1
|
Hamm P, Driessen MD, Hauptstein N, Kehrein J, Worschech R, Pouyan P, Haag R, Schubert US, Müller TD, Meinel L, Lühmann T. Deciphering Polymer Interactions in Bioconjugates with Different Architectures by Structural Analysis via Time-Resolved Limited Proteolysis Mass Spectrometry. Angew Chem Int Ed Engl 2025; 64:e202415354. [PMID: 39780761 DOI: 10.1002/anie.202415354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Therapeutic proteins are commonly conjugated with polymers to modulate their pharmacokinetics but often lack a description of the polymer-protein interaction. We deployed limited proteolysis mass spectrometry (LiP-MS) to reveal the interaction of polyethylene glycol (PEG) and PEG alternative polymers with interferon-α2a (IFN). Target conjugates were digested with the specific protease trypsin and a "heavy" 15N-IFN wild type (IFN-WT) for time-resolved quantification of the cleavage dynamics. Interactions between IFN-α2a and its high-affinity receptor were detailed by LiP-MS. Then, 10 kDa polymers of PEG, linear polyglycerol (LPG), and poly(2-oxazoline) (POX) with two different cyclooctyne linkers (BCN/DBCO) were used for site-specific bioconjugation to azide functionalized IFN-α2a. Tryptic events at each cleavage site and in different structural environments (loops/helices) were compared. PEG and LPG were similar, and POX showed a reduced interaction profile with the IFN-α2a surface. All-atom molecular dynamics simulations of IFN-DBCO-polymer conjugates revealed distinct and transient (below 50 ns) protein-interaction profiles for PEG, LPG, and POX. Cleavage dynamics of IFN-polymer conjugates from the BCN handle were homogeneous, pointing to a more conserved IFN structure than DBCO-polymer conjugates. In summary, time-resolved LiP-MS for quantification of cleavage events enhances the structural understanding of transient IFN-polymer interactions, which may be extended to other bioconjugate types.
Collapse
Affiliation(s)
- Prisca Hamm
- Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany
| | - Marc D Driessen
- Department for Oral and Craniomaxillofacial and Plastic Surgery, University Hospital Cologne and Faculty of Medicine, University of Cologne, 50937, Cologne, Germany
- Institute of Molecular Medicine, University of Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Niklas Hauptstein
- Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany
| | - Josef Kehrein
- Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany
| | - Rafael Worschech
- Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany
| | - Paria Pouyan
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Thomas D Müller
- Lehrstuhl für Botanik I, Molekulare Pflanzenphysik und Biophysik, University of Würzburg, 97082, Würzburg, Germany
| | - Lorenz Meinel
- Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), 97080, Würzburg, Germany
| | - Tessa Lühmann
- Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
2
|
Maiti S, Singh A, Maji T, Saibo NV, De S. Experimental methods to study the structure and dynamics of intrinsically disordered regions in proteins. Curr Res Struct Biol 2024; 7:100138. [PMID: 38707546 PMCID: PMC11068507 DOI: 10.1016/j.crstbi.2024.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 05/07/2024] Open
Abstract
Eukaryotic proteins often feature long stretches of amino acids that lack a well-defined three-dimensional structure and are referred to as intrinsically disordered proteins (IDPs) or regions (IDRs). Although these proteins challenge conventional structure-function paradigms, they play vital roles in cellular processes. Recent progress in experimental techniques, such as NMR spectroscopy, single molecule FRET, high speed AFM and SAXS, have provided valuable insights into the biophysical basis of IDP function. This review discusses the advancements made in these techniques particularly for the study of disordered regions in proteins. In NMR spectroscopy new strategies such as 13C detection, non-uniform sampling, segmental isotope labeling, and rapid data acquisition methods address the challenges posed by spectral overcrowding and low stability of IDPs. The importance of various NMR parameters, including chemical shifts, hydrogen exchange rates, and relaxation measurements, to reveal transient secondary structures within IDRs and IDPs are presented. Given the high flexibility of IDPs, the review outlines NMR methods for assessing their dynamics at both fast (ps-ns) and slow (μs-ms) timescales. IDPs exert their functions through interactions with other molecules such as proteins, DNA, or RNA. NMR-based titration experiments yield insights into the thermodynamics and kinetics of these interactions. Detailed study of IDPs requires multiple experimental techniques, and thus, several methods are described for studying disordered proteins, highlighting their respective advantages and limitations. The potential for integrating these complementary techniques, each offering unique perspectives, is explored to achieve a comprehensive understanding of IDPs.
Collapse
Affiliation(s)
| | - Aakanksha Singh
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Tanisha Maji
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Nikita V. Saibo
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| |
Collapse
|
3
|
Minic S, Annighöfer B, Milcic M, Maignen F, Brûlet A, Combet S. The effects of biliverdin on pressure-induced unfolding of apomyoglobin: The specific role of Zn 2+ ions. Int J Biol Macromol 2023:125549. [PMID: 37356686 DOI: 10.1016/j.ijbiomac.2023.125549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Apomyoglobin (apoMb), a model protein in biochemistry, exhibits a strong propensity to bind various ligands, which makes it a good candidate as a carrier of bioactive hydrophobic drugs. The stability of its hydrophobic pocket determines its potential as a carrier of bioactive compounds. High pressure (HP) is a potent tool for studying protein stability, revealing the specific role of hydrophobic cavities in unfolding. We probed the effects of biliverdin (BV) binding and its complex with Zn2+ ions on the structure and HP stability of apoMb. CD spectroscopy and SAXS measurements revealed that BV and BV-Zn2+ complexes make the apoMb structure more compact with higher α-helical content. We performed in-situ HP measurements of apoMb intrinsic fluorescence to demonstrate the ability of BV to stabilise apoMb structure at HP conditions. Furthermore, the presence of Zn2+ within the apoMb-BV complex significantly enhances the BV stabilisation effect. In-situ visible absorption study of BV chromophore confirmed the ability of Zn2+ to increase the stability of apoMb-BV complex under HP: the onset of complex dissociation is shifted by ~100 MPa in the presence of Zn2+. By combining HP-fluorescence and HP-visible absorption spectroscopy, our strategy highlights the crucial role of tetrapyrrole-metal complexes in stabilising apoMb hydrophobic pocket.
Collapse
Affiliation(s)
- Simeon Minic
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette CEDEX, France; Center of Excellence for Molecular Food Sciences, Department of Biochemistry, University of Belgrade - Faculty of Chemistry, Belgrade, Serbia.
| | - Burkhard Annighöfer
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette CEDEX, France
| | - Milos Milcic
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - François Maignen
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette CEDEX, France
| | - Annie Brûlet
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette CEDEX, France
| | - Sophie Combet
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette CEDEX, France.
| |
Collapse
|
4
|
Singh MB, Vishvakarma VK, Lal AA, Chandra R, Jain P, Singh P. A comparative study of 5- fluorouracil, doxorubicin, methotrexate, paclitaxel for their inhibition ability for Mpro of nCoV: Molecular docking and molecular dynamics simulations. J INDIAN CHEM SOC 2022. [PMCID: PMC9632266 DOI: 10.1016/j.jics.2022.100790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A new corona virus (nCoV) is aetiological agent responsible for the viral pneumonia epidemic. Three is no specific therapeutic medicines available for the treatment of this condition and also effective treatment choices are few. In this work author tried to investigate some repurposing drug such as 5- fluorouracil, doxorubicin, methotrexate and paclitaxel against the main protease (Mpro) of nCoV by the computational model. Molecular docking was performed to screen out the best compound and doxorubicin was found to have minimum binding energy −121.89 kcal/mol. To further study, MD simulations were performed at 300 K and the result successfully corroborate the energy obtained by molecular docking. Temperature dependent MD simulation of the best molecule that is doxorubicin obtained from docking result was performed to check the variation in structural changes in Mpro of nCoV at 290 K, 310 K, 320 K and 325 K. It is sound that doxorubicin binds effectively with Mpro of nCoV at 290 K. Further ADME properties of the 5- fluorouracil, doxorubicin, methotrexate and paclitaxel were also evaluated to understand the bioavailability.
Collapse
|
5
|
|
6
|
Insight into the binding of glycerol with myoglobin: Spectroscopic and MD simulation approach. Int J Biol Macromol 2020; 159:433-443. [PMID: 32360459 DOI: 10.1016/j.ijbiomac.2020.04.065] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022]
Abstract
Stability of proteins plays a significant role not only in their biological function but also in medical science and protein engineering. Since proteins are only stable in special conditions, maintaining their stability and function in biological and biotechnological applications may pose serious challenges. Osmolytes provide a general method of shielding proteins from the unfolding and aggregation caused by extreme stress on the environment. In such studies, the researchers used spectroscopic and simulation approaches to study the alterations of the myoglobin structure and stability in glycerol presence. Experimental results showed a stability improvement of the complex myoglobin-glycerol. After the addition of glycerol resulting in the initiation of hydrogen bonds and higher levels of hydrophobicity, the increase of the Tm was observed. The static mode quenching observed in this study. Van der Waals forces and hydrogen bindings had a decisive and significant role concerning the stability of protein which was consistent with the modeling results. Molecular dynamics simulation showed that the glycerol presence could enhance myoglobin stability. The consistency between the theoretical studies and experimental findings demonstrates that the method proposed in this study could provide a useful method for protein-ligand complex investigations.
Collapse
|
7
|
Impact of A90P, F106L and H64V mutations on neuroglobin stability and ligand binding kinetics. J Biol Inorg Chem 2018; 24:39-52. [DOI: 10.1007/s00775-018-1625-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022]
|
8
|
Measuring protein structural changes on a proteome-wide scale using limited proteolysis-coupled mass spectrometry. Nat Protoc 2017; 12:2391-2410. [DOI: 10.1038/nprot.2017.100] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Grunwald EW, Tatiyaborworntham N, Faustman C, Richards MP. Effect of 4-hydroxy-2-nonenal on myoglobin-mediated lipid oxidation when varying histidine content and hemin affinity. Food Chem 2017; 227:289-297. [DOI: 10.1016/j.foodchem.2017.01.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/13/2016] [Accepted: 01/08/2017] [Indexed: 11/15/2022]
|
10
|
Mukherjee S, Mukherjee M, Bandyopadhyay S, Dey A. Three phases in pH dependent heme abstraction from myoglobin. J Inorg Biochem 2017; 172:80-87. [DOI: 10.1016/j.jinorgbio.2017.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 04/04/2017] [Accepted: 04/08/2017] [Indexed: 10/19/2022]
|
11
|
Application of conventional molecular dynamics simulation in evaluating the stability of apomyoglobin in urea solution. Sci Rep 2017; 7:44651. [PMID: 28300210 PMCID: PMC5353640 DOI: 10.1038/srep44651] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/09/2017] [Indexed: 01/02/2023] Open
Abstract
In this study, we had exploited the advancement in computer technology to determine the stability of four apomyoglobin variants namely wild type, E109A, E109G and G65A/G73A by conducting conventional molecular dynamics simulations in explicit urea solution. Variations in RMSD, native contacts and solvent accessible surface area of the apomyoglobin variants during the simulation were calculated to probe the effect of mutation on the overall conformation of the protein. Subsequently, the mechanism leading to the destabilization of the apoMb variants was studied through the calculation of correlation matrix, principal component analyses, hydrogen bond analyses and RMSF. The results obtained here correlate well with the study conducted by Baldwin and Luo which showed improved stability of apomyoglobin with E109A mutation and contrariwise for E109G and G65A/G73A mutation. These positive observations showcase the feasibility of exploiting MD simulation in determining protein stability prior to protein expression.
Collapse
|
12
|
Childers MC, Daggett V. Insights from molecular dynamics simulations for computational protein design. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2017; 2:9-33. [PMID: 28239489 PMCID: PMC5321087 DOI: 10.1039/c6me00083e] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A grand challenge in the field of structural biology is to design and engineer proteins that exhibit targeted functions. Although much success on this front has been achieved, design success rates remain low, an ever-present reminder of our limited understanding of the relationship between amino acid sequences and the structures they adopt. In addition to experimental techniques and rational design strategies, computational methods have been employed to aid in the design and engineering of proteins. Molecular dynamics (MD) is one such method that simulates the motions of proteins according to classical dynamics. Here, we review how insights into protein dynamics derived from MD simulations have influenced the design of proteins. One of the greatest strengths of MD is its capacity to reveal information beyond what is available in the static structures deposited in the Protein Data Bank. In this regard simulations can be used to directly guide protein design by providing atomistic details of the dynamic molecular interactions contributing to protein stability and function. MD simulations can also be used as a virtual screening tool to rank, select, identify, and assess potential designs. MD is uniquely poised to inform protein design efforts where the application requires realistic models of protein dynamics and atomic level descriptions of the relationship between dynamics and function. Here, we review cases where MD simulations was used to modulate protein stability and protein function by providing information regarding the conformation(s), conformational transitions, interactions, and dynamics that govern stability and function. In addition, we discuss cases where conformations from protein folding/unfolding simulations have been exploited for protein design, yielding novel outcomes that could not be obtained from static structures.
Collapse
Affiliation(s)
| | - Valerie Daggett
- Corresponding author: , Phone: 1.206.685.7420, Fax: 1.206.685.3300
| |
Collapse
|
13
|
Rapid Myoglobin Aggregation through Glucosamine-Induced α-Dicarbonyl Formation. PLoS One 2015; 10:e0139022. [PMID: 26406447 PMCID: PMC4583429 DOI: 10.1371/journal.pone.0139022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/07/2015] [Indexed: 12/25/2022] Open
Abstract
The extent of glycation and conformational changes of horse myoglobin (Mb) upon glycation with N-acetyl-glucosamine (GlcNAc), glucose (Glc) and glucosamine (GlcN) were investigated. Among tested sugars, the rate of glycation with GlcN was the most rapid as shown by MALDI and ESI mass spectrometries. Protein oxidation, as evaluated by the amount of carbonyl groups present on Mb, was found to increase exponentially in Mb-Glc conjugates over time, whereas in Mb-GlcN mixtures the carbonyl groups decreased significantly after maximum at 3 days of the reaction. The reaction between GlcN and Mb resulted in a significantly higher amount of α-dicarbonyl compounds, mostly glucosone and 3-deoxyglucosone, ranging from and 27 to 332 mg/L and from 14 to 304 mg/L, respectively. Already at 0.5 days, tertiary structural changes of Mb-GlcN conjugate were observed by altered tryptophan fluorescence. A reduction of metmyoglobin to deoxy-and oxymyoglobin forms was observed on the first day of reaction, coinciding with the greatest amount of glucosone produced. In contrast to native α-helical myoglobin, 41% of the glycated protein sequence was transformed into a β-sheet conformation, as determined by circular dichroism spectropolarimetry. Transmission electron microscopy demonstrated that Mb glycation with GlcN causes the formation of amorphous or fibrous aggregates, started already at 3 reaction days. These aggregates bind to an amyloid-specific dye thioflavin T. With the aid of α-dicarbonyl compounds and advanced products of reaction, this study suggests that the Mb glycation with GlcN induces the unfolding of an initially globular protein structure into amyloid fibrils comprised of a β-sheet structure.
Collapse
|
14
|
Hayashi T, Morita Y, Mizohata E, Oohora K, Ohbayashi J, Inoue T, Hisaeda Y. Co(ii)/Co(i) reduction-induced axial histidine-flipping in myoglobin reconstituted with a cobalt tetradehydrocorrin as a methionine synthase model. Chem Commun (Camb) 2014; 50:12560-3. [DOI: 10.1039/c4cc05448b] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Goodman JS, Chao SH, Pogorelov TV, Gruebele M. Filling up the heme pocket stabilizes apomyoglobin and speeds up its folding. J Phys Chem B 2014; 118:6511-8. [PMID: 24456280 PMCID: PMC4065233 DOI: 10.1021/jp412459z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Wild type apomyoglobin folds in at
least two steps: the ABGH core
rapidly, followed much later by the heme-binding CDEF core. We hypothesize
that the evolved heme-binding function of the CDEF core frustrates
its folding: it has a smaller contact order and is no more complex
topologically than ABGH, and thus, it should be able to fold faster.
Therefore, filling up the empty heme cavity of apomyoglobin with larger,
hydrophobic side chains should significantly stabilize the protein
and increase its folding rate. Molecular dynamics simulations allowed
us to design four different mutants with bulkier side chains that
increase the native bias of the CDEF region. In vitro thermal denaturation shows that the mutations increase folding stability
and bring the protein closer to two-state behavior, as judged by the
difference of fluorescence- and circular dichroism-detected protein
stability. Millisecond stopped flow measurements of the mutants exhibit
refolding kinetics that are over 4 times faster than the wild type’s.
We propose that myoglobin-like proteins not evolved to bind heme are
equally stable, and find an example. Our results illustrate how evolution
for function can force proteins to adapt frustrated folding mechanisms,
despite having simple topologies.
Collapse
Affiliation(s)
- J S Goodman
- Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| | | | | | | |
Collapse
|
16
|
Unfolding simulations of holomyoglobin from four mammals: identification of intermediates and β-sheet formation from partially unfolded states. PLoS One 2013; 8:e80308. [PMID: 24386077 PMCID: PMC3873898 DOI: 10.1371/journal.pone.0080308] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/11/2013] [Indexed: 01/15/2023] Open
Abstract
Myoglobin (Mb) is a centrally important, widely studied mammalian protein. While much work has investigated multi-step unfolding of apoMb using acid or denaturant, holomyoglobin unfolding is poorly understood despite its biological relevance. We present here the first systematic unfolding simulations of holoMb and the first comparative study of unfolding of protein orthologs from different species (sperm whale, pig, horse, and harbor seal). We also provide new interpretations of experimental mean molecular ellipticities of myoglobin intermediates, notably correcting for random coil and number of helices in intermediates. The simulated holoproteins at 310 K displayed structures and dynamics in agreement with crystal structures (R g ~1.48-1.51 nm, helicity ~75%). At 400 K, heme was not lost, but some helix loss was observed in pig and horse, suggesting that these helices are less stable in terrestrial species. At 500 K, heme was lost within 1.0-3.7 ns. All four proteins displayed exponentially decaying helix structure within 20 ns. The C- and F-helices were lost quickly in all cases. Heme delayed helix loss, and sperm whale myoglobin exhibited highest retention of heme and D/E helices. Persistence of conformation (RMSD), secondary structure, and ellipticity between 2-11 ns was interpreted as intermediates of holoMb unfolding in all four species. The intermediates resemble those of apoMb notably in A and H helices, but differ substantially in the D-, E- and F-helices, which interact with heme. The identified mechanisms cast light on the role of metal/cofactor in poorly understood holoMb unfolding. We also observed β-sheet formation of several myoglobins at 500 K as seen experimentally, occurring after disruption of helices to a partially unfolded, globally disordered state; heme reduced this tendency and sperm-whale did not display any sheet propensity during the simulations.
Collapse
|
17
|
Chen J, Cui W, Giblin D, Gross ML. New protein footprinting: fast photochemical iodination combined with top-down and bottom-up mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1306-18. [PMID: 22669760 PMCID: PMC3630512 DOI: 10.1007/s13361-012-0403-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 04/25/2012] [Accepted: 04/25/2012] [Indexed: 05/02/2023]
Abstract
We report a new approach for the fast photochemical oxidation of proteins (FPOP) whereby iodine species are used as the modifying reagent. We generate the radicals by photolysis of iodobenzoic acid at 248 nm; the putative iodine radical then rapidly modifies the target protein. This iodine-radical labeling is sensitive, tunable, and site-specific, modifying only histidine and tyrosine residues in contrast to OH radicals that modify 14 amino-acid side chains. We iodinated myoglobin (Mb) and apomyoglobin (aMb) in their native states and analyzed the outcome by both top-down and bottom-up proteomic strategies. Top-down sequencing selects a certain level (addition of one I, two I's) of modification and determines the major components produced in the modification reaction, whereas bottom-up reveals details for each modification site. Tyr146 is found to be modified for aMb but less so for Mb. His82, His93, and His97 are at least 10 times more modified for aMb than for Mb, in agreement with NMR studies. For carbonic anhydrase and its apo form, there are no significant differences of the modification extents, indicating their similarity in conformation and providing a control for this approach. For lispro insulin, insulin-EDTA, and insulin complexed with zinc, iodination yields are sensitive to differences in insulin oligomerization state. The iodine radical labeling is a promising addition to protein footprinting methods, offering higher specificity and lower reactivity than ∙OH and SO(4)(-∙), two other radicals already employed in FPOP.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Chemistry, Washington University, One Brookings Drive, St. Louis, MO 63130, USA
| | | | | | | |
Collapse
|
18
|
Singh Gautam AK, Balakrishnan S, Venkatraman P. Direct ubiquitin independent recognition and degradation of a folded protein by the eukaryotic proteasomes-origin of intrinsic degradation signals. PLoS One 2012; 7:e34864. [PMID: 22506054 PMCID: PMC3323579 DOI: 10.1371/journal.pone.0034864] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 03/08/2012] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic 26S proteasomes are structurally organized to recognize, unfold and degrade globular proteins. However, all existing model substrates of the 26S proteasome in addition to ubiquitin or adaptor proteins require unstructured regions in the form of fusion tags for efficient degradation. We report for the first time that purified 26S proteasome can directly recognize and degrade apomyoglobin, a globular protein, in the absence of ubiquitin, extrinsic degradation tags or adaptor proteins. Despite a high affinity interaction, absence of a ligand and presence of only helices/loops that follow the degradation signal, apomyoglobin is degraded slowly by the proteasome. A short floppy F-helix exposed upon ligand removal and in conformational equilibrium with a disordered structure is mandatory for recognition and initiation of degradation. Holomyoglobin, in which the helix is buried, is neither recognized nor degraded. Exposure of the floppy F-helix seems to sensitize the proteasome and primes the substrate for degradation. Using peptide panning and competition experiments we speculate that initial encounters through the floppy helix and additional strong interactions with N-terminal helices anchors apomyoglobin to the proteasome. Stabilizing helical structure in the floppy F-helix slows down degradation. Destabilization of adjacent helices accelerates degradation. Unfolding seems to follow the mechanism of helix unraveling rather than global unfolding. Our findings while confirming the requirement for unstructured regions in degradation offers the following new insights: a) origin and identification of an intrinsic degradation signal in the substrate, b) identification of sequences in the native substrate that are likely to be responsible for direct interactions with the proteasome, and c) identification of critical rate limiting steps like exposure of the intrinsic degron and destabilization of an unfolding intermediate that are presumably catalyzed by the ATPases. Apomyoglobin emerges as a new model substrate to further explore the role of ATPases and protein structure in proteasomal degradation.
Collapse
Affiliation(s)
| | | | - Prasanna Venkatraman
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, India
- * E-mail:
| |
Collapse
|
19
|
Fontana A, de Laureto PP, Spolaore B, Frare E. Identifying disordered regions in proteins by limited proteolysis. Methods Mol Biol 2012; 896:297-318. [PMID: 22821533 DOI: 10.1007/978-1-4614-3704-8_20] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Limited proteolysis experiments can be successfully used to detect sites of disorder in otherwise folded globular proteins. The approach relies on the fact that the proteolysis of a polypeptide substrate requires its binding in an extended conformation at the protease's active site and thus an enhanced backbone flexibility or local unfolding of the site of proteolytic attack. A striking correlation was found between sites of limited proteolysis and sites of enhanced chain flexibility of the polypeptide chain, this last evaluated by the crystallographically determined B-factor. In numerous cases, it has been shown that limited proteolysis occurs at chain regions characterized by missing electron density and thus being disordered. Therefore, limited proteolysis is a simple and reliable experimental technique that can detect sites of disorder in proteins, thus complementing the results that can be obtained by the use of other physicochemical and computational approaches.
Collapse
Affiliation(s)
- Angelo Fontana
- CRIBI Biotechnology Centre, University of Padua, Padua, Italy.
| | | | | | | |
Collapse
|
20
|
Nishimura C, Dyson HJ, Wright PE. Consequences of stabilizing the natively disordered f helix for the folding pathway of apomyoglobin. J Mol Biol 2011; 411:248-63. [PMID: 21640124 PMCID: PMC3143293 DOI: 10.1016/j.jmb.2011.05.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/16/2011] [Accepted: 05/18/2011] [Indexed: 10/18/2022]
Abstract
The F helix region of sperm whale apomyoglobin is disordered, undergoing conformational fluctuations between a folded helical conformation and one or more locally unfolded states. To examine the effects of F helix stabilization on the folding pathway of apomyoglobin, we have introduced mutations to augment intrinsic helical structure in the F helix of the kinetic folding intermediate and to increase its propensity to fold early in the pathway, using predictions based on plots of the average area buried upon folding (AABUF) derived from the primary sequence. Two mutant proteins were prepared: a double mutant, P88K/S92K (F2), and a quadruple mutant, P88K/A90L/S92K/A94L (F4). Whereas the AABUF for F2 predicts that the F helix will not fold early in the pathway, the F helix in F4 shows a significantly increased AABUF and is therefore predicted to fold early. Protection of amide protons by formation of hydrogen-bonded helical structure during the early folding events has been analyzed by pH-pulse labeling. Consistent with the AABUF prediction, many of the F helix residues for F4 are significantly protected in the kinetic intermediate but are not protected in the F2 mutant. F4 folds via a kinetically trapped burst-phase intermediate that contains stabilized secondary structure in the A, B, F, G, and H helix regions. Rapid folding of the F helix stabilizes the central core of the misfolded intermediate and inhibits translocation of the H helix back to its native position, thereby decreasing the overall folding rate.
Collapse
Affiliation(s)
- Chiaki Nishimura
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla CA 92037, USA
| | | | | |
Collapse
|
21
|
Picotti P, Dewilde S, Fago A, Hundahl C, De Filippis V, Moens L, Fontana A. Unusual stability of human neuroglobin at low pH--molecular mechanisms and biological significance. FEBS J 2009; 276:7027-39. [PMID: 19860834 DOI: 10.1111/j.1742-4658.2009.07416.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuroglobin (Ngb) is a recently discovered globin that is predominantly expressed in the brain, retina and other nerve tissues of human and other vertebrates. Ngb has been shown to act as a neuroprotective factor, promoting neuronal survival in conditions of hypoxic-ischemic insult, such as those occurring during stroke. In this work, the conformational and functional stability of Ngb at acidic pH was analyzed, and the results were compared to those obtained with Mb. It was shown by spectroscopic and biochemical (limited proteolysis) techniques that, at pH 2.0, apoNgb is a folded and rigid protein, retaining most of the structural features that the protein displays at neutral pH. Conversely, apoMb, under the same experimental conditions of acidic pH, is essentially a random coil polypeptide. Urea-mediated denaturation studies revealed that the stability displayed by apoNgb at pH 2.0 is very similar to that of Mb at pH 7.0. Ngb also shows enhanced functional stability as compared with Mb, being capable of heme binding over a more acidic pH range than Mb. Furthermore, Ngb reversibly binds oxygen at acidic pH, with an affinity that increases as the pH is decreased. It is proposed that the acid-stable fold of Ngb depends on the particular amino acid composition of the protein polypeptide chain. The functional stability at low pH displayed by Ngb was instead shown to be related to hexacoordination of the heme group. The biological implications of the unusual acid resistance of the folding and function of Ngb are discussed.
Collapse
Affiliation(s)
- Paola Picotti
- CRIBI Biotechnology Center, University of Padua, Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Codutti L, Picotti P, Marin O, Dewilde S, Fogolari F, Corazza A, Viglino P, Moens L, Esposito G, Fontana A. Conformational stability of neuroglobin helix F--possible effects on the folding pathway within the globin family. FEBS J 2009; 276:5177-90. [PMID: 19674102 DOI: 10.1111/j.1742-4658.2009.07214.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuroglobin is a recently discovered member of the globin family, mainly observed in neurons and retina. Despite the low sequence identity (less than 20% over the whole sequence for the human proteins), the general fold of neuroglobin closely resembles that of myoglobin. The latter is a paradigmatic protein for folding studies, whereas much less is known about the neuroglobin folding pathway. In this work, we show how the structural features of helix F in neuroglobin and myoglobin could represent a pivotal difference in their folding pathways. Former studies widely documented that myoglobin lacks helix F in the apo form. In this study, limited proteolysis experiments on aponeuroglobin showed that helix F does not undergo proteolytic cleavage, suggesting that, also in the apo form, this helix maintains a rigid and structured conformation. To understand better the structural properties of helices F in the two proteins, we analyzed peptides encompassing helix F of neuroglobin and myoglobin in the wild-type and mutant forms. NMR and CD experiments revealed a helical conformation for neuroglobin helix F peptide, at both pH 7 and pH 2, absent in the myoglobin peptide. In particular, NMR data suggest a secondary structure stabilization effect caused by hydrophobic interactions involving Tyr88, Leu89 and Leu92. Molecular dynamics simulations performed on the apo and holo forms of the two proteins reveal the persistence of helix F in neuroglobin even in the absence of heme. Conversely myoglobin shows a higher mobility of the N-terminus of helix F on heme removal, which leads to the loss of secondary structure.
Collapse
Affiliation(s)
- Luca Codutti
- Department of Biomedical Sciences and Technologies and MATI Centre of Excellence, University of Udine, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ochiai Y, Ueki N, Watabe S. Effects of point mutations on the structural stability of tuna myoglobins. Comp Biochem Physiol B Biochem Mol Biol 2009; 153:223-8. [PMID: 19285151 DOI: 10.1016/j.cbpb.2009.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 03/04/2009] [Accepted: 03/04/2009] [Indexed: 11/27/2022]
Abstract
Structural stabilities of myoglobin (Mb) from several tuna fish species significantly differ from each other, although the amino acid sequence identities are very high (>95%), suggesting that limited number of substitutions greatly affect the stability of Mb. To address this hypothesis, attempts were made to elaborate recombinant tuna Mbs with point mutations on the different residues among fish Mbs. The expression plasmid constructs were based on bigeye tuna Mb cDNA sequence, and the recombinant proteins were expressed as GST-fusion proteins in Escherichia coli. After removal of the GST segment and affinity purification, the stability of five Mb mutants, namely, A49G, T91K, K92Q, V108A, and H112Q, together with the wild type (WT) were measured, taking temperature dependency of alpha-helical content and denaturant (urea and guanidine-HCl) concentration dependency of Soret band absorbance as parameters. As a result, the mutant H112Q showed much higher stability than WT, while the structures of K92Q, T91K and A49G mutants were destabilized. No essential change in helical content was observed for V108A, but the mutant was found to be destabilized easier by the denaturants. These findings suggested that the highly conserved residues among tuna species are responsible for their stability of Mbs, but a few non-conserved residues dramatically give rise to the differences in stability of Mbs among species.
Collapse
Affiliation(s)
- Yoshihiro Ochiai
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
| | | | | |
Collapse
|
24
|
Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Adv Drug Deliv Rev 2008; 60:13-28. [PMID: 17916398 DOI: 10.1016/j.addr.2007.06.015] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2007] [Accepted: 06/26/2007] [Indexed: 11/23/2022]
Abstract
Transglutaminase (TGase, E.C. 2.3.2.13) catalyzes acyl transfer reactions between the gamma-carboxamide groups of protein-bound glutamine (Gln) residues, which serve as acyl donors, and primary amines, resulting in the formation of new gamma-amides of glutamic acid and ammonia. By using an amino-derivative of poly(ethylene glycol) (PEG-NH(2)) as substrate for the enzymatic reaction with TGase it is possible to covalently bind the PEG polymer to proteins of pharmaceutical interest. In our laboratory, we have conducted experiments aimed to modify proteins of known structure using TGase and, surprisingly, we were able to obtain site-specific modification or PEGylation of protein-bound Gln residue(s) in the protein substrates. For example, in apomyoglobin (apoMb, myoglobin devoid of heme) only Gln91 was modified and in human growth hormone only Gln40 and Gln141, despite these proteins having many more Gln residues. Moreover, we noticed that these proteins suffered highly selective limited proteolysis phenomena at the same chain regions being attacked by TGase. We have analysed also the results of other published experiments of TGase-mediated modification or PEGylation of several proteins in terms of protein structure and dynamics, among them alpha-lactalbumin and interleukin-2, as well as disordered proteins. A noteworthy correlation was observed between chain regions of high temperature factor (B-factor) determined crystallographically and sites of TGase attack and limited proteolysis, thus emphasizing the role of chain mobility or local unfolding in dictating site-specific enzymatic modification. We propose that enhanced chain flexibility favors limited enzymatic reactions on polypeptide substrates by TGases and proteases, as well as by other enzymes involved in a number of site-specific post-translational modifications of proteins, such as phosphorylation and glycosylation. Therefore, it is possible to predict the site(s) of TGase-mediated modification and PEGylation of a therapeutic protein on the basis of its structure and dynamics and, consequently, the likely effects of modifications on the functional properties of the protein.
Collapse
|
25
|
Abstract
Structural transitions are important for the stability and function of proteins, but these phenomena are poorly understood. An extensive analysis of Protein Data Bank entries reveals 103 regions in proteins with a tendency to transform from helical to nonhelical conformation and vice versa. We find that these dynamic helices, unlike other helices, are depleted in hydrophobic residues. Furthermore, the dynamic helices have higher surface accessibility and conformational mobility (P-value = 3.35e-07) than the rigid helices. Contact analyses show that these transitions result from protein-ligand, protein-nucleic acid, and crystal-contacts. The immediate structural environment differs quantitatively (P-value = 0.003) as well as qualitatively in the two alternate conformations. Often, dynamic helix experiences more contacts in its helical conformation than in the nonhelical counterpart (P-value = 0.001). There is differential preference for the type of short contacts observed in two conformational states. We also demonstrate that the regions in protein that can undergo such large conformational transitions can be predicted with a reasonable accuracy using logistic regression model of supervised learning. Our findings have implications in understanding the molecular basis of structural transitions that are coupled with binding and are important for the function and stability of the protein. Based on our observations, we propose that several functionally relevant regions on the protein surface can switch over their conformation from coil to helix and vice-versa, to regulate the recognition and binding of their partner and hence these may work as "molecular switches" in the proteins to regulate certain biological process. Our results supports the idea that protein structure-function paradigm should transform from static to a highly dynamic one.
Collapse
Affiliation(s)
- Kuljeet Singh Sandhu
- GN Ramachandran Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology, CSIR, Delhi 110007, India
| | | |
Collapse
|
26
|
Ueki N, Ochiai Y. Effect of amino acid replacements on the structural stability of fish myoglobin. J Biochem 2006; 140:649-56. [PMID: 16987944 DOI: 10.1093/jb/mvj192] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Structural stabilities of myoglobin (Mb) from several fish (scombridae) species differ significantly, although their amino acid sequence identity is very high (>95%), suggesting that only a few substitutions greatly affect the stability of Mb. Accordingly, recombinant Mbs with point mutation(s) derived from bigeye tuna Mb cDNA were expressed as GST-fusion proteins in the soluble fractions of Escherichia coli. After removal of the GST segment, the stability of five mutants, namely, P13A, I21M, V57I, A62G, and I21M/V57I, together with the wild type (WT) were investigated, taking temperature dependency of alpha-helical content and denaturant concentration dependency of Soret band absorbance as parameters. As a result, the stability of P13A against denaturants and its alpha-helical content at 10 degrees C was found to be the highest among the mutants, whereas those of A62G were the lowest. The stabilities of V57I and I21M/V57I were higher than that of WT, though that of I21M was nearly the same as WT. These findings suggest that the structural stability of fish Mb is tuned up only by the substitutions of a few amino acid residues located in the alpha-helical segments forming the hydrophobic heme pocket.
Collapse
Affiliation(s)
- Nobuhiko Ueki
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | |
Collapse
|
27
|
Sandhu KS, Dash D. Conformational flexibility may explain multiple cellular roles of PEST motifs. Proteins 2006; 63:727-32. [PMID: 16493650 DOI: 10.1002/prot.20918] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PEST sequences are one of the major motifs that serve as signal for the protein degradation and are also involved in various cellular processes such as phosphorylation and protein-protein interaction. In our earlier study, we found that these motifs contribute largely to eukaryotic protein disorder. This observation led us to evaluate their conformational variability in the nonredundant Protein Data Bank (PDB) structures. For this purpose, crystallographic temperature factors, structural alignment of multiple NMR models, and dihedral angle order parameters have been used in this study. The study has revealed the hypermobility of PEST motifs as compared to other regions of the protein. Conformational flexibility may allow them to participate in number of molecular interactions under different conditions. This analysis may explain the role of protein backbone flexibility in bringing about multiple cellular roles of PEST motifs.
Collapse
Affiliation(s)
- Kuljeet Singh Sandhu
- G. N. Ramachandran Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology, CSIR, Delhi, India
| | | |
Collapse
|