1
|
Nie T, Pospick CH, Cantory V, Zhang D, DeGuzman JJ, Interrante V, Adhanom IB, Rosenberg ES. Peripheral Teleportation: A Rest Frame Design to Mitigate Cybersickness During Virtual Locomotion. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:2891-2900. [PMID: 40063443 DOI: 10.1109/tvcg.2025.3549568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Mitigating cybersickness can improve the usability of virtual reality (VR) and increase its adoption. The most widely used technique, dynamic field-of-view (FOV) restriction, mitigates cybersickness by blacking out the peripheral region of the user's FOV. However, this approach reduces the visibility of the virtual environment. We propose peripheral teleportation, a novel technique that creates a rest frame (RF) in the user's peripheral vision using content rendered from the current virtual environment. Specifically, the peripheral region is rendered by a pair of RF cameras whose transforms are updated by the user's physical motion. We apply alternating teleportations during translations, or snap turns during rotations, to the RF cameras to keep them close to the current viewpoint transformation. Consequently, the optical flow generated by RF cameras matches the user's physical motion, creating a stable peripheral view. In a between-subjects study (N=90), we compared peripheral teleportation with a traditional black FOV restrictor and an unrestricted control condition. The results showed that peripheral teleportation significantly reduced discomfort and enabled participants to stay immersed in the virtual environment for a longer duration of time. Overall, these findings suggest that peripheral teleportation is a promising technique that VR practitioners may consider adding to their cybersickness mitigation toolset.
Collapse
|
2
|
Scarpa C, Vigier T, Haese G, Le Callet P. Interactions Between Vibroacoustic Discomfort and Visual Stimuli: Comparison of Real, 3D and 360 Environments. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:2484-2493. [PMID: 40053654 DOI: 10.1109/tvcg.2025.3549158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
The building industry and the design of interior environments are increasingly focusing on the user experience, incorporating sensory analysis to reconsider how office environments can be optimized. New immersive technologies offer significant opportunities for sensory science, enhancing our understanding of human perception and enabling the collection of multi-sensory data under controlled laboratory conditions. While the potential of Virtual Reality (VR) for these types of studies is well recognized, certain limitations still need to be addressed, including the lack of standardized research practices and the challenge of ensuring the simulated environment closely mirrors the real world. In this study, we compare 360° and 3D formats, to real-life settings in order to determine which format offers greater ecological validity for visual perception and immersion. Additionally, we examine the effects of vibroacoustic stimuli with different levels of intensity on perception and cognition of 30 participants. Subjective, physiological and cognitive data was collected throughout the test to tackle the participant's experience. This preliminary study introduces an immersive methodology that leverages advanced techniques to gain deeper insights into multisensory user experience in VR, marking a significant step forward in the optimization of VR for building evaluation.
Collapse
|
3
|
Nakamura J, Ikei Y, Kitazaki M. Effects of self-avatar cast shadow and foot vibration on telepresence, virtual walking experience, and cybersickness from omnidirectional movie. Iperception 2024; 15:20416695241227857. [PMID: 38404740 PMCID: PMC10894555 DOI: 10.1177/20416695241227857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/08/2024] [Indexed: 02/27/2024] Open
Abstract
Human locomotion is most naturally achieved through walking, which is good for both mental and physical health. To provide a virtual walking experience to seated users, a system utilizing foot vibrations and simulated optical flow was developed. The current study sought to augment this system and examine the effect of an avatar's cast shadow and foot vibrations on the virtual walking experience and cybersickness. The omnidirectional movie and the avatar's walking animation were synchronized, with the cast shadow reflecting the avatar's movement on the ground. Twenty participants were exposed to the virtual walking in six conditions (with/without foot vibrations and no/short/long shadow) and were asked to rate their sense of telepresence, walking experience, and occurrences of cybersickness. Our findings indicate that the synchronized foot vibrations enhanced telepresence as well as self-motion, walking, and leg-action sensations, while also reducing instances of nausea and disorientation sickness. The avatar's cast shadow was found to improve telepresence and leg-action sensation, but had no impact on self-motion and walking sensation. These results suggest that observation of the self-body cast shadow does not directly improve walking sensation, but is effective in enhancing telepresence and leg-action sensation, while foot vibrations are effective in improving telepresence and walking experience and reducing instances of cybersickness.
Collapse
|
4
|
Zhou L, Hu H, Qin B, Zhu Q, Qian Z. Brain activity differences between susceptible and non-susceptible populations under visually induced motion sickness based on sensor-space and source-space analyses. Brain Res 2023; 1815:148474. [PMID: 37393010 DOI: 10.1016/j.brainres.2023.148474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
The neural mechanisms underlying visually induced motion sickness (VIMS) in different susceptible populations are unclear, as it is not clear how brain activity changes in different susceptible populations during the vection section (VS). This study aimed to analyze the brain activity changes in different susceptible populations during VS. Twenty subjects were included in this study and divided into the VIMS-susceptible group (VIMSSG) and VIMS-resistant group (VIMSRG) based on a motion sickness questionnaire. 64-channel electroencephalogram (EEG) data from these subjects during VS were collected. The brain activities during VS for VIMSSG and VIMSRG were analyzed with time-frequency based sensor-space analysis and EEG source imaging based source-space analysis. Under VS, delta and theta energies were significantly increased in VIMSSG and VIMSRG, while alpha and beta energies were only significantly increased in VIMSRG. Also, the superior and middle temporal were activated in VIMSSG and VIMSRG, while lateral occipital, supramarginal gyrus, and precentral gyrus were activated only in VIMSSG. The spatiotemporal differences in brain activity observed between VIMSSG and VIMSRG may be attributed to the different susceptibility of participants in each group and the different severity of MS symptoms experienced. Long-term vestibular training can effectively improve the ability of anti-VIMS. The knowledge gained from this study helps advance understanding of the neural mechanism of VIMS in different susceptible populations.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China
| | - Haixu Hu
- Sports Training Academy, Nanjing Sport Institute, Nanjing, 210016, China
| | - Bing Qin
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China
| | - Qiaoqiao Zhu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China.
| | - Zhiyu Qian
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China.
| |
Collapse
|