1
|
Tarrago L, Kaya A, Kim HY, Manta B, Lee BC, Gladyshev VN. The selenoprotein methionine sulfoxide reductase B1 (MSRB1). Free Radic Biol Med 2022; 191:228-240. [PMID: 36084791 DOI: 10.1016/j.freeradbiomed.2022.08.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022]
Abstract
Methionine (Met) can be oxidized to methionine sulfoxide (MetO), which exist as R- and S-diastereomers. Present in all three domains of life, methionine sulfoxide reductases (MSR) are the enzymes that reduce MetO back to Met. Most characterized among them are MSRA and MSRB, which are strictly stereospecific for the S- and R-diastereomers of MetO, respectively. While the majority of MSRs use a catalytic Cys to reduce their substrates, some employ selenocysteine. This is the case of mammalian MSRB1, which was initially discovered as selenoprotein SELR or SELX and later was found to exhibit an MSRB activity. Genomic analyses demonstrated its occurrence in most animal lineages, and biochemical and structural analyses uncovered its catalytic mechanism. The use of transgenic mice and mammalian cell culture revealed its physiological importance in the protection against oxidative stress, maintenance of neuronal cells, cognition, cancer cell proliferation, and the immune response. Coincident with the discovery of Met oxidizing MICAL enzymes, recent findings of MSRB1 regulating the innate immunity response through reversible stereospecific Met-R-oxidation of cytoskeletal actin opened up new avenues for biological importance of MSRB1 and its role in disease. In this review, we discuss the current state of research on MSRB1, compare it with other animal Msrs, and offer a perspective on further understanding of biological functions of this selenoprotein.
Collapse
Affiliation(s)
- Lionel Tarrago
- UMR 1163, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Université, 13009, Marseille, France.
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Hwa-Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Bruno Manta
- Laboratorio de Genomica Microbiana, Institut Pasteur de Montevideo, Mataojo 2020, 11440, Montevideo, Uruguay; Catedra de Fisiopatología, Facultad de Odontología, Universidad de la República, Las Heras 1925, 11600, Montevideo, Uruguay
| | - Byung-Cheon Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Vadim N Gladyshev
- Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, USA.
| |
Collapse
|
2
|
Implication of Staphylococcus aureus MsrB dimerization upon oxidation. Biochem Biophys Res Commun 2020; 533:118-124. [PMID: 32943184 DOI: 10.1016/j.bbrc.2020.08.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022]
Abstract
Oxidative modification of protein structure has been shown to play a significant role in bacterial virulence and metabolism. The sulfur-containing residues are susceptible to oxidation and the enzymatic reversal of oxidized cysteine or methionine is detected in many organisms. Methionine sulfoxide reductases (Msr) are responsible for reducing oxidized methionine. The two different Msrs, MsrA and MsrB, reduce methionine R-sulfoxide and methionine S-sulfoxide, respectively through self-oxidation. This study elucidated the structure of MsrB from Staphylococcus aureus Mu50 and its changes upon oxidation. The active site shows two reduced cysteines in a close contact, implying disulfide bond would form without major structural rearrangement. When the protein is exposed to an oxidative condition, a dimeric state is observed. The dimerization of SAMsrB creates a valley structure for accepting peptidyl substrates. To the best of our knowledge, oxidation induced dimerization of SAMsrB would help to understand mechanism behind redox control that has not been well characterized.
Collapse
|
3
|
Sasoni N, Hartman MD, Guerrero SA, Iglesias AA, Arias DG. Functional characterization of methionine sulfoxide reductases from Leptospira interrogans. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140575. [PMID: 33242654 DOI: 10.1016/j.bbapap.2020.140575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Methionine (Met) oxidation leads to a racemic mixture of R and S forms of methionine sulfoxide (MetSO). Methionine sulfoxide reductases (Msr) are enzymes that can reduce specifically each isomer of MetSO, both free and protein-bound. The Met oxidation could change the structure and function of many proteins, not only of those redox-related but also of others involved in different metabolic pathways. Until now, there is no information about the presence or function of Msrs enzymes in Leptospira interrogans. METHODS We identified genes coding for putative MsrAs (A1 and A2) and MsrB in L. interrogans serovar Copenhageni strain Fiocruz L1-130 genome project. From these, we obtained the recombinant proteins and performed their functional characterization. RESULTS The recombinant L. interrogans MsrB catalyzed the reduction of Met(R)SO using glutaredoxin and thioredoxin as reducing substrates and behaves like a 1-Cys Msr (without resolutive Cys residue). It was able to partially revert the in vitro HClO-dependent inactivation of L. interrogans catalase. Both recombinant MsrAs reduced Met(S)SO, being the recycle mediated by the thioredoxin system. LinMsrAs were more efficient than LinMsrB for free and protein-bound MetSO reduction. Besides, LinMsrAs are enzymes involving a Cys triad in their catalytic mechanism. LinMsrs showed a dual localization, both in cytoplasm and periplasm. CONCLUSIONS AND GENERAL SIGNIFICANCE This article brings new knowledge about redox metabolism in L. interrogans. Our results support the occurrence of a metabolic pathway involved in the critical function of repairing oxidized macromolecules in this pathogen.
Collapse
Affiliation(s)
- Natalia Sasoni
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Matías D Hartman
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Sergio A Guerrero
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Alberto A Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Diego G Arias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
4
|
Arias DG, Cabeza MS, Echarren ML, Faral-Tello P, Iglesias AA, Robello C, Guerrero SA. On the functionality of a methionine sulfoxide reductase B from Trypanosoma cruzi. Free Radic Biol Med 2020; 158:96-114. [PMID: 32682073 DOI: 10.1016/j.freeradbiomed.2020.06.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/20/2020] [Accepted: 06/26/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Methionine is an amino acid susceptible to be oxidized to give a racemic mixture of R and S forms of methionine sulfoxide (MetSO). This posttranslational modification has been reported to occur in vivo under either normal or stress conditions. The reduction of MetSO to methionine is catalyzed by methionine sulfoxide reductases (MSRs), thiol-dependent enzymes present in almost all organisms. These enzymes can reduce specifically one or another of the isomers of MetSO (free and protein-bound). This redox modification could change the structure and function of many proteins, either concerned in redox or other metabolic pathways. The study of antioxidant systems in Trypanosoma cruzi has been mainly focused on the involvement of trypanothione, a specific redox component for these organisms. Though, little information is available concerning mechanisms for repairing oxidized methionine residues in proteins, which would be relevant for the survival of these pathogens in the different stages of their life cycle. METHODS We report an in vitro functional and in vivo cellular characterization of methionine sulfoxide reductase B (MSRB, specific for protein-bound MetSO R-enantiomer) from T. cruzi strain Dm28c. RESULTS MSRB exhibited both cytosolic and mitochondrial localization in epimastigote cells. From assays involving parasites overexpressing MSRB, we observed the contribution of this protein to increase the general resistance against oxidative damage, the infectivity of trypomastigote cells, and intracellular replication of the amastigote stage. Also, we report that epimastigotes overexpressing MSRB exhibit inhibition of the metacyclogenesis process; this suggesting the involvement of the proteins as negative modulators in this cellular differentiation. CONCLUSIONS AND GENERAL SIGNIFICANCE This report contributes to novel insights concerning redox metabolism in T. cruzi. Results herein presented support the importance of enzymatic steps involved in the metabolism of L-Met and in repairing oxidized macromolecules in this parasite.
Collapse
Affiliation(s)
- Diego G Arias
- Laboratorio de Enzimología Molecular - Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Matías S Cabeza
- Laboratorio de Enzimología Molecular - Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María L Echarren
- Laboratorio de Enzimología Molecular - Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina
| | - Paula Faral-Tello
- Laboratorio de Interacción Hospedero-Patógeno, UBM, Instituto Pasteur de Montevideo, Montevideo, Uruguay
| | - Alberto A Iglesias
- Laboratorio de Enzimología Molecular - Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Carlos Robello
- Laboratorio de Interacción Hospedero-Patógeno, UBM, Instituto Pasteur de Montevideo, Montevideo, Uruguay; Departamento de Bioquímica - Facultad de Medicina - Universidad de la República, Montevideo, Uruguay
| | - Sergio A Guerrero
- Laboratorio de Enzimología Molecular - Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
5
|
Tossounian MA, Khanh Truong AC, Buts L, Wahni K, Mourenza Á, Leermakers M, Vertommen D, Mateos LM, Volkov AN, Messens J. Methionine sulfoxide reductase B from Corynebacterium diphtheriae catalyzes sulfoxide reduction via an intramolecular disulfide cascade. J Biol Chem 2020; 295:3664-3677. [PMID: 31992594 DOI: 10.1074/jbc.ra119.012438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/24/2020] [Indexed: 11/06/2022] Open
Abstract
Corynebacterium diphtheriae is a human pathogen that causes diphtheria. In response to immune system-induced oxidative stress, C. diphtheriae expresses antioxidant enzymes, among which are methionine sulfoxide reductase (Msr) enzymes, which are critical for bacterial survival in the face of oxidative stress. Although some aspects of the catalytic mechanism of the Msr enzymes have been reported, several details still await full elucidation. Here, we solved the solution structure of C. diphtheriae MsrB (Cd-MsrB) and unraveled its catalytic and oxidation-protection mechanisms. Cd-MsrB catalyzes methionine sulfoxide reduction involving three redox-active cysteines. Using NMR heteronuclear single-quantum coherence spectra, kinetics, biochemical assays, and MS analyses, we show that the conserved nucleophilic residue Cys-122 is S-sulfenylated after substrate reduction, which is then resolved by a conserved cysteine, Cys-66, or by the nonconserved residue Cys-127. We noted that the overall structural changes during the disulfide cascade expose the Cys-122-Cys-66 disulfide to recycling through thioredoxin. In the presence of hydrogen peroxide, Cd-MsrB formed reversible intra- and intermolecular disulfides without losing its Cys-coordinated Zn2+, and only the nonconserved Cys-127 reacted with the low-molecular-weight (LMW) thiol mycothiol, protecting it from overoxidation. In summary, our structure-function analyses reveal critical details of the Cd-MsrB catalytic mechanism, including a major structural rearrangement that primes the Cys-122-Cys-66 disulfide for thioredoxin reduction and a reversible protection against excessive oxidation of the catalytic cysteines in Cd-MsrB through intra- and intermolecular disulfide formation and S-mycothiolation.
Collapse
Affiliation(s)
- Maria-Armineh Tossounian
- VIB-VUB Center for Structural Biology, B-1050 Brussels, Belgium; Brussels Center for Redox Biology, B-1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussels, B-1050 Brussels, Belgium
| | - Anh-Co Khanh Truong
- VIB-VUB Center for Structural Biology, B-1050 Brussels, Belgium; Brussels Center for Redox Biology, B-1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussels, B-1050 Brussels, Belgium
| | - Lieven Buts
- VIB-VUB Center for Structural Biology, B-1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussels, B-1050 Brussels, Belgium; Jean Jeener NMR Centre, Structural Biology Brussels, Vrije Universiteit Brussels, B-1050 Brussels, Belgium
| | - Khadija Wahni
- VIB-VUB Center for Structural Biology, B-1050 Brussels, Belgium; Brussels Center for Redox Biology, B-1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussels, B-1050 Brussels, Belgium
| | - Álvaro Mourenza
- Department of Molecular Biology, Area of Microbiology, University of León, 24071 León, Spain
| | - Martine Leermakers
- Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussels, Brussels, Belgium
| | - Didier Vertommen
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Luis Mariano Mateos
- Department of Molecular Biology, Area of Microbiology, University of León, 24071 León, Spain
| | - Alexander N Volkov
- VIB-VUB Center for Structural Biology, B-1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussels, B-1050 Brussels, Belgium; Jean Jeener NMR Centre, Structural Biology Brussels, Vrije Universiteit Brussels, B-1050 Brussels, Belgium
| | - Joris Messens
- VIB-VUB Center for Structural Biology, B-1050 Brussels, Belgium; Brussels Center for Redox Biology, B-1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussels, B-1050 Brussels, Belgium.
| |
Collapse
|
6
|
Makukhin N, Havelka V, Poláchová E, Rampírová P, Tarallo V, Strisovsky K, Míšek J. Resolving oxidative damage to methionine by an unexpected membrane-associated stereoselective reductase discovered using chiral fluorescent probes. FEBS J 2019; 286:4024-4035. [PMID: 31166082 DOI: 10.1111/febs.14951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/24/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
Abstract
Nonenzymatic oxidative processes in living organisms are among the inevitable consequences of respiration and environmental conditions. These oxidative processes can lead to the formation of two stereoisomers (R and S) of methionine sulfoxide, and the redox balance between methionine and methionine sulfoxide in proteins has profound implications on their function. Methionine oxidation can be reverted enzymatically by methionine sulfoxide reductases (Msrs). The two enzyme classes known to fulfill this role are MsrA, reducing the (S)-isomer, and MsrB, reducing the (R)-isomer of methionine sulfoxide. They are strictly stereoselective and conserved throughout the tree of life. Under stress conditions such as stationary phase and nutrient starvation, Escherichia coli upregulates the expression of MsrA but a similar effect has not been described for MsrB, raising the conundrum of which pathway enables reduction of the (R)-isomer of methionine sulfoxide in these conditions. Using the recently developed chiral fluorescent probes Sulfox-1, we show that in stationary phase-stressed E. coli, MsrA does have a stereocomplementary activity reducing the (R)-isomer of methionine sulfoxide. However, this activity is not provided by MsrB as expected, but instead by the DMSO reductase complex DmsABC, widely conserved in bacteria. This finding reveals an unexpected diversity in the metabolic enzymes of redox regulation concerning methionine, which should be taken into account in any antibacterial strategies exploiting oxidative stress. DATABASE: The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD013610.
Collapse
Affiliation(s)
- Nikolai Makukhin
- Department of Organic Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Václav Havelka
- Department of Organic Chemistry, Faculty of Science, Charles University, Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Edita Poláchová
- First Faculty of Medicine, Charles University, Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Petra Rampírová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Vincenzo Tarallo
- Department of Organic Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Jiří Míšek
- Department of Organic Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
7
|
Ricci F, Lauro FM, Grzymski JJ, Read R, Bakiu R, Santovito G, Luporini P, Vallesi A. The Anti-Oxidant Defense System of the Marine Polar Ciliate Euplotes nobilii: Characterization of the MsrB Gene Family. BIOLOGY 2017; 6:biology6010004. [PMID: 28106766 PMCID: PMC5371997 DOI: 10.3390/biology6010004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/04/2017] [Accepted: 01/07/2017] [Indexed: 01/16/2023]
Abstract
Organisms living in polar waters must cope with an extremely stressful environment dominated by freezing temperatures, high oxygen concentrations and UV radiation. To shed light on the genetic mechanisms on which the polar marine ciliate, Euplotes nobilii, relies to effectively cope with the oxidative stress, attention was focused on methionine sulfoxide reductases which repair proteins with oxidized methionines. A family of four structurally distinct MsrB genes, encoding enzymes specific for the reduction of the methionine-sulfoxide R-forms, were identified from a draft of the E. nobilii transcriptionally active (macronuclear) genome. The En-MsrB genes are constitutively expressed to synthesize proteins markedly different in amino acid sequence, number of CXXC motifs for zinc-ion binding, and presence/absence of a cysteine residue specific for the mechanism of enzyme regeneration. The En-MsrB proteins take different localizations in the nucleus, mitochondria, cytosol and endoplasmic reticulum, ensuring a pervasive protection of all the major subcellular compartments from the oxidative damage. These observations have suggested to regard the En-MsrB gene activity as playing a central role in the genetic mechanism that enables E. nobilii and ciliates in general to live in the polar environment.
Collapse
Affiliation(s)
- Francesca Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032, Italy.
| | - Federico M Lauro
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, Singapore 637551, Singapore.
| | - Joseph J Grzymski
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV 89512, USA.
| | - Robert Read
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV 89512, USA.
| | - Rigers Bakiu
- Department of Aquaculture and Fisheries, Agricultural University of Tirana, Tirana 1019, Albania.
| | - Gianfranco Santovito
- Department of Biology, University of Padova, via U. Bassi 58/B, Padua 35100, Italy.
| | - Pierangelo Luporini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032, Italy.
| | - Adriana Vallesi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032, Italy.
| |
Collapse
|
8
|
Drazic A, Winter J. The physiological role of reversible methionine oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1367-82. [PMID: 24418392 DOI: 10.1016/j.bbapap.2014.01.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/17/2013] [Accepted: 01/02/2014] [Indexed: 01/04/2023]
Abstract
Sulfur-containing amino acids such as cysteine and methionine are particularly vulnerable to oxidation. Oxidation of cysteine and methionine in their free amino acid form renders them unavailable for metabolic processes while their oxidation in the protein-bound state is a common post-translational modification in all organisms and usually alters the function of the protein. In the majority of cases, oxidation causes inactivation of proteins. Yet, an increasing number of examples have been described where reversible cysteine oxidation is part of a sophisticated mechanism to control protein function based on the redox state of the protein. While for methionine the dogma is still that its oxidation inhibits protein function, reversible methionine oxidation is now being recognized as a powerful means of triggering protein activity. This mode of regulation involves oxidation of methionine to methionine sulfoxide leading to activated protein function, and inactivation is accomplished by reduction of methionine sulfoxide back to methionine catalyzed by methionine sulfoxide reductases. Given the similarity to thiol-based redox-regulation of protein function, methionine oxidation is now established as a novel mode of redox-regulation of protein function. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.
Collapse
Affiliation(s)
- Adrian Drazic
- Center for Integrated Protein Science Munich (CiPS(M)) at the Department Chemie, Technische Universität München, 85747 Garching, Germany
| | - Jeannette Winter
- Center for Integrated Protein Science Munich (CiPS(M)) at the Department Chemie, Technische Universität München, 85747 Garching, Germany.
| |
Collapse
|
9
|
Baglivo I, Palmieri M, Rivellino A, Netti F, Russo L, Esposito S, Iacovino R, Farina B, Isernia C, Fattorusso R, Pedone PV, Malgieri G. Molecular strategies to replace the structural metal site in the prokaryotic zinc finger domain. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:497-504. [PMID: 24389235 DOI: 10.1016/j.bbapap.2013.12.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 12/20/2013] [Accepted: 12/24/2013] [Indexed: 11/18/2022]
Abstract
The specific arrangement of secondary elements in a local motif often totally relies on the formation of coordination bonds between metal ions and protein ligands. This is typified by the ~30 amino acid eukaryotic zinc finger motif in which a β-sheet and an α-helix are clustered around a zinc ion by various combinations of four ligands. The prokaryotic zinc finger domain (found in the Ros protein from Agrobacterium tumefaciens) is different from the eukaryotic counterpart as it consists of 58 amino acids arranged in a βββαα topology stabilized by a 15-residue hydrophobic core. Also, this domain tetrahedrally coordinates zinc and unfolds in the absence of the metal ion. The characterization of proteins belonging to the Ros homologs family has however shown that the prokaryotic zinc finger domain can overcome the metal requirement to achieve the same fold and DNA-binding activity. In the present work, two zinc-lacking Ros homologs (Ml4 and Ml5 proteins) have been thoroughly characterized using bioinformatics, biochemical and NMR techniques. We show how in these proteins a network of hydrogen bonds and hydrophobic interactions surrogate the zinc coordination role in the achievement of the same functional fold.
Collapse
Affiliation(s)
- Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy
| | - Maddalena Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy
| | - Alessia Rivellino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy
| | - Fortuna Netti
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy
| | - Sabrina Esposito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy
| | - Rosa Iacovino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy
| | - Biancamaria Farina
- Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy; Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy; Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy; Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy; Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy.
| |
Collapse
|
10
|
Kim HY. The methionine sulfoxide reduction system: selenium utilization and methionine sulfoxide reductase enzymes and their functions. Antioxid Redox Signal 2013; 19. [PMID: 23198996 PMCID: PMC3763222 DOI: 10.1089/ars.2012.5081] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Selenium is utilized in the methionine sulfoxide reduction system that occurs in most organisms. Methionine sulfoxide reductases (Msrs), MsrA and MsrB, are the enzymes responsible for this system. Msrs repair oxidatively damaged proteins, protect against oxidative stress, and regulate protein function, and have also been implicated in the aging process. Selenoprotein forms of Msrs containing selenocysteine (Sec) at the catalytic site are found in bacteria, algae, and animals. RECENT ADVANCES A selenoprotein MsrB1 knockout mouse has been developed. Significant progress in the biochemistry of Msrs has been made, which includes findings of a novel reducing system for Msrs and of an interesting reason for the use of Sec in the Msr system. The effects of mammalian MsrBs, including selenoprotein MsrB1 on fruit fly aging, have been investigated. Furthermore, it is evident that Msrs are involved in methionine metabolism and regulation of the trans-sulfuration pathway. CRITICAL ISSUES This article presents recent progress in the Msr field while focusing on the physiological roles of mammalian Msrs, functions of selenoprotein forms of Msrs, and their biochemistry. FUTURE DIRECTIONS A deeper understanding of the roles of Msrs in redox signaling, the aging process, and metabolism will be achieved. The identity of selenoproteome of Msrs will be sought along with characterization of the identified selenoprotein forms. Exploring new cellular targets and new functions of Msrs is also warranted.
Collapse
Affiliation(s)
- Hwa-Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
11
|
Bos J, Duverger Y, Thouvenot B, Chiaruttini C, Branlant C, Springer M, Charpentier B, Barras F. The sRNA RyhB regulates the synthesis of the Escherichia coli methionine sulfoxide reductase MsrB but not MsrA. PLoS One 2013; 8:e63647. [PMID: 23671689 PMCID: PMC3650055 DOI: 10.1371/journal.pone.0063647] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 04/04/2013] [Indexed: 11/18/2022] Open
Abstract
Controlling iron homeostasis is crucial for all aerobically grown living cells that are exposed to oxidative damage by reactive oxygen species (ROS), as free iron increases the production of ROS. Methionine sulfoxide reductases (Msr) are key enzymes in repairing ROS-mediated damage to proteins, as they reduce oxidized methionine (MetSO) residues to methionine. E. coli synthesizes two Msr, A and B, which exhibit substrate diastereospecificity. The bacterial iron-responsive small RNA (sRNA) RyhB controls iron metabolism by modulating intracellular iron usage. We show in this paper that RyhB is a direct regulator of the msrB gene that encodes the MsrB enzyme. RyhB down-regulates msrB transcripts along with Hfq and RNaseE proteins since mutations in the ryhB, fur, hfq, or RNaseE-encoded genes resulted in iron-insensitive expression of msrB. Our results show that RyhB binds to two sequences within the short 5'UTR of msrB mRNA as identified by reverse transcriptase and RNase and lead (II) protection assays. Toeprinting analysis shows that RyhB pairing to msrB mRNA prevents efficient ribosome binding and thereby inhibits translation initiation. In vivo site directed-mutagenesis experiments in the msrB 5'UTR region indicate that both RyhB-pairing sites are required to decrease msrB expression. Thus, this study suggests a novel mechanism of translational regulation where a same sRNA can basepair to two different locations within the same mRNA species. In contrast, expression of msrA is not influenced by changes in iron levels.
Collapse
MESH Headings
- 5' Untranslated Regions/genetics
- Base Sequence
- Binding Sites/genetics
- Binding, Competitive
- Blotting, Northern
- Blotting, Western
- Down-Regulation
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Enzymologic
- Iron/metabolism
- Methionine Sulfoxide Reductases/genetics
- Methionine Sulfoxide Reductases/metabolism
- Mutation
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Julia Bos
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique-Aix Marseille Université, Unité Mixte de Recherche, Marseille, France
| | - Yohann Duverger
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique-Aix Marseille Université, Unité Mixte de Recherche, Marseille, France
| | - Benoît Thouvenot
- Centre National de la Recherche Scientifique-Université de Lorraine, Unité Mixte de Recherche, Biopôle de l’Université de Lorraine, Campus Biologie Santé, Vandœuvre-lès-Nancy, France
| | - Claude Chiaruttini
- Unité Propre de Recherche du Centre National de la Recherche Scientifique, Université Denis Diderot, Paris VII, Institut de Biologie Physico-chimique, Paris, France
| | - Christiane Branlant
- Centre National de la Recherche Scientifique-Université de Lorraine, Unité Mixte de Recherche, Biopôle de l’Université de Lorraine, Campus Biologie Santé, Vandœuvre-lès-Nancy, France
| | - Mathias Springer
- Unité Propre de Recherche du Centre National de la Recherche Scientifique, Université Denis Diderot, Paris VII, Institut de Biologie Physico-chimique, Paris, France
| | - Bruno Charpentier
- Centre National de la Recherche Scientifique-Université de Lorraine, Unité Mixte de Recherche, Biopôle de l’Université de Lorraine, Campus Biologie Santé, Vandœuvre-lès-Nancy, France
| | - Frédéric Barras
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique-Aix Marseille Université, Unité Mixte de Recherche, Marseille, France
- * E-mail:
| |
Collapse
|
12
|
Dobri N, Oumarou EEN, Alimenti C, Ortenzi C, Luporini P, Vallesi A. Methionine sulfoxide reduction in ciliates: characterization of the ready-to-use methionine sulfoxide-R-reductase genes in Euplotes. Gene 2013. [PMID: 23206970 DOI: 10.1016/j.gene.2012.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Genes encoding the enzyme methionine sulfoxide reductase type B, specific to the reduction of the oxidized methionine-R form, were characterized from the expressed (macronuclear) genome of two ecologically separate marine species of Euplotes, i.e. temperate water E. raikovi and polar water E. nobilii. Both species were found to contain a single msrB gene with a very simple structural organization encoding a protein of 127 (E. raikovi) or 126 (E. nobilii) amino acid residues that belongs to the group of zinc-containing enzymes. Both msrB genes are constitutively expressed, suggesting that the MsrB enzyme plays an essential role in repairing oxidative damages that appear to be primarily caused by physiological cell aging in E. raikovi and by interactions with an O(2) saturated environment in E. nobilii.
Collapse
Affiliation(s)
- Nicoleta Dobri
- Dipartimento di Scienze Ambientali e Naturali, University of Camerino, 62032 Camerino (MC), Italy
| | | | | | | | | | | |
Collapse
|
13
|
Jacob C, Kriznik A, Boschi-Muller S, Branlant G. Thioredoxin 2 from Escherichia coli is not involved in vivo in the recycling process of methionine sulfoxide reductase activities. FEBS Lett 2011; 585:1905-9. [PMID: 21570393 DOI: 10.1016/j.febslet.2011.04.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/22/2011] [Accepted: 04/26/2011] [Indexed: 11/17/2022]
Abstract
Thioredoxins (Trx) 1 and 2, and three methionine sulfoxide reductases (Msr) whose activities are Trx-dependent, are expressed in Escherichia coli. A metB(1)trxA mutant was shown to be unable to grow on methionine sulfoxide (Met-O) suggesting that Trx2 is not essential in the Msr-recycling process. In the present study, we have determined the kinetic parameters of the recycling process of the three Msrs by Trx2 and the in vivo expression of Trx2 in a metB(1)trxA mutant. The data demonstrate that the lack of growth of the metB(1)trxA mutant on Met-O is due to low in vivo expression of Trx2 and not to the lower catalytic efficiency of Msrs for Trx2.
Collapse
Affiliation(s)
- Christophe Jacob
- Nancy-Université-Université Henri Poincaré, UMR CNRS-UHP 7214, ARN-RNP, Enzymologie Moléculaire et Structurale, Nancy Université, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France
| | | | | | | |
Collapse
|
14
|
Ahmed ZM, Yousaf R, Lee BC, Khan SN, Lee S, Lee K, Husnain T, Rehman AU, Bonneux S, Ansar M, Ahmad W, Leal SM, Gladyshev VN, Belyantseva IA, Van Camp G, Riazuddin S, Friedman TB, Riazuddin S. Functional null mutations of MSRB3 encoding methionine sulfoxide reductase are associated with human deafness DFNB74. Am J Hum Genet 2011; 88:19-29. [PMID: 21185009 DOI: 10.1016/j.ajhg.2010.11.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/12/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022] Open
Abstract
The DFNB74 locus for autosomal-recessive, nonsyndromic deafness segregating in three families was previously mapped to a 5.36 Mb interval on chromosome 12q14.2-q15. Subsequently, we ascertained five additional consanguineous families in which deafness segregated with markers at this locus and refined the critical interval to 2.31 Mb. We then sequenced the protein-coding exons of 18 genes in this interval. The affected individuals of six apparently unrelated families were homozygous for the same transversion (c.265T>G) in MSRB3, which encodes a zinc-containing methionine sulfoxide reductase B3. c.265T>G results in a substitution of glycine for cysteine (p.Cys89Gly), and this substitution cosegregates with deafness in the six DFNB74 families. This cysteine residue of MSRB3 is conserved in orthologs from yeast to humans and is involved in binding structural zinc. In vitro, p.Cys89Gly abolished zinc binding and MSRB3 enzymatic activity, indicating that p.Cys89Gly is a loss-of-function allele. The affected individuals in two other families were homozygous for a transition mutation (c.55T>C), which results in a nonsense mutation (p.Arg19X) in alternatively spliced exon 3, encoding a mitochondrial localization signal. This finding suggests that DFNB74 deafness is due to a mitochondrial dysfunction. In a cohort of 1,040 individuals (aged 53-67 years) of European ancestry, we found no association between 17 tagSNPs for MSRB3 and age-related hearing loss. Mouse Msrb3 is expressed widely. In the inner ear, it is found in the sensory epithelium of the organ of Corti and vestibular end organs as well as in cells of the spiral ganglion. Taken together, MSRB3-catalyzed reduction of methionine sulfoxides to methionine is essential for hearing.
Collapse
|
15
|
Carella M, Becher J, Ohlenschläger O, Ramachandran R, Gührs KH, Wellenreuther G, Meyer-Klaucke W, Heinemann SH, Görlach M. Structure-function relationship in an archaebacterial methionine sulphoxide reductase B. Mol Microbiol 2010; 79:342-58. [PMID: 21219456 DOI: 10.1111/j.1365-2958.2010.07447.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oxidation of methionine to methionine sulphoxide (MetSO) may lead to loss of molecular integrity and function. This oxidation can be 'repaired' by methionine sulphoxide reductases (MSRs), which reduce MetSO back to methionine. Two structurally unrelated classes of MSRs, MSRA and MSRB, show stereoselectivity towards the S and the R enantiomer of the sulphoxide respectively. Interestingly, these enzymes were even maintained throughout evolution in anaerobic organisms. Here, the activity and the nuclear magnetic resonance (NMR) structure of MTH711, a zinc containing MSRB from the thermophilic, methanogenic archaebacterium Methanothermobacter thermoautotrophicus, are described. The structure appears more rigid as compared with similar MSRBs from aerobic and mesophilic organisms. No significant structural differences between the oxidized and the reduced MTH711 state can be deduced from our NMR data. A stable sulphenic acid is formed at the catalytic Cys residue upon oxidation of the enzyme with MetSO. The two non-zinc-binding cysteines outside the catalytic centre are not necessary for activity of MTH711 and are not situated close enough to the active-site cysteine to serve in regenerating the active centre via the formation of an intramolecular disulphide bond. These findings imply a reaction cycle that differs from that observed for other MSRBs.
Collapse
Affiliation(s)
- Michela Carella
- Leibniz-Institut für Altersforschung Fritz-Lipmann-Institut, Beutenbergstr. 11, D-07745 Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Aachmann FL, Sal LS, Kim HY, Marino SM, Gladyshev VN, Dikiy A. Insights into function, catalytic mechanism, and fold evolution of selenoprotein methionine sulfoxide reductase B1 through structural analysis. J Biol Chem 2010; 285:33315-33323. [PMID: 20605785 DOI: 10.1074/jbc.m110.132308] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methionine sulfoxide reductases protect cells by repairing oxidatively damaged methionine residues in proteins. Here, we report the first three-dimensional structure of the mammalian selenoprotein methionine sulfoxide reductase B1 (MsrB1), determined by high resolution NMR spectroscopy. Heteronuclear multidimensional spectra yielded NMR spectral assignments for the reduced form of MsrB1 in which catalytic selenocysteine (Sec) was replaced with cysteine (Cys). MsrB1 consists of a central structured core of two β-sheets and a highly flexible, disordered N-terminal region. Analysis of pH dependence of NMR signals of catalytically relevant residues, comparison with the data for bacterial MsrBs, and NMR-based structural analysis of methionine sulfoxide (substrate) and methionine sulfone (inhibitor) binding to MsrB1 at the atomic level reveal a mechanism involving catalytic Sec(95) and resolving Cys(4) residues in catalysis. The MsrB1 structure differs from the structures of Cys-containing MsrBs in the use of distal selenenylsulfide, residues needed for catalysis, and the mode in which the active form of the enzyme is regenerated. In addition, this is the first structure of a eukaryotic zinc-containing MsrB, which highlights the structural role of this metal ion bound to four conserved Cys. We integrated this information into a structural model of evolution of MsrB superfamily.
Collapse
Affiliation(s)
- Finn L Aachmann
- From the Department of Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Lena S Sal
- From the Department of Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Hwa-Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu 705-717, Republic of Korea
| | - Stefano M Marino
- Genetics Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Vadim N Gladyshev
- Genetics Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Alexander Dikiy
- From the Department of Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| |
Collapse
|
17
|
Le DT, Liang X, Fomenko DE, Raza AS, Chong CK, Carlson BA, Hatfield DL, Gladyshev VN. Analysis of methionine/selenomethionine oxidation and methionine sulfoxide reductase function using methionine-rich proteins and antibodies against their oxidized forms. Biochemistry 2008; 47:6685-94. [PMID: 18505275 PMCID: PMC2844923 DOI: 10.1021/bi800422s] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Methionine (Met) residues are present in most proteins. However, this sulfur-containing amino acid is highly susceptible to oxidation. In cells, the resulting Met sulfoxides are reduced back to Met by stereospecific reductases MsrA and MsrB. Reversible Met oxidation occurs even in the absence of stress, is elevated during aging and disease, but is notoriously difficult to monitor. In this work, we computationally identified natural Met-rich proteins (MRPs) and characterized three such proteins containing 21-33% Met residues. Oxidation of multiple Met residues in MRPs with H(2)O(2) and reduction of Met sulfoxides with MsrA/MsrB dramatically influenced the mobility of these proteins on polyacrylamide gels and could be monitored by simple SDS-PAGE. We further prepared antibodies enriched for reduced and Met sulfoxide forms of these proteins and used them to monitor Met oxidation and reduction by immunoblot assays. We describe applications of these reagents for the analysis of MsrA and MsrB functions, as well as the development of the assay for high-throughput analysis of their activities. We also show that all Met sulfoxide residues in an MRP can be reduced by MsrA and MsrB. Furthermore, we prepared a selenomethionine form of an MRP and found that selenomethionine selenoxide residues can be efficiently reduced nonenzymatically by glutathione and other thiol compounds. Selenomethionine selenoxide residues were not recognized by antibodies specific for the Met sulfoxide form of an MRP. These findings, reagents, assays, and approaches should facilitate research and applications in the area of Met sulfoxide reduction, oxidative stress, and aging.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Vadim N. Gladyshev
- To whom correspondence should be addressed. Telephone: (402) 472-4948. Fax: (402) 472-7842. E-mail:
| |
Collapse
|
18
|
Vlamis-Gardikas A. The multiple functions of the thiol-based electron flow pathways of Escherichia coli: Eternal concepts revisited. Biochim Biophys Acta Gen Subj 2008; 1780:1170-200. [PMID: 18423382 DOI: 10.1016/j.bbagen.2008.03.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Revised: 03/18/2008] [Accepted: 03/22/2008] [Indexed: 10/22/2022]
Abstract
Electron flow via thiols is a theme with many variations in all kingdoms of life. The favourable physichochemical properties of the redox active couple of two cysteines placed in the optimised environment of the thioredoxin fold allow for two electron transfers in between top biological reductants and ultimate oxidants. The reduction of ribonucleotide reductases by thioredoxin and thioredoxin reductase of Escherichia coli (E. coli) was one of the first pathways to be elucidated. Diverse functions such as protein folding in the periplasm, maturation of respiratory enzymes, detoxification of hydrogen peroxide and prevention of oxidative damage may be based on two electron transfers via thiols. A growing field is the relation of thiol reducing pathways and the interaction of E. coli with different organisms. This concept combined with the sequencing of the genomes of different bacteria may allow for the identification of fine differences in the systems employing thiols for electron flow between pathogens and their corresponding mammalian hosts. The emerging possibility is the development of novel antibiotics.
Collapse
Affiliation(s)
- Alexios Vlamis-Gardikas
- Center of Basic Research I-Biochemistry Division, Biomedical Research Foundation (BRFAA), Academy of Athens, Soranou Efessiou 4, GR-11527 Athens, Greece.
| |
Collapse
|
19
|
Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals. Biochem J 2007; 407:321-9. [PMID: 17922679 DOI: 10.1042/bj20070929] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Msrs (methionine sulfoxide reductases), MsrA and MsrB, are repair enzymes that reduce methionine sulfoxide residues in oxidatively damaged proteins to methionine residues in a stereospecific manner. These enzymes protect cells from oxidative stress and have been implicated in delaying the aging process and progression of neurodegenerative diseases. In recent years, significant efforts have been made to explore the catalytic properties and physiological functions of these enzymes. In the current review, we present recent progress in this area, with the focus on mammalian MsrA and MsrBs including their roles in disease, evolution and function of selenoprotein forms of MsrA and MsrB, and the biochemistry of these enzymes.
Collapse
|