1
|
Iadanza MG, Jackson MP, Hewitt EW, Ranson NA, Radford SE. A new era for understanding amyloid structures and disease. Nat Rev Mol Cell Biol 2019; 19:755-773. [PMID: 30237470 DOI: 10.1038/s41580-018-0060-8] [Citation(s) in RCA: 651] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aggregation of proteins into amyloid fibrils and their deposition into plaques and intracellular inclusions is the hallmark of amyloid disease. The accumulation and deposition of amyloid fibrils, collectively known as amyloidosis, is associated with many pathological conditions that can be associated with ageing, such as Alzheimer disease, Parkinson disease, type II diabetes and dialysis-related amyloidosis. However, elucidation of the atomic structure of amyloid fibrils formed from their intact protein precursors and how fibril formation relates to disease has remained elusive. Recent advances in structural biology techniques, including cryo-electron microscopy and solid-state NMR spectroscopy, have finally broken this impasse. The first near-atomic-resolution structures of amyloid fibrils formed in vitro, seeded from plaque material and analysed directly ex vivo are now available. The results reveal cross-β structures that are far more intricate than anticipated. Here, we describe these structures, highlighting their similarities and differences, and the basis for their toxicity. We discuss how amyloid structure may affect the ability of fibrils to spread to different sites in the cell and between organisms in a prion-like manner, along with their roles in disease. These molecular insights will aid in understanding the development and spread of amyloid diseases and are inspiring new strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Matthew G Iadanza
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Matthew P Jackson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Eric W Hewitt
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
2
|
Wang K, Redeker V, Madiona K, Melki R, Kabani M. The 26S Proteasome Degrades the Soluble but Not the Fibrillar Form of the Yeast Prion Ure2p In Vitro. PLoS One 2015; 10:e0131789. [PMID: 26115123 PMCID: PMC4482727 DOI: 10.1371/journal.pone.0131789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/08/2015] [Indexed: 12/02/2022] Open
Abstract
Yeast prions are self-perpetuating protein aggregates that cause heritable and transmissible phenotypic traits. Among these, [PSI+] and [URE3] stand out as the most studied yeast prions, and result from the self-assembly of the translation terminator Sup35p and the nitrogen catabolism regulator Ure2p, respectively, into insoluble fibrillar aggregates. Protein quality control systems are well known to govern the formation, propagation and transmission of these prions. However, little is known about the implication of the cellular proteolytic machineries in their turnover. We previously showed that the 26S proteasome degrades both the soluble and fibrillar forms of Sup35p and affects [PSI+] propagation. Here, we show that soluble native Ure2p is degraded by the proteasome in an ubiquitin-independent manner. Proteasomal degradation of Ure2p yields amyloidogenic N-terminal peptides and a C-terminal resistant fragment. In contrast to Sup35p, fibrillar Ure2p resists proteasomal degradation. Thus, structural variability within prions may dictate their ability to be degraded by the cellular proteolytic systems.
Collapse
Affiliation(s)
- Kai Wang
- Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Virginie Redeker
- Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Karine Madiona
- Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Ronald Melki
- Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Mehdi Kabani
- Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Kryndushkin DS, Wickner RB, Tycko R. The core of Ure2p prion fibrils is formed by the N-terminal segment in a parallel cross-β structure: evidence from solid-state NMR. J Mol Biol 2011; 409:263-77. [PMID: 21497604 PMCID: PMC3095661 DOI: 10.1016/j.jmb.2011.03.067] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/25/2011] [Accepted: 03/29/2011] [Indexed: 02/02/2023]
Abstract
Intracellular fibril formation by Ure2p produces the non-Mendelian genetic element [URE3] in Saccharomyces cerevisiae, making Ure2p a prion protein. We show that solid-state NMR spectra of full-length Ure2p fibrils, seeded with infectious prions from a specific [URE3] strain and labeled with uniformly (15)N-(13)C-enriched Ile, include strong, sharp signals from Ile residues in the globular C-terminal domain (CTD) with both helical and nonhelical (13)C chemical shifts. Treatment with proteinase K eliminates these CTD signals, leaving only nonhelical signals from the Gln-rich and Asn-rich N-terminal segment, which are also observed in the solid-state NMR spectra of Ile-labeled fibrils formed by residues 1-89 of Ure2p. Thus, the N-terminal segment, or "prion domain" (PD), forms the fibril core, while CTD units are located outside the core. We additionally show that, after proteinase K treatment, Ile-labeled Ure2p fibrils formed without prion seeding exhibit a broader set of solid-state NMR signals than do prion-seeded fibrils, consistent with the idea that structural variations within the PD core account for prion strains. Measurements of (13)C-(13)C magnetic dipole-dipole couplings among (13)C-labeled Ile carbonyl sites in full-length Ure2p fibrils support an in-register parallel β-sheet structure for the PD core of Ure2p fibrils. Finally, we show that a model in which CTD units are attached rigidly to the parallel β-sheet core is consistent with steric constraints.
Collapse
Affiliation(s)
- Dmitry S. Kryndushkin
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Reed B. Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
4
|
Baxa U, Keller PW, Cheng N, Wall JS, Steven AC. In Sup35p filaments (the [PSI+] prion), the globular C-terminal domains are widely offset from the amyloid fibril backbone. Mol Microbiol 2010; 79:523-32. [PMID: 21219467 DOI: 10.1111/j.1365-2958.2010.07466.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In yeast cells infected with the [PSI+] prion, Sup35p forms aggregates and its activity in translation termination is downregulated. Transfection experiments have shown that Sup35p filaments assembled in vitro are infectious, suggesting that they reproduce or closely resemble the prion. We have used several EM techniques to study the molecular architecture of filaments, seeking clues as to the mechanism of downregulation. Sup35p has an N-terminal 'prion' domain; a highly charged middle (M-)domain; and a C-terminal domain with the translation termination activity. By negative staining, cryo-EM and scanning transmission EM (STEM), filaments of full-length Sup35p show a thin backbone fibril surrounded by a diffuse 65-nm-wide cloud of globular C-domains. In diameter (∼8 nm) and appearance, the backbones resemble amyloid fibrils of N-domains alone. STEM mass-per-unit-length data yield ∼1 subunit per 0.47 nm for N-fibrils, NM-filaments and Sup35p filaments, further supporting the fibril backbone model. The 30 nm radial span of decorating C-domains indicates that the M-domains assume highly extended conformations, offering an explanation for the residual Sup35p activity in infected cells, whereby the C-domains remain free enough to interact with ribosomes.
Collapse
Affiliation(s)
- Ulrich Baxa
- Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
5
|
Redeker V, Bonnefoy J, Le Caer JP, Pemberton S, Laprévote O, Melki R. A region within the C-terminal domain of Ure2p is shown to interact with the molecular chaperone Ssa1p by the use of cross-linkers and mass spectrometry. FEBS J 2010; 277:5112-23. [PMID: 21078122 DOI: 10.1111/j.1742-4658.2010.07915.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The propagation of yeast prion phenotypes is highly dependent on molecular chaperones. We previously demonstrated that the molecular chaperone Ssa1p sequesters Ure2p in high molecular weight, assembly incompetent oligomeric species. We also determined the affinity of Ssa1p for Ure2p, and its globular domain. To map the Ure2p-Ssa1p interface, we have used chemical cross-linkers and MS. We demonstrate that Ure2p and Ssa1p form a 1 : 1 complex. An analytical strategy combining in-gel digestion of cross-linked protein complexes, and both MS and MS/MS analysis of proteolytic peptides, allowed us to identify a number of peptides that were modified because they are exposed to the solvent. A difference in the exposure to the solvent of a single lysine residue, lysine 339 of Ure2p, was detected upon Ure2p-Ssa1p complex formation. These observations strongly suggest that lysine 339 and its flanking amino acid stretches are involved in the interaction between Ure2p and Ssa1p. They also reveal that the Ure2p amino-acid stretch spanning residues 327-339 plays a central role in the assembly into fibrils.
Collapse
Affiliation(s)
- Virginie Redeker
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif-sur-Yvette, France.
| | | | | | | | | | | |
Collapse
|
6
|
Deciphering the structure, growth and assembly of amyloid-like fibrils using high-speed atomic force microscopy. PLoS One 2010; 5:e13240. [PMID: 20949034 PMCID: PMC2951901 DOI: 10.1371/journal.pone.0013240] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 09/15/2010] [Indexed: 11/19/2022] Open
Abstract
Formation of fibrillar structures of proteins that deposit into aggregates has been suggested to play a key role in various neurodegenerative diseases. However mechanisms and dynamics of fibrillization remains to be elucidated. We have previously established that lithostathine, a protein overexpressed in the pre-clinical stages of Alzheimer's disease and present in the pathognomonic lesions associated with this disease, form fibrillar aggregates after its N-terminal truncation. In this paper we visualized, using high-speed atomic force microscopy (HS-AFM), growth and assembly of lithostathine protofibrils under physiological conditions with a time resolution of one image/s. Real-time imaging highlighted a very high velocity of elongation. Formation of fibrils via protofibril lateral association and stacking was also monitored revealing a zipper-like mechanism of association. We also demonstrate that, like other amyloid ß peptides, two lithostathine protofibrils can associate to form helical fibrils. Another striking finding is the propensity of the end of a growing protofibril or fibril to associate with the edge of a second fibril, forming false branching point. Taken together this study provides new clues about fibrillization mechanism of amyloid proteins.
Collapse
|
7
|
Bousset L, Bonnefoy J, Sourigues Y, Wien F, Melki R. Structure and assembly properties of the N-terminal domain of the prion Ure2p in isolation and in its natural context. PLoS One 2010; 5:e9760. [PMID: 20339590 PMCID: PMC2842292 DOI: 10.1371/journal.pone.0009760] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 03/01/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The aggregation of the baker's yeast prion Ure2p is at the origin of the [URE3] trait. The Q- and N-rich N-terminal part of the protein is believed to drive Ure2p assembly into fibrils of amyloid nature and the fibrillar forms of full-length Ure2p and its N-terminal part generated in vitro have been shown to induce [URE3] occurrence when introduced into yeast cells. This has led to the view that the fibrillar form of the N-terminal part of the protein is sufficient for the recruitment of constitutive Ure2p and that it imprints its amyloid structure to full-length Ure2p. RESULTS Here we generate a set of Ure2p N-terminal fragments, document their assembly and structural properties and compare them to that of full-length Ure2p. We identify the minimal region critical for the assembly of Ure2p N-terminal part into amyloids and show that such fibrils are unable to seed the assembly of full length Ure2p unlike fibrils made of intact Ure2p. CONCLUSION Our results clearly indicate that fibrillar Ure2p shares no structural similarities with the amyloid fibrils made of Ure2p N-terminal part. Our results further suggest that the induction of [URE3] by fibrils made of full-length Ure2p is likely the consequence of fibrils growth by depletion of cytosolic Ure2p while it is the consequence of de novo formation of prion particles following, for example, titration within the cells of a specific set of molecular chaperones when fibrils made of Ure2p N-terminal domain are introduced within the cytoplasm.
Collapse
Affiliation(s)
- Luc Bousset
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif-sur-Yvette, France
| | - Jonathan Bonnefoy
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif-sur-Yvette, France
| | - Yannick Sourigues
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif-sur-Yvette, France
| | - Frank Wien
- Synchrotron Soleil, Gif-sur-Yvette, France
| | - Ronald Melki
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
8
|
Fei L, Perrett S. New insights into the molecular mechanism of amyloid formation from cysteine scanning. Prion 2010; 4:9-12. [PMID: 20083897 DOI: 10.4161/pri.4.1.10670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Our laboratory recently reported the identification of a peptide region, QVNI, within the prion domain of the yeast protein Ure2 that may act as an initiation point for fibril formation.(1) This potential amyloid-forming region, which corresponds to residues 18-21 of Ure2, was initially identified by systematic cysteine scanning of the Ure2 prion domain. The point mutant R17C, and the corresponding octapeptide CQVNIGNR, were found to form fibrils rapidly under oxidative conditions due to the formation of a disulfide bond. Deletions within the QVNI sequence cause the fibril formation ability of R17C Ure2 to be inhibited. The aggregation propensity of this region is strongly modulated by its preceding residue: replacement of R17 with a hydrophobic residue promotes fibril formation in both full-length Ure2 and in the corresponding octapeptides. The wild-type octapeptide, RQVNIGNR, also forms fibrils, and is the shortest amyloid-forming peptide found for Ure2 to date. Interestingly, the wild-type octapeptide crystallizes readily and so provides a starting point towards obtaining high resolution structural information for the amyloid core of Ure2 fibrils.
Collapse
Affiliation(s)
- Li Fei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | | |
Collapse
|
9
|
Juárez J, López SG, Cambón A, Taboada P, Mosquera V. Influence of electrostatic interactions on the fibrillation process of human serum albumin. J Phys Chem B 2009; 113:10521-9. [PMID: 19572666 DOI: 10.1021/jp902224d] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fibrillation propensity of the multidomain protein human serum albumin (HSA) has been analyzed under physiological and acidic conditions at room and elevated temperatures with varying ionic strengths by different spectroscopic techniques. The kinetics of fibril formation under the different solution conditions and the structures of resulting fibrillar aggregates were also determined. In this way, we have observed that fibril formation is largely affected by electrostatic shielding: at physiological pH, fibrillation is progressively more efficient and faster in the presence of up to 50 mM NaCl; meanwhile, at larger salt concentrations, excessive shielding and further enhancement of the solution hydrophobicity might involve a change in the energy landscape of the aggregation process, which makes the fibrillation process difficult. In contrast, under acidic conditions, a continuous progressive enhancement of HSA fibrillation is observed as the electrolyte concentration in solution increases. Both the distinct ionization and initial structural states of the protein before incubation may be the origin of this behavior. CD, FT-IR, and tryptophan fluorescence spectra seem to confirm this picture by monitoring the structural changes in both protein tertiary and secondary structures along the fibrillation process. On the other hand, the fibrillation of HSA does not show a lag phase except at pH 3.0 in the absence of added salt. Finally, differences in the structure of the intermediates and resulting fibrils under the different conditions are also elucidated by TEM and FT-IR.
Collapse
Affiliation(s)
- Josué Juárez
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Facultad de Física, Universidad de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
10
|
Loquet A, Bousset L, Gardiennet C, Sourigues Y, Wasmer C, Habenstein B, Schütz A, Meier BH, Melki R, Böckmann A. Prion Fibrils of Ure2p Assembled under Physiological Conditions Contain Highly Ordered, Natively Folded Modules. J Mol Biol 2009; 394:108-18. [DOI: 10.1016/j.jmb.2009.09.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 09/07/2009] [Accepted: 09/08/2009] [Indexed: 11/25/2022]
|
11
|
Juárez J, Taboada P, Mosquera V. Existence of different structural intermediates on the fibrillation pathway of human serum albumin. Biophys J 2009; 96:2353-70. [PMID: 19289061 PMCID: PMC2907680 DOI: 10.1016/j.bpj.2008.12.3901] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 11/18/2008] [Accepted: 12/01/2008] [Indexed: 10/21/2022] Open
Abstract
The fibrillation propensity of the multidomain protein human serum albumin (HSA) was analyzed under different solution conditions. The aggregation kinetics, protein conformational changes upon self-assembly, and structure of the different intermediates on the fibrillation pathway were determined by means of thioflavin T (ThT) fluorescence and Congo Red absorbance; far- and near-ultraviolet circular dichroism; tryptophan fluorescence; Fourier transform infrared spectroscopy; x-ray diffraction; and transmission electron, scanning electron, atomic force, and microscopies. HSA fibrillation extends over several days of incubation without the presence of a lag phase, except for HSA samples incubated at acidic pH and room temperature in the absence of electrolyte. The absence of a lag phase occurs if the initial aggregation is a downhill process that does not require a highly organized and unstable nucleus. The fibrillation process is accompanied by a progressive increase in the beta-sheet (up to 26%) and unordered conformation at the expense of alpha-helical conformation, as revealed by ThT fluorescence and circular dichroism and Fourier transform infrared spectroscopies, but changes in the secondary structure contents depend on solution conditions. These changes also involve the presence of different structural intermediates in the aggregation pathway, such as oligomeric clusters (globules), bead-like structures, and ring-shaped aggregates. We suggest that fibril formation may take place through the role of association-competent oligomeric intermediates, resulting in a kinetic pathway via clustering of these oligomeric species to yield protofibrils and then fibrils. The resultant fibrils are elongated but curly, and differ in length depending on solution conditions. Under acidic conditions, circular fibrils are commonly observed if the fibrils are sufficiently flexible and long enough for the ends to find themselves regularly in close proximity to each other. These fibrils can be formed by an antiparallel arrangement of beta-strands forming the beta-sheet structure of the HSA fibrils as the most probable configuration. Very long incubation times lead to a more complex morphological variability of amyloid mature fibrils (i.e., long straight fibrils, flat-ribbon structures, laterally connected fibers, etc.). We also observed that mature straight fibrils can also grow by protein oligomers tending to align within the immediate vicinity of the fibers. This filament + monomers/oligomers scenario is an alternative pathway to the otherwise dominant filament + filament manner of the protein fibril's lateral growth. Conformational preferences for a certain pathway to become active may exist, and the influence of environmental conditions such as pH, temperature, and salt must be considered.
Collapse
Affiliation(s)
| | - Pablo Taboada
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Facultad de Física, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | | |
Collapse
|
12
|
Fei L, Perrett S. Disulfide bond formation significantly accelerates the assembly of Ure2p fibrils because of the proximity of a potential amyloid stretch. J Biol Chem 2009; 284:11134-41. [PMID: 19258323 DOI: 10.1074/jbc.m809673200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Aggregation of the Ure2 protein is at the origin of the [URE3] prion trait in the yeast Saccharomyces cerevisiae. The N-terminal region of Ure2p is necessary and sufficient to induce the [URE3] phenotype in vivo and to polymerize into amyloid-like fibrils in vitro. However, as the N-terminal region is poorly ordered in the native state, making it difficult to detect structural changes in this region by spectroscopic methods, detailed information about the fibril assembly process is therefore lacking. Short fibril-forming peptide regions (4-7 residues) have been identified in a number of prion and other amyloid-related proteins, but such short regions have not yet been identified in Ure2p. In this study, we identify a unique cysteine mutant (R17C) that can greatly accelerate the fibril assembly kinetics of Ure2p under oxidizing conditions. We found that the segment QVNI, corresponding to residues 18-21 in Ure2p, plays a critical role in the fast assembly properties of R17C, suggesting that this segment represents a potential amyloid-forming region. A series of peptides containing the QVNI segment were found to form fibrils in vitro. Furthermore, the peptide fibrils could seed fibril formation for wild-type Ure2p. Preceding the QVNI segment with a cysteine or a hydrophobic residue, instead of a charged residue, caused the rate of assembly into fibrils to increase greatly for both peptides and full-length Ure2p. Our results indicate that the potential amyloid stretch and its preceding residue can modulate the fibril assembly of Ure2p to control the initiation of prion formation.
Collapse
Affiliation(s)
- Li Fei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | | |
Collapse
|
13
|
Savistchenko J, Krzewska J, Fay N, Melki R. Molecular chaperones and the assembly of the prion Ure2p in vitro. J Biol Chem 2008; 283:15732-9. [PMID: 18400756 DOI: 10.1074/jbc.m800728200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein Ure2 from Saccharomyces cerevisiae possesses prion properties at the origin of the [URE3] trait. In vivo, a high molecular weight form of inactive Ure2p is associated to [URE3]. The faithful and continued propagation of [URE3]is dependent on the expression levels of molecular chaperones from the Hsp100, -70, and -40 families; however, so far, their role is not fully documented. Here we investigate the effects of molecular chaperones from the Hsp40, Hsp70, Hsp90, and Hsp100 families and the chaperonin CCT/Tric on the assembly of full-length Ure2p. We show that Hsp104p greatly stimulates Ure2p aggregation, whereas Ssa1p, Ydj1p, Sis1p, and Hsp82p inhibit aggregation to different extents. The nature of the high molecular weight Ure2p species that forms in the presence of the different molecular chaperones and their nucleotide dependence is described. We show that Hsp104p favors the aggregation of Ure2p into non-fibrillar high molecular weight particles, whereas Ssa1p, Ydj1p, Sis1p, and Hsp82p sequester Ure2p in spherical oligomers. Using fluorescently labeled full-length Ure2p and Ure2p-(94-354) and fluorescence polarization, we show that Ssa1p binding to Ure2p is ATP-dependent, whereas that of Hsp104p is not. We also show that Ssa1p preferentially interacts with the N-terminal domain of Ure2p that is critical for prion propagation, whereas Ydj1p preferentially interacts with the C-terminal domain of the protein, and we discuss the significance of this observation. Finally, the affinities of Ssa1p, Ydj1p, and Hsp104p for Ure2p are determined. Our in vitro observations bring new insight into the mechanism by which molecular chaperones influence the propagation of [URE3].
Collapse
Affiliation(s)
- Jimmy Savistchenko
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | |
Collapse
|
14
|
Channon K, MacPhee CE. Possibilities for 'smart' materials exploiting the self-assembly of polypeptides into fibrils. SOFT MATTER 2008; 4:647-652. [PMID: 32907166 DOI: 10.1039/b713013a] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Programmed assembly and self-assembly of soft materials offers significant promise for the generation of new types of materials with useful properties. Through evolutionary processes occurring over billions of years, nature has produced numerous optimised building blocks for the controlled assembly of a wide range of complex architectures. Our challenge now is to imitate these naturally occurring processes for technological applications, either using biological molecules such as DNA and proteins, or macromolecular mimics that retain many of the important features of biological molecules while introducing new functionalities. We focus on a single example of biomolecular self-assembly-the self-assembly of polypeptides, including polypeptide mimics, into quasi-one-dimensional fibres-to provide a flavour of the utility of soft biological materials for construction purposes.
Collapse
Affiliation(s)
- Kevin Channon
- School of Chemistry, University of Bristol, Bristol, UKBS8 1TS.
| | - Cait E MacPhee
- Department of Physics, University of Edinburgh, James Clerk Maxwell Building, The King's Buildings, Mayfield Road, Edinburgh, UKEH9 3JZ.
| |
Collapse
|
15
|
Holm NK, Jespersen SK, Thomassen LV, Wolff TY, Sehgal P, Thomsen LA, Christiansen G, Andersen CB, Knudsen AD, Otzen DE. Aggregation and fibrillation of bovine serum albumin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1128-38. [PMID: 17689306 DOI: 10.1016/j.bbapap.2007.06.008] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 05/26/2007] [Accepted: 06/26/2007] [Indexed: 12/21/2022]
Abstract
The all-alpha helix multi-domain protein bovine serum albumin (BSA) aggregates at elevated temperatures. Here we show that these thermal aggregates have amyloid properties. They bind the fibril-specific dyes Thioflavin T and Congo Red, show elongated although somewhat worm-like morphology and characteristic amyloid X-ray fiber diffraction peaks. Fibrillation occurs over minutes to hours without a lag phase, is independent of seeding and shows only moderate concentration dependence, suggesting intramolecular aggregation nuclei. Nevertheless, multi-exponential increases in dye-binding signal and changes in morphology suggest the existence of different aggregate species. Although beta-sheet content increases from 0 to ca. 40% upon aggregation, the aggregates retain significant amounts of alpha-helix structure, and lack a protease-resistant core. Thus BSA is able to form well-ordered beta-sheet rich aggregates which nevertheless do not possess the same structural rigidity as classical fibrils. The aggregates do not permeabilize synthetic membranes and are not cytotoxic. The ease with which a multidomain all-alpha helix protein can form higher-order beta-sheet structure, while retaining significant amounts of alpha-helix, highlights the universality of the fibrillation mechanism. However, the presence of non-beta-sheet structure may influence the final fibrillar structure and could be a key component in aggregated BSA's lack of cytotoxicity.
Collapse
Affiliation(s)
- Nikolaj K Holm
- Centre for Insoluble Protein Structures (inSPIN) at Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|