipeline, which shows the importance of making the stages of the pipeline aware of uncertainty and allowing them to propagate uncertainty. We detail concepts and methods for visual mappings of uncertainty, distinguishing between explicit and implict representations of distributions, different ways to show summary statistics, and combined or hybrid visualizations. The basic concepts are illustrated for several examples of graph visualization under uncertainty. Finally, this review paper discusses implications for the visualization of biological data and future research directions.
Collapse
|