1
|
Sahu S, Emenike B, Beusch CM, Bagchi P, Gordon DE, Raj M. Copper(I)-nitrene platform for chemoproteomic profiling of methionine. Nat Commun 2024; 15:4243. [PMID: 38762540 PMCID: PMC11102537 DOI: 10.1038/s41467-024-48403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/30/2024] [Indexed: 05/20/2024] Open
Abstract
Methionine plays a critical role in various biological and cell regulatory processes, making its chemoproteomic profiling indispensable for exploring its functions and potential in protein therapeutics. Building on the principle of rapid oxidation of methionine, we report Copper(I)-Nitrene Platform for robust, and selective labeling of methionine to generate stable sulfonyl sulfimide conjugates under physiological conditions. We demonstrate the versatility of this platform to label methionine in bioactive peptides, intact proteins (6.5-79.5 kDa), and proteins in complex cell lysate mixtures with varying payloads. We discover ligandable proteins and sites harboring hyperreactive methionine within the human proteome. Furthermore, this has been utilized to profile oxidation-sensitive methionine residues, which might increase our understanding of the protective role of methionine in diseases associated with elevated levels of reactive oxygen species. The Copper(I)-Nitrene Platform allows labeling methionine residues in live cancer cells, observing minimal cytotoxic effects and achieving dose-dependent labeling. Confocal imaging further reveals the spatial distribution of modified proteins within the cell membrane, cytoplasm, and nucleus, underscoring the platform's potential in profiling the cellular interactome.
Collapse
Affiliation(s)
- Samrat Sahu
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | | | - Christian Michel Beusch
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Pritha Bagchi
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - David Ezra Gordon
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Monika Raj
- Department of Chemistry, Emory University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Guerrero L, Ebrahim A, Riley BT, Kim M, Huang Q, Finke AD, Keedy DA. Pushed to extremes: distinct effects of high temperature versus pressure on the structure of STEP. Commun Biol 2024; 7:59. [PMID: 38216663 PMCID: PMC10786866 DOI: 10.1038/s42003-023-05609-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/20/2023] [Indexed: 01/14/2024] Open
Abstract
Protein function hinges on small shifts of three-dimensional structure. Elevating temperature or pressure may provide experimentally accessible insights into such shifts, but the effects of these distinct perturbations on protein structures have not been compared in atomic detail. To quantitatively explore these two axes, we report the first pair of structures at physiological temperature versus. high pressure for the same protein, STEP (PTPN5). We show that these perturbations have distinct and surprising effects on protein volume, patterns of ordered solvent, and local backbone and side-chain conformations. This includes interactions between key catalytic loops only at physiological temperature, and a distinct conformational ensemble for another active-site loop only at high pressure. Strikingly, in torsional space, physiological temperature shifts STEP toward previously reported active-like states, while high pressure shifts it toward a previously uncharted region. Altogether, our work indicates that temperature and pressure are complementary, powerful, fundamental macromolecular perturbations.
Collapse
Affiliation(s)
- Liliana Guerrero
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, 10031, USA
- PhD Program in Biochemistry, CUNY Graduate Center, New York, NY, 10016, USA
| | - Ali Ebrahim
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, 10031, USA
| | - Blake T Riley
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, 10031, USA
| | - Minyoung Kim
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, 10031, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Qingqiu Huang
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY, 14853, USA
| | - Aaron D Finke
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY, 14853, USA
| | - Daniel A Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, 10031, USA.
- Department of Chemistry and Biochemistry, City College of New York, New York, NY, 10031, USA.
- PhD Programs in Biochemistry, Biology, & Chemistry, CUNY Graduate Center, New York, NY, 10016, USA.
| |
Collapse
|
3
|
Meersman F, Quesada-Cabrera R, Filinchuk Y, Dmitriev V, McMillan PF. Nanomechanical properties of SSTSAA microcrystals are dominated by the inter-sheet packing. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220340. [PMID: 37691469 DOI: 10.1098/rsta.2022.0340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/12/2023] [Indexed: 09/12/2023]
Abstract
Amyloid fibrils have been associated with human disease for many decades, but it has also become apparent that they play a functional, non-disease-related role in e.g. bacteria and mammals. Moreover, they have been shown to possess interesting mechanical properties that can be harnessed for future man-made applications. Here, the mechanical behaviour of SSTSAA microcrystals has been investigated. The SSTSAA peptide organization in these microcrystals has been related to that in the corresponding amyloid fibrils. Using high-pressure X-ray diffraction experiments, the bulk modulus K, which is the reciprocal of the compressibility β, has been calculated to be 2.48 GPa. This indicates that the fibrils are tightly packed, although the packing of most native globular proteins is even better. It is shown that the value of the bulk modulus is mainly determined by the compression along the c-axis, that relates to the inter-sheet distance in the fibrils. These findings corroborate earlier data obtained by AFM and molecular dynamics simulations that showed that mechanical resistance varies according to the direction of the applied strain, which can be related to packing and hydrogen bond contributions. Pressure experiments provide complementary information to these techniques and help to acquire a full mechanical characterization of biomolecular assemblies. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.
Collapse
Affiliation(s)
- Filip Meersman
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Raúl Quesada-Cabrera
- Department of Chemistry, Christopher Ingold Laboratory, University College London, 20 Gordon Street, London WC1H 0AJ, UK
- Department of Chemistry, Institute of Environmental Studies and Natural Resources (iUNAT), Universidad de Las Palmas de Gran Canaria, Campus de Tafira, 35017 Las Palmas, Spain
| | - Yaroslav Filinchuk
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Vladimir Dmitriev
- Swiss-Norwegian Beamlines, ESRF, Boite Postale 220, 38043, Grenoble, France
| | - Paul F McMillan
- Department of Chemistry, Christopher Ingold Laboratory, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| |
Collapse
|
4
|
Guerrero L, Ebrahim A, Riley BT, Kim M, Huang Q, Finke AD, Keedy DA. Pushed to extremes: distinct effects of high temperature vs. pressure on the structure of an atypical phosphatase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.538097. [PMID: 37205580 PMCID: PMC10187168 DOI: 10.1101/2023.05.02.538097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Protein function hinges on small shifts of three-dimensional structure. Elevating temperature or pressure may provide experimentally accessible insights into such shifts, but the effects of these distinct perturbations on protein structures have not been compared in atomic detail. To quantitatively explore these two axes, we report the first pair of structures at physiological temperature vs. high pressure for the same protein, STEP (PTPN5). We show that these perturbations have distinct and surprising effects on protein volume, patterns of ordered solvent, and local backbone and side-chain conformations. This includes novel interactions between key catalytic loops only at physiological temperature, and a distinct conformational ensemble for another active-site loop only at high pressure. Strikingly, in torsional space, physiological temperature shifts STEP toward previously reported active-like states, while high pressure shifts it toward a previously uncharted region. Together, our work argues that temperature and pressure are complementary, powerful, fundamental macromolecular perturbations.
Collapse
Affiliation(s)
- Liliana Guerrero
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- PhD Program in Biochemistry, CUNY Graduate Center, New York, NY 10016
| | - Ali Ebrahim
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
| | - Blake T Riley
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
| | - Minyoung Kim
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Qingqiu Huang
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853
| | - Aaron D Finke
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853
| | - Daniel A Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031
- PhD Programs in Biochemistry, Biology, & Chemistry, CUNY Graduate Center, New York, NY 10016
| |
Collapse
|
5
|
Skvarnavičius G, Toleikis Z, Michailovienė V, Roumestand C, Matulis D, Petrauskas V. Protein-Ligand Binding Volume Determined from a Single 2D NMR Spectrum with Increasing Pressure. J Phys Chem B 2021; 125:5823-5831. [PMID: 34032445 PMCID: PMC8279561 DOI: 10.1021/acs.jpcb.1c02917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Proteins
undergo changes in their partial volumes in numerous biological
processes such as enzymatic catalysis, unfolding–refolding,
and ligand binding. The change in the protein volume upon ligand binding—a
parameter termed the protein–ligand binding volume—can
be extensively studied by high-pressure NMR spectroscopy. In this
study, we developed a method to determine the protein–ligand
binding volume from a single two-dimensional (2D) 1H–15N heteronuclear single quantum coherence (HSQC) spectrum
at different pressures, if the exchange between ligand-free and ligand-bound
states of a protein is slow in the NMR time-scale. This approach required
a significantly lower amount of protein and NMR time to determine
the protein–ligand binding volume of two carbonic anhydrase
isozymes upon binding their ligands. The proposed method can be used
in other protein–ligand systems and expand the knowledge about
protein volume changes upon small-molecule binding.
Collapse
Affiliation(s)
- Gediminas Skvarnavičius
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257 Vilnius, Lithuania
| | - Zigmantas Toleikis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257 Vilnius, Lithuania.,Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia
| | - Vilma Michailovienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257 Vilnius, Lithuania
| | - Christian Roumestand
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université s de Montpellier, 34000 Montpellier, France
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257 Vilnius, Lithuania
| | - Vytautas Petrauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257 Vilnius, Lithuania
| |
Collapse
|
6
|
Characterization of low-lying excited states of proteins by high-pressure NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:350-358. [PMID: 30366154 DOI: 10.1016/j.bbapap.2018.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 12/26/2022]
Abstract
Hydrostatic pressure alters the free energy of proteins by a few kJ mol-1, with the amount depending on their partial molar volumes. Because the folded ground state of a protein contains cavities, it is always a state of large partial molar volume. Therefore pressure always destabilises the ground state and increases the population of partially and completely unfolded states. This is a mild and reversible conformational change, which allows the study of excited states under thermodynamic equilibrium conditions. Many of the excited states studied in this way are functionally relevant; they also seem to be very similar to kinetic folding intermediates, thus suggesting that evolution has made use of the 'natural' dynamic energy landscape of the protein fold and sculpted it to optimise function. This includes features such as ligand binding, structural change during the catalytic cycle, and dynamic allostery.
Collapse
|
7
|
Schneider S, Paulsen H, Reiter KC, Hinze E, Schiene-Fischer C, Hübner CG. Single molecule FRET investigation of pressure-driven unfolding of cold shock protein A. J Chem Phys 2018; 148:123336. [DOI: 10.1063/1.5009662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Sven Schneider
- Institute of Physics, University of Lübeck, Lübeck D-23562, Germany
| | - Hauke Paulsen
- Institute of Physics, University of Lübeck, Lübeck D-23562, Germany
| | - Kim Colin Reiter
- Institute of Physics, University of Lübeck, Lübeck D-23562, Germany
| | - Erik Hinze
- Max Planck Research Unit for Enzymology of Protein Folding Halle, Halle/Saale D-06120, Germany
| | - Cordelia Schiene-Fischer
- Department of Enzymology, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale D-06120, Germany
| | | |
Collapse
|
8
|
Simões ICM, Coimbra JTS, Neves RPP, Costa IPD, Ramos MJ, Fernandes PA. Properties that rank protein:protein docking poses with high accuracy. Phys Chem Chem Phys 2018; 20:20927-20942. [DOI: 10.1039/c8cp03888k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The development of docking algorithms to predict near-native structures of protein:protein complexes from the structure of the isolated monomers is of paramount importance for molecular biology and drug discovery.
Collapse
Affiliation(s)
- Inês C. M. Simões
- UCIBIO
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
| | - João T. S. Coimbra
- UCIBIO
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
| | - Rui P. P. Neves
- UCIBIO
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
| | - Inês P. D. Costa
- UCIBIO
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
| | - Maria J. Ramos
- UCIBIO
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
| | - Pedro A. Fernandes
- UCIBIO
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
| |
Collapse
|
9
|
Roche J, Royer CA, Roumestand C. Monitoring protein folding through high pressure NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:15-31. [PMID: 29157491 DOI: 10.1016/j.pnmrs.2017.05.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
High-pressure is a well-known perturbation method used to destabilize globular proteins. It is perfectly reversible, which is essential for a proper thermodynamic characterization of a protein equilibrium. In contrast to other perturbation methods such as heat or chemical denaturant that destabilize protein structures uniformly, pressure exerts local effects on regions or domains of a protein containing internal cavities. When combined with NMR spectroscopy, hydrostatic pressure offers the possibility to monitor at a residue level the structural transitions occurring upon unfolding and to determine the kinetic properties of the process. High-pressure NMR experiments can now be routinely performed, owing to the recent development of commercially available high-pressure sample cells. This review summarizes recent advances and some future directions of high-pressure NMR techniques for the characterization at atomic resolution of the energy landscape of protein folding.
Collapse
Affiliation(s)
- Julien Roche
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Christian Roumestand
- Centre de Biochimie Structural INSERM U1054, CNRS UMMR 5058, Université de Montpellier, Montpellier 34090, France.
| |
Collapse
|
10
|
Mori Y, Okamoto Y. Conformational changes of ubiquitin under high pressure conditions: A pressure simulated tempering molecular dynamics study. J Comput Chem 2017; 38:1167-1173. [DOI: 10.1002/jcc.24767] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/13/2017] [Accepted: 01/14/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Yoshiharu Mori
- Department of Physics, Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Yuko Okamoto
- Department of Physics, Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
- JST-CREST; Nagoya Aichi 464-8602 Japan
- Structural Biology Research Center, Graduate School of Science, Nagoya University; Nagoya Aichi 464-8602 Japan
- Center for Computational Science, Graduate School of Engineering, Nagoya University; Nagoya Aichi 464-8603 Japan
- Information Technology Center, Nagoya University; Nagoya Aichi 464-8601 Japan
| |
Collapse
|
11
|
Nguyen LM, Roche J. High-pressure NMR techniques for the study of protein dynamics, folding and aggregation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 277:179-185. [PMID: 28363306 DOI: 10.1016/j.jmr.2017.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/07/2017] [Accepted: 01/12/2017] [Indexed: 06/07/2023]
Abstract
High-pressure is a well-known perturbation method used to destabilize globular proteins and dissociate protein complexes or aggregates. The heterogeneity of the response to pressure offers a unique opportunity to dissect the thermodynamic contributions to protein stability. In addition, pressure perturbation is generally reversible, which is essential for a proper thermodynamic characterization of a protein equilibrium. When combined with NMR spectroscopy, hydrostatic pressure offers the possibility of monitoring at an atomic resolution the structural transitions occurring upon unfolding and determining the kinetic properties of the process. The recent development of commercially available high-pressure sample cells greatly increased the potential applications for high-pressure NMR experiments that can now be routinely performed. This review summarizes the recent applications and future directions of high-pressure NMR techniques for the characterization of protein conformational fluctuations, protein folding and the stability of protein complexes and aggregates.
Collapse
Affiliation(s)
- Luan M Nguyen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Julien Roche
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
12
|
Structural investigation of ribonuclease A conformational preferences using high pressure protein crystallography. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Abstract
Protein cavities or voids are observed as defects in atomic packing. Cavities have long been suggested to play important roles in protein dynamics and function, but the underlying origin and mechanism remains elusive. Here, recent studies about the cavities characterized by high-pressure NMR spectroscopy have been reviewed. Analysis of the pressure-dependent chemical shifts showed both linear and nonlinear response of proteins to pressure. The linear response corresponded to compression within the native ensemble, while the nonlinear response indicated the involvement of low-lying excited states that were different from the native state. The finding of non-linear pressure shifts in various proteins suggested that the existence of the low-lying excited states was common for globular proteins. However, the absolute nonlinear coefficient values varied significantly from protein to protein, and showed a good correlation with the density of cavities. Extensive studies on hen lysozyme as a model system showed that the cavity hydration and water penetration into the interior of proteins was an origin of the conformational transition to the excited states. The importance of cavities for protein function and evolution has also been explained. In addition to these "equilibrium" cavities, there are also "transient" cavities formed in the interior of the protein structure, as manifested by the ring flip motions of aromatic rings. The significance of transient cavities, reflecting an intrinsic dynamic nature within the native state, has also been discussed.
Collapse
|
14
|
Abstract
The combination of high-resolution NMR spectroscopy with pressure perturbation, known as variable-pressure NMR spectroscopy or simply high pressure NMR spectroscopy, is a relatively recent accomplishment, but is a technique expanding rapidly with high promise in future. The importance of the method is that it allows, for the first time in history, a systematic means of detecting and analyzing the structures and thermodynamic stability of high-energy sub-states in proteins. High-energy sub-states have been only vaguely known so far, as normally their populations are too low to be detected by conventional spectroscopic techniques including NMR spectroscopy. By now, however, high pressure NMR spectroscopy has established unequivocally that high-energy conformers are universally present in proteins in equilibrium with their stable folded counterparts. This chapter describes briefly the techniques of high pressure NMR spectroscopy and its unique and novel aspects as a method to explore protein structure in its high-energy paradigm with illustrative examples. It is now well established that high pressure NMR spectroscopy is a method to study intrinsic fluctuations of proteins, rather than those forced by pressure, by detecting structural changes amplified by pressure. Extension of the method to other bio-macromolecular systems is considered fairly straightforward.
Collapse
Affiliation(s)
- Kazuyuki Akasaka
- High Pressure Protein Research Center, Institute of Advanced Technology, Kinki University, 930 Nishimitani, Kinokawa, 649-6493, Japan,
| |
Collapse
|
15
|
Kitahara R. High-Pressure NMR Spectroscopy Reveals Functional Sub-states of Ubiquitin and Ubiquitin-Like Proteins. Subcell Biochem 2015; 72:199-214. [PMID: 26174383 DOI: 10.1007/978-94-017-9918-8_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High-pressure nuclear magnetic resonance (NMR) spectroscopy has revealed that ubiquitin has at least two high-energy states--an alternatively folded state N2 and a locally disordered state I--between the basic folded state N1 and totally unfolded U state. The high-energy states are conserved among ubiquitin-like post-translational modifiers, ubiquitin, NEDD8, and SUMO-2, showing the E1-E2-E3 cascade reaction. It is quite intriguing that structurally similar high-energy states are evolutionally conserved in the ubiquitin-like modifiers, and the thermodynamic stabilities vary among the proteins. To investigate atomic details of the high-energy states, a Q41N mutant of ubiquitin was created as a structural model of N2, which is 71% populated even at atmospheric pressure. The convergent structure of the "pure" N2 state was obtained by nuclear Overhauser effect (NOE)-based structural analysis of the Q41N mutant at 2.5 kbar, where the N2 state is 97% populated. The N2 state of ubiquitin is closely similar to the conformation of the protein bound to the ubiquitin-activating enzyme E1. The recognition of E1 by ubiquitin is best explained by conformational selection rather than by induced-fit motion.
Collapse
Affiliation(s)
- Ryo Kitahara
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan,
| |
Collapse
|
16
|
Abstract
Hydrostatic pressure leads to nonuniform compression of proteins. The structural change is on average only about 0.1 Å kbar(-1), and is therefore within the range of fluctuations at ambient pressure. The largest changes are around cavities and buried water molecules. Sheets distort much more than helices. Hydrogen bonds compress about 0.012 Å kbar(-1), although there is a wide range, including some hydrogen bonds that lengthen. In the presence of ligands and inhibitors, structural changes are smaller. Pressure has little effect on rapid fluctuations, but with larger scale slower motions, pressure increases the population of excited states (if they have smaller overall volume), and slows the fluctuations. In barnase, pressure is shown to be a useful way to characterise fluctuations on the timescale of microseconds, and helps to show that fluctuations in barnase are hierarchical, with the faster fluctuations providing a platform for the slower ones. The excited states populated at high pressure are probably functionally important.
Collapse
Affiliation(s)
- Mike P Williamson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK,
| |
Collapse
|
17
|
Mori Y, Okumura H. Molecular dynamics simulation study on the high-pressure behaviour of an AK16 peptide. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.938071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Mori Y, Okumura H. Molecular dynamics of the structural changes of helical peptides induced by pressure. Proteins 2014; 82:2970-81. [DOI: 10.1002/prot.24654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/24/2014] [Accepted: 07/15/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Yoshiharu Mori
- Department of Theoretical and Computational Molecular Science; Institute for Molecular Science; Okazaki Aichi 444-8585 Japan
| | - Hisashi Okumura
- Department of Theoretical and Computational Molecular Science; Institute for Molecular Science; Okazaki Aichi 444-8585 Japan
- Research Center for Computational Science; Institute for Molecular Science; Okazaki Aichi 444-8585 Japan
- Department of Structural Molecular Science; The Graduate University for Advanced Studies; Okazaki Aichi 444-8585 Japan
| |
Collapse
|
19
|
Takahashi S, Sugimoto N. Effect of pressure on thermal stability of g-quadruplex DNA and double-stranded DNA structures. Molecules 2013; 18:13297-319. [PMID: 24172240 PMCID: PMC6270079 DOI: 10.3390/molecules181113297] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/05/2013] [Accepted: 10/24/2013] [Indexed: 11/16/2022] Open
Abstract
Pressure is a thermodynamic parameter that can induce structural changes in biomolecules due to a volumetric decrease. Although most proteins are denatured by pressure over 100 MPa because they have the large cavities inside their structures, the double-stranded structure of DNA is stabilized or destabilized only marginally depending on the sequence and salt conditions. The thermal stability of the G-quadruplex DNA structure, an important non-canonical structure that likely impacts gene expression in cells, remarkably decreases with increasing pressure. Volumetric analysis revealed that human telomeric DNA changed by more than 50 cm3 mol-1 during the transition from a random coil to a quadruplex form. This value is approximately ten times larger than that for duplex DNA under similar conditions. The volumetric analysis also suggested that the formation of G-quadruplex DNA involves significant hydration changes. The presence of a cosolute such as poly(ethylene glycol) largely repressed the pressure effect on the stability of G-quadruplex due to alteration in stabilities of the interactions with hydrating water. This review discusses the importance of local perturbations of pressure on DNA structures involved in regulation of gene expression and highlights the potential for application of high-pressure chemistry in nucleic acid-based nanotechnology.
Collapse
Affiliation(s)
- Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; E-Mail:
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; E-Mail:
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-774-98-2580; Fax: +81-774-98-2585
| |
Collapse
|
20
|
Mori Y, Okumura H. Pressure-Induced Helical Structure of a Peptide Studied by Simulated Tempering Molecular Dynamics Simulations. J Phys Chem Lett 2013; 4:2079-2083. [PMID: 26283256 DOI: 10.1021/jz400769w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
It is known experimentally that an AK16 peptide forms more α-helix structures with increasing pressure while proteins unfold in general. In order to understand this abnormality, molecular dynamics (MD) simulations with the simulated tempering method for the isobaric-isothermal ensemble were performed in a wide pressure range from 1.0 × 10(-4) GPa to 1.4 GPa. From the results of the simulations, it is found that the fraction of the folded state decreases once and increases after that with increasing pressure. The partial molar volume change from the folded state to unfolded state increases monotonically from a negative value to a positive value with pressure. The behavior under high pressure conditions is consistent with the experimental results. The radius of gyration of highly helical structures decreases with increasing pressure, which indicates that the helix structure shrinks with pressure. This is the reason why the fraction of the folded state increases as pressure increases.
Collapse
Affiliation(s)
- Yoshiharu Mori
- †Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
| | - Hisashi Okumura
- ‡Research Center for Computational Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
- §Department of Structural Molecular Science, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
21
|
Kitahara R, Hata K, Li H, Williamson MP, Akasaka K. Pressure-induced chemical shifts as probes for conformational fluctuations in proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 71:35-58. [PMID: 23611314 DOI: 10.1016/j.pnmrs.2012.12.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 12/18/2012] [Indexed: 06/02/2023]
Affiliation(s)
- Ryo Kitahara
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
| | | | | | | | | |
Collapse
|
22
|
Fourme R, Girard E, Akasaka K. High-pressure macromolecular crystallography and NMR: status, achievements and prospects. Curr Opin Struct Biol 2012; 22:636-42. [PMID: 22959123 DOI: 10.1016/j.sbi.2012.07.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/08/2012] [Accepted: 07/09/2012] [Indexed: 10/27/2022]
Abstract
Biomacromolecules are thermodynamic entities that exist in general as an equilibrium mixture of the basic folded state and various higher-energy substates including all functionally relevant ones. Under physiological conditions, however, the higher-energy substates are usually undetectable on spectroscopy, as their equilibrium populations are extremely low. Hydrostatic pressure gives a general solution to this problem. As proteins generally have smaller partial molar volumes in higher-energy states than in the basic folded state, pressure can shift the equilibrium toward the former substantially, and allows their direct detection and analysis with X-ray crystallography or NMR spectroscopy at elevated pressures. These techniques are now mature, and their status and selected applications are presented with future prospects.
Collapse
Affiliation(s)
- Roger Fourme
- Synchrotron Soleil, BP48 Saint Aubin, 91192 Gif sur Yvette, France.
| | | | | |
Collapse
|
23
|
Terefe NS, Sheean P, Fernando S, Versteeg C. The stability of almond β-glucosidase during combined high pressure-thermal processing: a kinetic study. Appl Microbiol Biotechnol 2012; 97:2917-28. [PMID: 22644526 DOI: 10.1007/s00253-012-4162-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 01/02/2023]
Abstract
The thermal and the combined high pressure-thermal inactivation kinetics of almond β-glucosidase (β-D-glucoside glucohydrolase, EC 3.2.1.21) were investigated at pressures from 0.1 to 600 MPa and temperatures ranging from 30 to 80 °C. Thermal treatments at temperatures higher than 50 °C resulted in significant inactivation with complete inactivation after 2 min of treatment at 80 °C. Both the thermal and high pressure inactivation kinetics were described well by first-order model. Application of pressure increased the inactivation kinetics of the enzyme except at moderate temperatures (50 to 70 °C) and pressures between 0.1 and 100 MPa where slight pressure stabilisation of the enzyme against thermal denaturation was observed. The activation energy for the inactivation of the enzyme at atmospheric pressure was estimated to be 216.2±8.6 kJ/mol decreasing to 55.2±3.9 kJ/mol at 600 MPa. The activation volumes were negative at all temperature conditions excluding the temperature-pressure range where slight pressure stabilisation was observed. The values of the activation volumes were estimated to be -29.6±0.6, -29.8±1.7, -20.6±3.2, -41.2±4.8, -36.5±1.8, -39.6±4.3, -31.0±4.5 and -33.8±3.9 cm3/mol at 30, 35, 40, 45, 50, 60, 65 and 70 °C, respectively, with no clear trend with temperature. The pressure-temperature dependence of the inactivation rate constants was well described by an empirical third-order polynomial model.
Collapse
|
24
|
Kitahara R, Simorellis A, Hata K, Maeno A, Yokoyama S, Koide S, Akasaka K. A delicate interplay of structure, dynamics, and thermodynamics for function: a high pressure NMR study of outer surface protein A. Biophys J 2012; 102:916-26. [PMID: 22385863 PMCID: PMC3283806 DOI: 10.1016/j.bpj.2011.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 11/23/2011] [Accepted: 12/01/2011] [Indexed: 10/28/2022] Open
Abstract
Outer surface protein A (OspA) is a crucial protein in the infection of Borrelia burgdorferi causing Lyme disease. We studied conformational fluctuations of OspA with high-pressure (15)N/(1)H two-dimensional NMR along with high-pressure fluorescence spectroscopy. We found evidence within folded, native OspA for rapid local fluctuations of the polypeptide backbone in the nonglobular single layer β-sheet connecting the N- and C-terminal domains with τ << ms, which may give the two domains certain independence in mobility and thermodynamic stability. Furthermore, we found that folded, native OspA is in equilibrium (τ >> ms) with a minor conformer I, which is almost fully disordered and hydrated for the entire C-terminal part of the polypeptide chain from β8 to the C-terminus. Conformer I is characterized with ΔG(0) = 32 ± 9 kJ/mol and ΔV(0) = -140 ± 40 mL/mol, populating only ∼0.001% at 40°C at 0.1 MPa, pH 5.9. Because in the folded conformer the receptor binding epitope of OspA is buried in the C-terminal domain, its transition into conformer I under in vivo conditions may be critical for the infection of B. burgdorferi. The formation and stability of the peculiar conformer I are apparently supported by a large packing defect or cavity located in the C-terminal domain.
Collapse
Affiliation(s)
- Ryo Kitahara
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
- RIKEN SPring-8 Center, Hyogo, Japan
| | | | - Kazumi Hata
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
- RIKEN SPring-8 Center, Hyogo, Japan
| | - Akihiro Maeno
- RIKEN SPring-8 Center, Hyogo, Japan
- High Pressure Protein Research Center, Institute of Advanced Technology, Kinki University, Wakayama, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, Yokohama, Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Shohei Koide
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Kazuyuki Akasaka
- RIKEN SPring-8 Center, Hyogo, Japan
- High Pressure Protein Research Center, Institute of Advanced Technology, Kinki University, Wakayama, Japan
| |
Collapse
|
25
|
Collins MD, Kim CU, Gruner SM. High-pressure protein crystallography and NMR to explore protein conformations. Annu Rev Biophys 2011; 40:81-98. [PMID: 21275639 DOI: 10.1146/annurev-biophys-042910-155304] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-pressure methods for solving protein structures by X-ray crystallography and NMR are maturing. These techniques are beginning to impact our understanding of thermodynamic and structural features that define not only the protein's native conformation, but also the higher free energy conformations. The ability of high-pressure methods to visualize these mostly unexplored conformations provides new insight into protein function and dynamics. In this review, we begin with a historical discussion of high-pressure structural studies, with an eye toward early results that paved the way to mapping the multiple conformations of proteins. This is followed by an examination of several recent studies that emphasize different strengths and uses of high-pressure structural studies, ranging from basic thermodynamics to the suggestion of high-pressure structural methods as a tool for protein engineering.
Collapse
Affiliation(s)
- Marcus D Collins
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA
| | | | | |
Collapse
|
26
|
Cioni P, Gabellieri E. Protein dynamics and pressure: what can high pressure tell us about protein structural flexibility? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:934-41. [PMID: 20934540 DOI: 10.1016/j.bbapap.2010.09.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 09/22/2010] [Accepted: 09/30/2010] [Indexed: 11/25/2022]
Abstract
After a brief overview of NMR and X-ray crystallography studies on protein flexibility under pressure, we summarize the effects of hydrostatic pressure on the native fold of azurin from Pseudomonas aeruginosa as inferred from the variation of the intrinsic phosphorescence lifetime and the acrylamide bimolecular quenching rate constants of the buried Trp residue. The pressure/temperature response of the globular fold and modulation of its dynamical structure is analyzed both in terms of a reduction of internal cavities and of the hydration of the polypeptide. The study of the effect of two single point cavity forming mutations, F110S and I7S, on the unfolding volume change (ΔV(0)) of azurin and on the internal dynamics of the protein fold under pressure demonstrate that the creation of an internal cavity will enhance the plasticity and lower the stability of the globular structure. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
Affiliation(s)
- Patrizia Cioni
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Area della Ricerca di Pisa, Via Moruzzi 1, 56100-Pisa, Italy.
| | | |
Collapse
|
27
|
Wilton DJ, Kitahara R, Akasaka K, Pandya MJ, Williamson MP. Pressure-dependent structure changes in barnase on ligand binding reveal intermediate rate fluctuations. Biophys J 2009; 97:1482-90. [PMID: 19720037 DOI: 10.1016/j.bpj.2009.06.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 05/20/2009] [Accepted: 06/15/2009] [Indexed: 11/24/2022] Open
Abstract
In this work we measured 1H NMR chemical shifts for the ribonuclease barnase at pressures from 3 MPa to 200 MPa, both free and bound to d(CGAC). Shift changes with pressure were used as restraints to determine the change in structure with pressure. Free barnase is compressed by approximately 0.7%. The largest changes are on the ligand-binding face close to Lys-27, which is the recognition site for the cleaved phosphate bond. This part of the protein also contains the buried water molecules. In the presence of d(CGAC), the compressibility is reduced by approximately 70% and the region of structural change is altered: the ligand-binding face is now almost incompressible, whereas changes occur at the opposite face. Because compressibility is proportional to mean square volume fluctuation, we conclude that in free barnase, volume fluctuation is largest close to the active site, but when the inhibitor is bound, the fluctuations become much smaller and are located mainly on the opposite face. The timescale of the fluctuations is nanoseconds to microseconds, consistent with the degree of ordering required for the fluctuations, which are intermediate between rapid uncorrelated side-chain dynamics and slow conformational transitions. The high-pressure technique is therefore useful for characterizing motions on this relatively inaccessible timescale.
Collapse
Affiliation(s)
- David J Wilton
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | | | | | | | | |
Collapse
|
28
|
Barstow B, Ando N, Kim CU, Gruner SM. Coupling of pressure-induced structural shifts to spectral changes in a yellow fluorescent protein. Biophys J 2009; 97:1719-27. [PMID: 19751677 PMCID: PMC2749779 DOI: 10.1016/j.bpj.2009.06.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 06/02/2009] [Accepted: 06/24/2009] [Indexed: 11/19/2022] Open
Abstract
X-ray diffraction analysis of pressure-induced structural changes in the Aequorea yellow fluorescent protein Citrine reveals the structural basis for the continuous fluorescence peak shift from yellow to green that is observed on pressurization. This fluorescence peak shift is caused by a reorientation of the two elements of the Citrine chromophore. This study describes the structural linkages in Citrine that are responsible for the local reorientation of the chromophore. The deformation of the Citrine chromophore is actuated by the differential motion of two clusters of atoms that compose the beta-barrel scaffold of the molecule, resulting in a slight bending of the beta-barrel. The high-pressure structures also show a perturbation of the hydrogen bonding network that stabilizes the excited state of the Citrine chromophore. The perturbation of this network is implicated in the reduction of fluorescence intensity of Citrine. The blue-shift of the Citrine fluorescence spectrum resulting from the bending of the beta-barrel provides structural insight into the transient blue-shifting of isolated yellow fluorescent protein molecules under ambient conditions and suggests mechanisms to alter the time-dependent behavior of Citrine under ambient conditions.
Collapse
Affiliation(s)
- Buz Barstow
- School of Applied Physics, Cornell University, Ithaca, New York
| | - Nozomi Ando
- Department of Physics, Cornell University, Ithaca, New York
| | - Chae Un Kim
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York
| | - Sol M. Gruner
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York
- Department of Physics, Cornell University, Ithaca, New York
| |
Collapse
|
29
|
Suzuki Y, Takahashi R, Shimizu T, Tansho M, Yamauchi K, Williamson MP, Asakura T. Intra- and Intermolecular Effects on 1H Chemical Shifts in a Silk Model Peptide Determined by High-Field Solid State 1H NMR and Empirical Calculations. J Phys Chem B 2009; 113:9756-61. [DOI: 10.1021/jp903020p] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Suzuki
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan, National Institute for Material Science, 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank Sheffield S10 2TN, U.K
| | - Rui Takahashi
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan, National Institute for Material Science, 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank Sheffield S10 2TN, U.K
| | - Tadashi Shimizu
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan, National Institute for Material Science, 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank Sheffield S10 2TN, U.K
| | - Masataka Tansho
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan, National Institute for Material Science, 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank Sheffield S10 2TN, U.K
| | - Kazuo Yamauchi
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan, National Institute for Material Science, 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank Sheffield S10 2TN, U.K
| | - Mike P. Williamson
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan, National Institute for Material Science, 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank Sheffield S10 2TN, U.K
| | - Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan, National Institute for Material Science, 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank Sheffield S10 2TN, U.K
| |
Collapse
|
30
|
Wilton DJ, Kitahara R, Akasaka K, Williamson MP. Pressure-dependent 13C chemical shifts in proteins: origins and applications. JOURNAL OF BIOMOLECULAR NMR 2009; 44:25-33. [PMID: 19308328 DOI: 10.1007/s10858-009-9312-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/10/2009] [Accepted: 03/11/2009] [Indexed: 05/27/2023]
Abstract
Pressure-dependent (13)C chemical shifts have been measured for aliphatic carbons in barnase and Protein G. Up to 200 MPa (2 kbar), most shift changes are linear, demonstrating pressure-independent compressibilities. CH(3), CH(2) and CH carbon shifts change on average by +0.23, -0.09 and -0.18 ppm, respectively, due to a combination of bond shortening and changes in bond angles, the latter matching one explanation for the gamma-gauche effect. In addition, there is a residue-specific component, arising from both local compression and conformational change. To assess the relative magnitudes of these effects, residue-specific shift changes for protein G were converted into structural restraints and used to calculate the change in structure with pressure, using a genetic algorithm to convert shift changes into dihedral angle restraints. The results demonstrate that residual (13)C alpha shifts are dominated by dihedral angle changes and can be used to calculate structural change, whereas (13)C beta shifts retain significant dependence on local compression, making them less useful as structural restraints.
Collapse
Affiliation(s)
- David J Wilton
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | | | | | | |
Collapse
|
31
|
Barstow B, Ando N, Kim CU, Gruner SM. Alteration of citrine structure by hydrostatic pressure explains the accompanying spectral shift. Proc Natl Acad Sci U S A 2008; 105:13362-6. [PMID: 18768811 PMCID: PMC2533195 DOI: 10.1073/pnas.0802252105] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Indexed: 11/18/2022] Open
Abstract
A protein molecule is an intricate system whose function is highly sensitive to small external perturbations. However, no examples that correlate protein function with progressive subangstrom structural perturbations have thus far been presented. To elucidate this relationship, we have investigated a fluorescent protein, citrine, as a model system under high-pressure perturbation. The protein has been compressed to produce deformations of its chromophore by applying a high-pressure cryocooling technique. A closely spaced series of x-ray crystallographic structures reveals that the chromophore undergoes a progressive deformation of up to 0.8 A at an applied pressure of 500 MPa. It is experimentally demonstrated that the structural motion is directly correlated with the progressive fluorescence shift of citrine from yellow to green under these conditions. This protein is therefore highly sensitive to subangstrom deformations and its function must be understood at the subangstrom level. These results have significant implications for protein function prediction and biomolecule design and engineering, because they suggest methods to tune protein function by modification of the protein scaffold.
Collapse
Affiliation(s)
| | | | - Chae Un Kim
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853
| | - Sol M. Gruner
- *School of Applied Physics
- Department of Physics, and
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853
| |
Collapse
|
32
|
Wilton DJ, Ghosh M, Chary KVA, Akasaka K, Williamson MP. Structural change in a B-DNA helix with hydrostatic pressure. Nucleic Acids Res 2008; 36:4032-7. [PMID: 18515837 PMCID: PMC2475645 DOI: 10.1093/nar/gkn350] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Study of the effects of pressure on macromolecular structure improves our understanding of the forces governing structure, provides details on the relevance of cavities and packing in structure, increases our understanding of hydration and provides a basis to understand the biology of high-pressure organisms. A study of DNA, in particular, helps us to understand how pressure can affect gene activity. Here we present the first high-resolution experimental study of B-DNA structure at high pressure, using NMR data acquired at pressures up to 200 MPa (2 kbar). The structure of DNA compresses very little, but is distorted so as to widen the minor groove, and to compress hydrogen bonds, with AT pairs compressing more than GC pairs. The minor groove changes are suggested to lead to a compression of the hydration water in the minor groove.
Collapse
Affiliation(s)
- David J Wilton
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | |
Collapse
|
33
|
Wilton DJ, Tunnicliffe RB, Kamatari YO, Akasaka K, Williamson MP. Pressure-induced changes in the solution structure of the GB1 domain of protein G. Proteins 2008; 71:1432-40. [PMID: 18076052 DOI: 10.1002/prot.21832] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The solution structure of the GB1 domain of protein G at a pressure of 2 kbar is presented. The structure was calculated as a change from an energy-minimised low-pressure structure using (1)H chemical shifts. Two separate changes can be characterised: a compression/distortion, which is linear with pressure; and a stabilisation of an alternative folded state. On application of pressure, linear chemical shift changes reveal that the backbone structure changes by about 0.2 A root mean square, and is compressed by about 1% overall. The alpha-helix compresses, particularly at the C-terminal end, and moves toward the beta-sheet, while the beta-sheet is twisted, with the corners closest to the alpha-helix curling up towards it. The largest changes in structure are along the second beta-strand, which becomes more twisted. This strand is where the protein binds to IgG. Curved chemical shift changes with pressure indicate that high pressure also populates an alternative structure with a distortion towards the C-terminal end of the helix, which is likely to be caused by insertion of a water molecule.
Collapse
Affiliation(s)
- David J Wilton
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | | | | | | | | |
Collapse
|
34
|
Imai T, Ohyama S, Kovalenko A, Hirata F. Theoretical study of the partial molar volume change associated with the pressure-induced structural transition of ubiquitin. Protein Sci 2007; 16:1927-33. [PMID: 17660257 PMCID: PMC2206979 DOI: 10.1110/ps.072909007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The partial molar volume (PMV) change associated with the pressure-induced structural transition of ubiquitin is analyzed by the three-dimensional reference interaction site model (3D-RISM) theory of molecular solvation. The theory predicts that the PMV decreases upon the structural transition, which is consistent with the experimental observation. The volume decomposition analysis demonstrates that the PMV reduction is primarily caused by the decrease in the volume of structural voids in the protein, which is partially canceled by the volume expansion due to the hydration effects. It is found from further analysis that the PMV reduction is ascribed substantially to the penetration of water molecules into a specific part of the protein. Based on the thermodynamic relation, this result implies that the water penetration causes the pressure-induced structural transition. It supports the water penetration model of pressure denaturation of proteins proposed earlier.
Collapse
Affiliation(s)
- Takashi Imai
- Department of Bioscience and Bioinformatics, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | | | | | | |
Collapse
|
35
|
Collins MD, Quillin ML, Hummer G, Matthews BW, Gruner SM. Structural rigidity of a large cavity-containing protein revealed by high-pressure crystallography. J Mol Biol 2007; 367:752-63. [PMID: 17292912 PMCID: PMC1853337 DOI: 10.1016/j.jmb.2006.12.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 12/07/2006] [Accepted: 12/10/2006] [Indexed: 01/07/2023]
Abstract
Steric constraints, charged interactions and many other forces important to protein structure and function can be explored by mutagenic experiments. Research of this kind has led to a wealth of knowledge about what stabilizes proteins in their folded states. To gain a more complete picture requires that we perturb these structures in a continuous manner, something mutagenesis cannot achieve. With high pressure crystallographic methods it is now possible to explore the detailed properties of proteins while continuously varying thermodynamic parameters. Here, we detail the structural response of the cavity-containing mutant L99A of T4 lysozyme, as well as its pseudo wild-type (WT*) counterpart, to hydrostatic pressure. Surprisingly, the cavity has almost no effect on the pressure response: virtually the same changes are observed in WT* as in L99A under pressure. The cavity is most rigid, while other regions deform substantially. This implies that while some residues may increase the thermodynamic stability of a protein, they may also be structurally irrelevant. As recently shown, the cavity fills with water at pressures above 100 MPa while retaining its overall size. The resultant picture of the protein is one in which conformationally fluctuating side groups provide a liquid-like environment, but which also contribute to the rigidity of the peptide backbone.
Collapse
Affiliation(s)
- Marcus D Collins
- Department of Physics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Kazuyuki Akasaka
- School of biology-Oriented Science and Technology, Kinki University, 930 Nishimitani, Kinokawa-shi, Wakayama 649-6493, Japan.
| |
Collapse
|
37
|
Li H, Akasaka K. Conformational fluctuations of proteins revealed by variable pressure NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:331-45. [PMID: 16448868 DOI: 10.1016/j.bbapap.2005.12.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 12/12/2005] [Accepted: 12/13/2005] [Indexed: 11/19/2022]
Abstract
With the high-resolution variable-pressure NMR spectroscopy, one can study conformational fluctuations of proteins in a much wider conformational space than hitherto explored by NMR and other spectroscopic techniques. This is because a protein in solution generally exists as a dynamic mixture of conformers mutually differing in partial molar volume, and pressure can select the population of a conformer according to its relative volume. In this review, we describe how variable-pressure NMR can be used to probe conformational fluctuations of proteins in a wide conformational space from the folded to the fully unfolded structures, with actual examples. Furthermore, the newly emerging technique "NMR snapshots" expresses amply fluctuating protein structures as changes in atomic coordinates. Finally, the concept of conformational fluctuation is extended to include intermolecular association leading to amyloidosis.
Collapse
Affiliation(s)
- Hua Li
- RIKEN Genomic Sciences Center, Yokohama 230-0045, Japan
| | | |
Collapse
|
38
|
Appavou MS, Gibrat G, Bellissent-Funel MC. Influence of pressure on structure and dynamics of bovine pancreatic trypsin inhibitor (BPTI): small angle and quasi-elastic neutron scattering studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:414-23. [PMID: 16513440 DOI: 10.1016/j.bbapap.2006.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 12/16/2005] [Accepted: 01/11/2006] [Indexed: 11/18/2022]
Abstract
We have studied the influence of pressure on structure and dynamics of a small protein belonging to the enzymatic catalysis: the bovine pancreatic trypsin inhibitor (BPTI). Using a copper-beryllium high-pressure cell, we have performed small angle neutron scattering (SANS) experiment on NEAT spectrometer at HMI (Berlin, Germany). In the SANS configuration, the evolution of the radius of gyration and of the shape of the protein under pressures up to 6,000 bar has been studied. When increasing pressure from atmospheric pressure up to 6,000 bar, the pressure effects on the global structure of BPTI result on a reduction of the radius of gyration from 13.4 A down to 12.0 A. Between 5,000 and 6,000 bar, some transition already detected by FTIR [N. Takeda, K. Nakano, M. Kato, Y. Taniguchi, Biospectroscopy, 4, 1998, pp. 209-216] is observed. The pressure effect is not reversible because the initial value of the radius of gyration is not recovered after pressure release. By extending the range of wave-vectors to high q, we have observed a change of the form factor (shape) of the BPTI under pressure. At atmospheric pressure BPTI exhibits an ellipsoidal form factor that is characteristic of the native state. When the pressure is increased from atmospheric pressure up to 6,000 bar, the protein keeps its ellipsoidal shape. The parameters of the ellipsoid vary and the transition detected between 5,000 and 6,000 bar in the form factor of BPTI is in agreement with the FTIR results. After pressure release, the form factor of BPTI is characteristic of an ellipsoid of revolution with a semi-axis a, slightly elongated with respect to that of the native one, indicating that the pressure-induced structural changes on the protein are not reversible. The global motions and the internal dynamics of BPTI protein have been investigated in the same pressure range by quasi-elastic neutron scattering experiments on IN5 time-of-flight spectrometer at ILL (Grenoble, France). The diffusion coefficients D and the internal relaxation times <tau(2)> of BPTI deduced from the analysis of the intermediate scattering functions show a slowing down of protein dynamics when increasing pressure.
Collapse
Affiliation(s)
- M-S Appavou
- Laboratoire Léon Brillouin, CEA-CNRS, CEA Saclay, 91191 Gif-sur-Yvette, France
| | | | | |
Collapse
|
39
|
Meersman F, Dobson CM, Heremans K. Protein unfolding, amyloid fibril formation and configurational energy landscapes under high pressure conditions. Chem Soc Rev 2006; 35:908-17. [PMID: 17003897 DOI: 10.1039/b517761h] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High hydrostatic pressure induces conformational changes in proteins ranging from compression of the molecules to loss of native structure. In this tutorial review we describe how the interplay between the volume change and the compressibility leads to pressure-induced unfolding of proteins and dissociation of amyloid fibrils. We also discuss the effect of pressure on protein folding and free energy landscapes. From a molecular viewpoint, pressure effects can be rationalised in terms of packing and hydration of proteins.
Collapse
Affiliation(s)
- Filip Meersman
- Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | | | | |
Collapse
|
40
|
Royer CA. Insights into the role of hydration in protein structure and stability obtained through hydrostatic pressure studies. Braz J Med Biol Res 2005; 38:1167-73. [PMID: 16082456 DOI: 10.1590/s0100-879x2005000800003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A thorough understanding of protein structure and stability requires that we elucidate the molecular basis for the effects of both temperature and pressure on protein conformational transitions. While temperature effects are relatively well understood and the change in heat capacity upon unfolding has been reasonably well parameterized, the state of understanding of pressure effects is much less advanced. Ultimately, a quantitative parameterization of the volume changes (at the basis of pressure effects) accompanying protein conformational transitions will be required. The present report introduces a qualitative hypothesis based on available model compound data for the molecular basis of volume change upon protein unfolding and its dependence on temperature.
Collapse
Affiliation(s)
- C A Royer
- Centre de Biochimie Structurale, Montpellier Cedex, France.
| |
Collapse
|
41
|
Kitahara R, Yokoyama S, Akasaka K. NMR snapshots of a fluctuating protein structure: ubiquitin at 30 bar-3 kbar. J Mol Biol 2005; 347:277-85. [PMID: 15740740 DOI: 10.1016/j.jmb.2005.01.052] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2004] [Revised: 01/08/2005] [Accepted: 01/21/2005] [Indexed: 10/25/2022]
Abstract
Conformational fluctuation plays a key role in protein function, but we know little about the associated structural changes. Here we present a general method for elucidating, at the atomic level, a large-scale shape change of a protein molecule in solution undergoing conformational fluctuation. The method utilizes the intimate relationship between conformation and partial molar volume and determines three-dimensional structures of a protein at different pressures using variable pressure NMR technique, whereby NOE distance and torsion angle constraints are used to create average coordinates. Ubiquitin (pH 4.6 at 20 degrees C) was chosen as the first target, for which structures were determined at 30 bar and at 3 kbar, giving "NMR snapshots" of a fluctuating protein structure at atomic resolution. The result reveals that the helix swings in and out by >3 angstroms with a simultaneous reorientation of the C-terminal segment, providing an "open" conformer suitable for enzyme recognition. Spin relaxation analysis indicates that this fluctuation occurs in the ten microsecond time range with activation volumes -4.2(+/-3.2) and 18.5(+/-3.0) ml/mol for the "closed-to-open" and the "open-to-closed" transitions, respectively.
Collapse
Affiliation(s)
- Ryo Kitahara
- Structural and Molecular Biology Laboratory, RIKEN Harima Institute at Spring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo 679-5148, Japan
| | | | | |
Collapse
|
42
|
Seefeldt MB, Ouyang J, Froland WA, Carpenter JF, Randolph TW. High-pressure refolding of bikunin: efficacy and thermodynamics. Protein Sci 2004; 13:2639-50. [PMID: 15388859 PMCID: PMC2286545 DOI: 10.1110/ps.04891204] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 07/06/2004] [Accepted: 07/06/2004] [Indexed: 10/26/2022]
Abstract
Bikunin is a glycosylated protein that aggregates extensively during mammalian cell culture, resulting in loss of activity, loss of native secondary structure, and the formation of nonnative disulfide bonds. We investigated the use of high hydrostatic pressure (1000-3000 bar) for the refolding of bikunin aggregates. The refolding yield obtained with pressure-modulated refolding at 2000 bar was 70 (+/-5%) by reverse-phase chromatography (RP-HPLC), significantly higher than the value of 55 (+/-6%) (RP-HPLC) obtained with traditional guanidine HCl "dilution-refolding." In addition, we determined the thermodynamics of pressure-modulated refolding. The change in volume for the transition of aggregate to monomer DeltaV(refolding) was calculated to be -28 (+/-5) mL/mole. Refolding was accompanied by a loss of hydrophobic exposure, resulting in a positive contribution to the DeltaV(refolding). These findings suggest that the disruption of electro-static interactions or the differences in size of solvent-free cavities between the aggregate and the monomer are the prevailing contributions to the negative DeltaV(refolding).
Collapse
Affiliation(s)
- Matthew B Seefeldt
- Department of Chemical and Biological Engineering, Center for Pharmaceutical Biotechnology, ECCH 111, University of Colorado, Boulder, CO 80309-0424, USA
| | | | | | | | | |
Collapse
|
43
|
Canalia M, Malliavin TE, Kremer W, Kalbitzer HR. Molecular dynamics simulations of HPr under hydrostatic pressure. Biopolymers 2004; 74:377-88. [PMID: 15222017 DOI: 10.1002/bip.20089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The histidine-containing protein (HPr) plays an important role in the phosphotransferase system (PTS). The deformations induced on the protein structure at high hydrostatic pressure values (4, 50, 100, 150, and 200 MPa) were previously (H. Kalbitzer, A. Görler, H. Li, P. Dubovskii, A. Hengstenberg, C. Kowolik, H. Yamada, and K. Akasaka, Protein Science 2000, Vol. 9, pp. 693-703) analyzed by NMR experiments: the nonlinear variations of the amide chemical shifts at high pressure values were supposed to arise from induced shifts in the protein conformational equilibrium. Molecular dynamics (MD) simulations are here performed, to analyze the protein internal mobility at 0.1 MPa, and to relate the nonlinear variations of chemical shifts observed at high pressure, to variations in conformational equilibrium. The global features of the protein structure are only slightly modified along the pressure. Nevertheless, the values of the Voronoi residues volumes show that the residues of alpha-helices are more compressed that those belonging to the beta-sheet. The alpha-helices are also displaying the largest internal mobility and deformation in the simulations. The nonlinearity of the 1H chemical shifts, computed from the MD simulation snapshots, is in qualitative agreement with the nonlinearity of the experimentally observed chemical shifts.
Collapse
Affiliation(s)
- Muriel Canalia
- Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-Chimique, Paris, France
| | | | | | | |
Collapse
|