1
|
Liu T, Xiao Y, Hu M, Sha H, Ma S, Gao B, Guo S, Liu Y, Song W. AudioGest: Gesture-Based Interaction for Virtual Reality Using Audio Devices. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1569-1581. [PMID: 38713570 DOI: 10.1109/tvcg.2024.3397868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Current virtual reality (VR) system takes gesture interaction based on camera, handle and touch screen as one of the mainstream interaction methods, which can provide accurate gesture input for it. However, limited by application forms and the volume of devices, these methods cannot extend the interaction area to such surfaces as walls and tables. To address the above challenge, we propose AudioGest, a portable, plug-and-play system that detects the audio signal generated by finger tapping and sliding on the surface through a set of microphone devices without extensive calibration. First, an audio synthesis-recognition pipeline based on micro-contact dynamics simulation is constructed to generate modal audio synthesis from different materials and physical properties. Then the accuracy and effectiveness of the synthetic audio are verified by mixing the synthetic audio with real audio proportionally as the training sets. Finally, a series of desktop office applications are developed to demonstrate the application potential of AudioGest's scalability and versatility in VR scenarios.
Collapse
|
2
|
Souchet AD, Lourdeaux D, Burkhardt JM, Hancock PA. Design guidelines for limiting and eliminating virtual reality-induced symptoms and effects at work: a comprehensive, factor-oriented review. Front Psychol 2023; 14:1161932. [PMID: 37359863 PMCID: PMC10288216 DOI: 10.3389/fpsyg.2023.1161932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Virtual reality (VR) can induce side effects known as virtual reality-induced symptoms and effects (VRISE). To address this concern, we identify a literature-based listing of these factors thought to influence VRISE with a focus on office work use. Using those, we recommend guidelines for VRISE amelioration intended for virtual environment creators and users. We identify five VRISE risks, focusing on short-term symptoms with their short-term effects. Three overall factor categories are considered: individual, hardware, and software. Over 90 factors may influence VRISE frequency and severity. We identify guidelines for each factor to help reduce VR side effects. To better reflect our confidence in those guidelines, we graded each with a level of evidence rating. Common factors occasionally influence different forms of VRISE. This can lead to confusion in the literature. General guidelines for using VR at work involve worker adaptation, such as limiting immersion times to between 20 and 30 min. These regimens involve taking regular breaks. Extra care is required for workers with special needs, neurodiversity, and gerontechnological concerns. In addition to following our guidelines, stakeholders should be aware that current head-mounted displays and virtual environments can continue to induce VRISE. While no single existing method fully alleviates VRISE, workers' health and safety must be monitored and safeguarded when VR is used at work.
Collapse
Affiliation(s)
- Alexis D. Souchet
- Heudiasyc UMR 7253, Alliance Sorbonne Université, Université de Technologie de Compiègne, CNRS, Compiègne, France
- Institute for Creative Technologies, University of Southern California, Los Angeles, CA, United States
| | - Domitile Lourdeaux
- Heudiasyc UMR 7253, Alliance Sorbonne Université, Université de Technologie de Compiègne, CNRS, Compiègne, France
| | | | - Peter A. Hancock
- Department of Psychology, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
3
|
Lau CW, Qu Z, Draper D, Quan R, Braytee A, Bluff A, Zhang D, Johnston A, Kennedy PJ, Simoff S, Nguyen QV, Catchpoole D. Virtual reality for the observation of oncology models (VROOM): immersive analytics for oncology patient cohorts. Sci Rep 2022; 12:11337. [PMID: 35790803 PMCID: PMC9256599 DOI: 10.1038/s41598-022-15548-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/24/2022] [Indexed: 11/08/2022] Open
Abstract
The significant advancement of inexpensive and portable virtual reality (VR) and augmented reality devices has re-energised the research in the immersive analytics field. The immersive environment is different from a traditional 2D display used to analyse 3D data as it provides a unified environment that supports immersion in a 3D scene, gestural interaction, haptic feedback and spatial audio. Genomic data analysis has been used in oncology to understand better the relationship between genetic profile, cancer type, and treatment option. This paper proposes a novel immersive analytics tool for cancer patient cohorts in a virtual reality environment, virtual reality to observe oncology data models. We utilise immersive technologies to analyse the gene expression and clinical data of a cohort of cancer patients. Various machine learning algorithms and visualisation methods have also been deployed in VR to enhance the data interrogation process. This is supported with established 2D visual analytics and graphical methods in bioinformatics, such as scatter plots, descriptive statistical information, linear regression, box plot and heatmap into our visualisation. Our approach allows the clinician to interrogate the information that is familiar and meaningful to them while providing them immersive analytics capabilities to make new discoveries toward personalised medicine.
Collapse
Affiliation(s)
- Chng Wei Lau
- School of Computer, Data and Mathematical Sciences, Western Sydney University, Parramatta, Australia.
| | - Zhonglin Qu
- School of Computer, Data and Mathematical Sciences, Western Sydney University, Parramatta, Australia
| | | | - Rosa Quan
- School of Psychology, Western Sydney University, Penrith, Australia
| | - Ali Braytee
- School of Computer Science, University of Technology Sydney, Ultimo, Australia
| | | | - Dongmo Zhang
- School of Computer, Data and Mathematical Sciences, Western Sydney University, Parramatta, Australia
| | - Andrew Johnston
- School of Computer Science, University of Technology Sydney, Ultimo, Australia
| | - Paul J Kennedy
- School of Computer Science, University of Technology Sydney, Ultimo, Australia
| | - Simeon Simoff
- MARCS Institute and School of Computer, Data and Mathematical Sciences, Western Sydney University, Parramatta, Australia
| | - Quang Vinh Nguyen
- MARCS Institute and School of Computer, Data and Mathematical Sciences, Western Sydney University, Parramatta, Australia
| | - Daniel Catchpoole
- School of Computer, Data and Mathematical Sciences, Western Sydney University, Parramatta, Australia.
- School of Computer Science, University of Technology Sydney, Ultimo, Australia.
- Biospecimen Research Services, Children's Cancer Research Unit, The Kids Research Institute, The Children's Hospital at Westmead, Westmead, Australia.
| |
Collapse
|
4
|
Trade-Off between Task Accuracy, Task Completion Time and Naturalness for Direct Object Manipulation in Virtual Reality. MULTIMODAL TECHNOLOGIES AND INTERACTION 2022. [DOI: 10.3390/mti6010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Virtual reality devices are used for several application domains, such as medicine, entertainment, marketing and training. A handheld controller is the common interaction method for direct object manipulation in virtual reality environments. Using hands would be a straightforward way to directly manipulate objects in the virtual environment if hand-tracking technology were reliable enough. In recent comparison studies, hand-based systems compared unfavorably against the handheld controllers in task completion times and accuracy. In our controlled study, we compare these two interaction techniques with a new hybrid interaction technique which combines the controller tracking with hand gestures for a rigid object manipulation task. The results demonstrate that the hybrid interaction technique is the most preferred because it is intuitive, easy to use, fast, reliable and it provides haptic feedback resembling the real-world object grab. This suggests that there is a trade-off between naturalness, task accuracy and task completion time when using these direct manipulation interaction techniques, and participants prefer to use interaction techniques that provide a balance between these three factors.
Collapse
|
5
|
Steed A, Takala TM, Archer D, Lages W, Lindeman RW. Directions for 3D User Interface Research from Consumer VR Games. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:4171-4182. [PMID: 34449366 DOI: 10.1109/tvcg.2021.3106431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the continuing development of affordable immersive virtual reality (VR) systems, there is now a growing market for consumer content. The current form of consumer systems is not dissimilar to the lab-based VR systems of the past 30 years: the primary input mechanism is a head-tracked display and one or two tracked hands with buttons and joysticks on hand-held controllers. Over those 30 years, a very diverse academic literature has emerged that covers design and ergonomics of 3D user interfaces (3DUIs). However, the growing consumer market has engaged a very broad range of creatives that have built a very diverse set of designs. Sometimes these designs adopt findings from the academic literature, but other times they experiment with completely novel or counter-intuitive mechanisms. In this paper and its online adjunct, we report on novel 3DUI design patterns that are interesting from both design and research perspectives: they are highly novel, potentially broadly re-usable and/or suggest interesting avenues for evaluation. The supplemental material, which is a living document, is a crowd-sourced repository of interesting patterns. This paper is a curated snapshot of those patterns that were considered to be the most fruitful for further elaboration.
Collapse
|