1
|
Rezaiezadeh H, Langarizadeh MA, Tavakoli MR, Sabokro M, Banazadeh M, Kohlmeier KA, Shabani M. Therapeutic potential of Bergenin in the management of neurological-based diseases and disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8349-8366. [PMID: 38850305 DOI: 10.1007/s00210-024-03197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Originally sourced from plants, Bergenin has been used as a medicinal compound in traditional medicine for centuries, and anecdotal reports suggest a wide range of therapeutic uses. Naturally-occurring and lab-synthesized Bergenin, as well as some of its related compounds, have been shown in in vivo and in vitro studies to alter activity of several enzymes and proteins critical in cellular functioning, including reelin, GSK-3β, Lingo-1, Ten-4, GP-43, Aβ 1-42, P-tau, SOD1,2, GPx, Glx1, NQO1, HO1, PPAR-ɣ, BDNF, VEGF, and STAT6. Additionally, Bergenin alters levels of several cytokines, such as IL-6, IL-1β, TNF-α, and TGF-β. Behavioral and cellular effects of Bergenin have been shown to involve PI3K/Akt, NF-κB, PKC, Nrf2, and Sirt1/FOXO3a pathways. These pathways, enzymes, and proteins have been shown to be important in normal neurological functioning, and/or dysfunctions in these pathways and proteins have been shown to be important in several neuro-based disorders or diseases, which suggests that Bergenin could be therapeutic in management of neuropsychiatric conditions or neurological disorders. In preclinical studies, Bergenin has been shown to be useful for the management of Alzheimer's disease, Parkinson's disease, anxiety, depression, addiction, epilepsy, insomnia, stroke, and potentially, state control. Our review aims to summarize current evidence supporting the conclusion that Bergenin could play a role in treating various neuro-based disorders and that future studies should be conducted to evaluate the mechanisms by which Bergenin could exert its therapeutic effects.
Collapse
Affiliation(s)
- Hojjat Rezaiezadeh
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box, Shiraz, 71345-1583, Iran
| | - Mohammad Amin Langarizadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Marziye Ranjbar Tavakoli
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Sabokro
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
TRPV6 channel mediates alcohol-induced gut barrier dysfunction and systemic response. Cell Rep 2022; 39:110937. [PMID: 35705057 PMCID: PMC9250449 DOI: 10.1016/j.celrep.2022.110937] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/20/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
Intestinal epithelial tight junction disruption is a primary contributing factor in alcohol-associated endotoxemia, systemic inflammation, and multiple organ damage. Ethanol and acetaldehyde disrupt tight junctions by elevating intracellular Ca2+. Here we identify TRPV6, a Ca2+-permeable channel, as responsible for alcohol-induced elevation of intracellular Ca2+, intestinal barrier dysfunction, and systemic inflammation. Ethanol and acetaldehyde elicit TRPV6 ionic currents in Caco-2 cells. Studies in Caco-2 cell monolayers and mouse intestinal organoids show that TRPV6 deficiency or inhibition attenuates ethanol- and acetaldehyde-induced Ca2+ influx, tight junction disruption, and barrier dysfunction. Moreover, Trpv6−/− mice are resistant to alcohol-induced intestinal barrier dysfunction. Photoaffinity labeling of 3-azibutanol identifies a histidine as a potential alcohol-binding site in TRPV6. The substitution of this histidine, and a nearby arginine, reduces ethanol-activated currents. Our findings reveal that TRPV6 is required for alcohol-induced gut barrier dysfunction and inflammation. Molecules that decrease TRPV6 function have the potential to attenuate alcohol-associated tissue injury. Meena et al. show that the mechanism of alcohol-induced gut permeability, endotoxemia, and systemic inflammation requires the TRPV6 channel. They show that ethanol activates TRPV6, induces calcium influx, and disrupts intestinal epithelial tight junctions. Furthermore, specific histidine and arginine residues at the N terminus fine-tune the alcohol-induced activation of TRPV6.
Collapse
|
3
|
Das J. Identification of alcohol-binding site(s) in proteins using diazirine-based photoaffinity labeling and mass spectrometry. Chem Biol Drug Des 2018; 93:1158-1165. [PMID: 30346111 DOI: 10.1111/cbdd.13403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/03/2018] [Accepted: 09/15/2018] [Indexed: 01/12/2023]
Abstract
Defining molecular targets of alcohol and understanding the molecular mechanism of alcohol actions are necessary to develop effective therapeutics for alcohol use disorder (AUD). Here, we describe a detailed protocol for identifying alcohol-binding site(s) in proteins using diazirine-based azialcohol as photoaffinity labeling agents. Upon photoirradiation, azialcohol photoincorporates into alcohol-binding proteins. The stoichiometry and site of azialcohol photoincorporation can be determined using high-resolution mass spectrometry. Identification of the alcohol-binding residues in protein followed by measuring the biological significance of these residues in regulating alcohol action are important steps in characterizing the molecular targets of alcohol.
Collapse
Affiliation(s)
- Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| |
Collapse
|
4
|
Structural Identification and Systematic Comparison of Phorbol Ester, Dioleoylglycerol, Alcohol and Sevoflurane Binding Sites in PKCδ C1A Domain. Protein J 2018; 37:539-547. [PMID: 30251087 DOI: 10.1007/s10930-018-9793-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein kinase C (PKC) is a family of signal transducing enzymes that have been implicated in anesthetic preconditioning signaling cascade. Evidences are emerging that certain exogenous neuromodulators such as n-alkanols and general anesthetics can stimulate PKC activity by binding to regulatory C1A domain of the enzyme. However, the accurate binding sites in C1A domain as well as the molecular mechanism underlying binding-stimulated PKC activation still remain unelucidated. Here, we report a systematic investigation of the intermolecular interaction of human PKCδ C1A domain with its natural activator phorbol ester (PE) and co-activator dioleoylglycerol (DOG) as well as exogenous stimulators butanol, octanol and sevoflurane. The domain is computationally identified to potentially have three spatially vicinal ligand-binding pockets 1, 2 and 3, in which the pockets 1 and 2 have previously been determined as the binding sites of PE and DOG, respectively. Systematic cross-binding analysis reveals that long-chain octanol and DOG are well compatible with the flat, nonpolar pocket 2, where the nonspecific hydrophobic contacts and van der Waals packing are primarily responsible for the binding, while the general anesthetic sevoflurane prefer to interact with the rugged, polar pocket 3 through specific hydrogen bonds and electrostatic forces. Short-chain butanol appears to bind effectively none of the three pockets. In addition, the pocket 1 consists of two angled arms 1 and 2 that are also involved in pockets 2 and 3, respectively. Dynamics characterization imparts that binding of long-chain octanol and DOG to pocket 2 or binding of sevoflurane to pocket 3 can induce a conformational displacement in arm 1 or 2, thus further opening the included angle and enlarging pocket 1, which can improve the pocket 1-PE affinity via an allosteric mechanism, consequently stimulating the PE-induced PKCδ activation.
Collapse
|
5
|
Ge SS, Chen B, Wu YY, Long QS, Zhao YL, Wang PY, Yang S. Current advances of carbene-mediated photoaffinity labeling in medicinal chemistry. RSC Adv 2018; 8:29428-29454. [PMID: 35547988 PMCID: PMC9084484 DOI: 10.1039/c8ra03538e] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/07/2018] [Indexed: 12/21/2022] Open
Abstract
Photoaffinity labeling (PAL) in combination with a chemical probe to covalently bind its target upon UV irradiation has demonstrated considerable promise in drug discovery for identifying new drug targets and binding sites. In particular, carbene-mediated photoaffinity labeling (cmPAL) has been widely used in drug target identification owing to its excellent photolabeling efficiency, minimal steric interference and longer excitation wavelength. Specifically, diazirines, which are among the precursors of carbenes and have higher carbene yields and greater chemical stability than diazo compounds, have proved to be valuable photolabile reagents in a diverse range of biological systems. This review highlights current advances of cmPAL in medicinal chemistry, with a focus on structures and applications for identifying small molecule-protein and macromolecule-protein interactions and ligand-gated ion channels, coupled with advances in the discovery of targets and inhibitors using carbene precursor-based biological probes developed in recent decades.
Collapse
Affiliation(s)
- Sha-Sha Ge
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Biao Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Yuan-Yuan Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Qing-Su Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Yong-Liang Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
- College of Pharmacy, East China University of Science & Technology Shanghai 200237 China
| |
Collapse
|
6
|
Qualls-Creekmore E, Gupta R, Yoshimura M. The effect of alcohol on recombinant proteins derived from mammalian adenylyl cyclase. Biochem Biophys Rep 2017; 10:157-164. [PMID: 28955743 PMCID: PMC5614657 DOI: 10.1016/j.bbrep.2017.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/07/2017] [Accepted: 03/29/2017] [Indexed: 11/26/2022] Open
Abstract
The cyclic AMP (cAMP) signaling pathway is implicated in the development of alcohol use disorder. Previous studies have demonstrated that ethanol enhances the activity of adenylyl cyclase (AC) in an isoform specific manner; AC7 is most enhanced by ethanol, and regions responsible for enhancement by ethanol are located in the cytoplasmic domains of the AC7 protein. We hypothesize that ethanol modulates AC activity by directly interacting with the protein and that ethanol effects on AC can be studied using recombinant AC in vitro. AC recombinant proteins containing only the C1a or C2 domains of AC7 and AC9 individually were expressed in bacteria, and purified. The purified recombinant AC proteins retained enzymatic activity and isoform specific alcohol responsiveness. The combination of the C1a or C2 domains of AC7 maintained the same alcohol cutoff point as full-length AC7. We also find that the recombinant AC7 responds to alcohol differently in the presence of different combinations of activators including MnCl2, forskolin, and Gsα. Through a series of concentration-response experiments and curve fitting, the values for maximum activities, Hill coefficients, and EC50 were determined in the absence and presence of butanol as a surrogate of ethanol. The results suggest that alcohol modulates AC activity by directly interacting with the AC protein and that the alcohol interaction with the AC protein occurs at multiple sites with positive cooperativity. This study indicates that the recombinant AC proteins expressed in bacteria can provide a useful model system to investigate the mechanism of alcohol action on their activity.
Collapse
Affiliation(s)
- Emily Qualls-Creekmore
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Ratna Gupta
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Masami Yoshimura
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| |
Collapse
|
7
|
Abstract
BACKGROUND Alcohol regulates the expression and function of protein kinase C epsilon (PKCε). In a previous study we identified an alcohol binding site in the C1B, one of the twin C1 subdomains of PKCε (Das et al., Biochem. J., 421, 405-13, 2009). METHODS In this study, we investigated alcohol binding in the entire C1 domain (combined C1A and C1B) of PKCε. Fluorescent phorbol ester, SAPD and fluorescent diacylglycerol (DAG) analog, dansyl-DAG were used to study the effect of ethanol, butanol, and octanol on the ligand binding using fluorescence resonance energy transfer (FRET). To identify alcohol binding site(s), PKCεC1 was photolabeled with 3-azibutanol and 3-azioctanol, and analyzed by mass spectrometry. The effects of alcohols and the azialcohols on PKCε were studied in NG108-15 cells. RESULTS In the presence of alcohol, SAPD and dansyl-DAG showed different extent of FRET, indicating differential effects of alcohol on the C1A and C1B subdomains. Effects of alcohols and azialcohols on PKCε in NG108-15 cells were comparable. Azialcohols labeled Tyr-176 of C1A and Tyr-250 of C1B. Inspection of the model structure of PKCεC1 reveals that these residues are 40Å apart from each other indicating that these residues form two different alcohol binding sites. CONCLUSIONS The present results provide evidence for the presence of multiple alcohol-binding sites on PKCε and underscore the importance of targeting this PKC isoform in developing alcohol antagonists.
Collapse
Affiliation(s)
- Satyabrata Pany
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States.
| |
Collapse
|
8
|
Masuda S, Tomohiro T, Yamaguchi S, Morimoto S, Hatanaka Y. Structure-assisted ligand-binding analysis using fluorogenic photoaffinity labeling. Bioorg Med Chem Lett 2015; 25:1675-1678. [DOI: 10.1016/j.bmcl.2015.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 11/29/2022]
|
9
|
Tabakoff B, Hoffman PL. The neurobiology of alcohol consumption and alcoholism: an integrative history. Pharmacol Biochem Behav 2013; 113:20-37. [PMID: 24141171 PMCID: PMC3867277 DOI: 10.1016/j.pbb.2013.10.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 01/17/2023]
Abstract
Studies of the neurobiological predisposition to consume alcohol (ethanol) and to transition to uncontrolled drinking behavior (alcoholism), as well as studies of the effects of alcohol on brain function, started a logarithmic growth phase after the repeal of the 18th Amendment to the United States Constitution. Although the early studies were primitive by current technological standards, they clearly demonstrated the effects of alcohol on brain structure and function, and by the end of the 20th century left little doubt that alcoholism is a "disease" of the brain. This review traces the history of developments in the understanding of ethanol's effects on the most prominent inhibitory and excitatory systems of brain (GABA and glutamate neurotransmission). This neurobiological information is integrated with knowledge of ethanol's actions on other neurotransmitter systems to produce an anatomical and functional map of ethanol's properties. Our intent is limited in scope, but is meant to provide context and integration of the actions of ethanol on the major neurobiologic systems which produce reinforcement for alcohol consumption and changes in brain chemistry that lead to addiction. The developmental history of neurobehavioral theories of the transition from alcohol drinking to alcohol addiction is presented and juxtaposed to the neurobiological findings. Depending on one's point of view, we may, at this point in history, know more, or less, than we think we know about the neurobiology of alcoholism.
Collapse
Affiliation(s)
- Boris Tabakoff
- University of Colorado School of Medicine, MS8303, 12800 E. 19 Ave., Aurora, CO 80045 U.S.A
| | - Paula L. Hoffman
- University of Colorado School of Medicine, MS8303, 12800 E. 19 Ave., Aurora, CO 80045 U.S.A
| |
Collapse
|
10
|
Weiser BP, Woll KA, Dailey WP, Eckenhoff RG. Mechanisms revealed through general anesthetic photolabeling. CURRENT ANESTHESIOLOGY REPORTS 2013; 4:57-66. [PMID: 24563623 DOI: 10.1007/s40140-013-0040-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
General anesthetic photolabels are used to reveal molecular targets and molecular binding sites of anesthetic ligands. After identification, the relevance of anesthetic substrates or binding sites can be tested in biological systems. Halothane and photoactive analogs of isoflurane, propofol, etomidate, neurosteroids, anthracene, and long chain alcohols have been used in anesthetic photolabeling experiments. Interrogated protein targets include the nicotinic acetylcholine receptor, GABAA receptor, tubulin, leukocyte function-associated antigen-1, and protein kinase C. In this review, we summarize insights revealed by photolabeling these targets, as well as general features of anesthetics, such as their propensity to partition to mitochondria and bind voltage-dependent anion channels. The theory of anesthetic photolabel design and the experimental application of photoactive ligands are also discussed.
Collapse
Affiliation(s)
- Brian P Weiser
- Department of Anesthesiology & Critical Care, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104 ; Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104
| | - Kellie A Woll
- Department of Anesthesiology & Critical Care, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104 ; Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104
| | - William P Dailey
- Department of Chemistry, University of Pennsylvania School of Arts and Sciences, 231 S. 34th Street, Philadelphia, PA 19104
| | - Roderic G Eckenhoff
- Department of Anesthesiology & Critical Care, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104
| |
Collapse
|
11
|
Das J, Xu S, Pany S, Guillory A, Shah V, Roman GW. The pre-synaptic Munc13-1 binds alcohol and modulates alcohol self-administration in Drosophila. J Neurochem 2013; 126:715-26. [PMID: 23692447 DOI: 10.1111/jnc.12315] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/09/2013] [Accepted: 05/17/2013] [Indexed: 11/30/2022]
Abstract
Munc13-1 is a pre-synaptic active-zone protein essential for neurotransmitter release and involved in pre-synaptic plasticity in brain. Ethanol, butanol, and octanol quenched the intrinsic fluorescence of the C1 domain of Munc13-1 with EC₅₀ s of 52 mM, 26 mM, and 0.7 mM, respectively. Photoactive azialcohols photolabeled Munc13-1 C1 exclusively at Glu-582, which was identified by mass spectrometry. Mutation of Glu-582 to alanine, leucine, and histidine reduced the alcohol binding two- to five-fold. Circular dichroism studies suggested that binding of alcohol increased the stability of the wild-type Munc13-1 compared with the mutants. If Munc13-1 plays some role in the neural effects of alcohol in vivo, changes in the activity of this protein should produce differences in the behavioral responses to ethanol. We tested this prediction with a loss-of-function mutation in the conserved Dunc-13 in Drosophila melanogaster. The Dunc-13(P84200) /+ heterozygotes have 50% wild-type levels of Dunc-13 mRNA and display a very robust increase in ethanol self-administration. This phenotype is reversed by the expression of the rat Munc13-1 protein within the Drosophila nervous system. The present studies indicate that Munc13-1 C1 has binding site(s) for alcohols and Munc13-1 activity is sufficient to restore normal self-administration to Drosophila mutants deficient in Dunc-13 activity. The pre-synaptic Mun13-1 protein is a critical regulator of synaptic vesicle fusion and may be involved in processes that lead to ethanol abuse and addiction. We studied its interaction with alcohol and identified Glu-582 as a critical residue for ethanol binding. Munc13-1 can functionally complement the Dunc13 haploinsufficient ethanol self-administration phenotype in Drosophila melanogaster, indicating that this protein participates in alcohol-induced behavioral plasticity.
Collapse
Affiliation(s)
- Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, USA.
| | | | | | | | | | | |
Collapse
|
12
|
PKC activation by resveratrol derivatives with unsaturated aliphatic chain. PLoS One 2012; 7:e52888. [PMID: 23285216 PMCID: PMC3528653 DOI: 10.1371/journal.pone.0052888] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/22/2012] [Indexed: 01/04/2023] Open
Abstract
Resveratrol (1) is a naturally occurring phytoalexin that affects a variety of human disease models, including cardio- and neuroprotection, immune regulation, and cancer chemoprevention. One of the possible mechanisms by which resveratrol affects these disease states is by affecting the cellular signaling network involving protein kinase C (PKC). PKC is the family of serine/threonine kinases, whose activity is inhibited by resveratrol. To develop PKC isotype selective molecules on the resveratrol scaffold, several analogs (2–5) of resveratrol with a long aliphatic chain varying with number of unsaturated doubled bonds have been synthesized, their cytotoxic effects on CHO-K1 cells are measured and their effects on the membrane translocation properties of PKCα and PKCε have been determined. The analogs showed less cytotoxic effects on CHO-K1 cells. Analog 4 with three unsaturated double bonds in its aliphatic chain activated PKCα, but not PKCε. Analog 4 also activated ERK1/2, the downstream proteins in the PKC signaling pathway. Resveratrol analogs 2–5, however, did not show any inhibition of the phorbol ester-induced membrane translocation for either PKCα or PKCε. Molecular docking of 4 into the activator binding site of PKCα revealed that the resveratrol moiety formed hydrogen bonds with the activator binding residues and the aliphatic chain capped the activator binding loops making its surface hydrophobic to facilitate its interaction with the plasma membrane. The present study shows that subtle changes in the resveratrol structure can have profound impact on the translocation properties of PKCs. Therefore, resveratrol scaffold can be used to develop PKC selective modulators for regulating associated disease states.
Collapse
|
13
|
Stahelin RV, Kong KF, Raha S, Tian W, Melowic HR, Ward KE, Murray D, Altman A, Cho W. Protein kinase Cθ C2 domain is a phosphotyrosine binding module that plays a key role in its activation. J Biol Chem 2012; 287:30518-28. [PMID: 22787157 DOI: 10.1074/jbc.m112.391557] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Protein kinase Cθ (PKCθ) is a novel PKC that plays a key role in T lymphocyte activation. To understand how PKCθ is regulated in T cells, we investigated the properties of its N-terminal C2 domain that functions as an autoinhibitory domain. Our measurements show that a Tyr(P)-containing peptide derived from CDCP1 binds the C2 domain of PKCθ with high affinity and activates the enzyme activity of the intact protein. The Tyr(P) peptide also binds the C2 domain of PKCδ tightly, but no enzyme activation was observed with PKCδ. Mutations of PKCθ-C2 residues involved in Tyr(P) binding abrogated the enzyme activation and association of PKCθ with Tyr-phosphorylated full-length CDCP1 and severely inhibited the T cell receptor/CD28-mediated activation of a PKCθ-dependent reporter gene in T cells. Collectively, these studies establish the C2 domain of PKCθ as a Tyr(P)-binding domain and suggest that the domain may play a major role in PKCθ activation via its Tyr(P) binding.
Collapse
Affiliation(s)
- Robert V Stahelin
- Department of Chemistry, University of Illinois, Chicago, IL 60607, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jia K, Zhang Y, Li Y. Identification and characterization of two functionally unknown genes involved in butanol tolerance of Clostridium acetobutylicum. PLoS One 2012; 7:e38815. [PMID: 22768047 PMCID: PMC3387226 DOI: 10.1371/journal.pone.0038815] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 05/11/2012] [Indexed: 01/07/2023] Open
Abstract
Solvents toxicity is a major limiting factor hampering the cost-effective biotechnological production of chemicals. In Clostridium acetobutylicum, a functionally unknown protein (encoded by SMB_G1518) with a hypothetical alcohol interacting domain was identified. Disruption of SMB_G1518 and/or its downstream gene SMB_G1519 resulted in increased butanol tolerance, while overexpression of SMB_G1518-1519 decreased butanol tolerance. In addition, SMB_G1518-1519 also influences the production of pyruvate:ferredoxin oxidoreductase (PFOR) and flagellar protein hag, the maintenance of cell motility. We conclude that the system of SMB_G1518-1519 protein plays a role in the butanol sensitivity/tolerance phenotype of C. acetobutylicum, and can be considered as potential targets for engineering alcohol tolerance.
Collapse
Affiliation(s)
- Kaizhi Jia
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanping Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yin Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
15
|
Ziemba BP, Booth JC, Jones DNM. 1H, 13C and 15N NMR assignments of the C1A and C1B subdomains of PKC-delta. BIOMOLECULAR NMR ASSIGNMENTS 2011; 5:125-129. [PMID: 21132404 PMCID: PMC4396712 DOI: 10.1007/s12104-010-9283-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/04/2010] [Indexed: 05/30/2023]
Abstract
The Protein Kinase C family of enzymes is a group of serine/threonine kinases that play central roles in cell-cycle regulation, development and cancer. A key step in the activation of PKC is translocation to membranes and binding of membrane-associated activators including diacylglycerol (DAG). Interaction of novel and conventional isotypes of PKC with DAG and phorbol esters occurs through the two C1 regulatory domains (C1A and C1B), which exhibit distinct ligand binding selectivity that likely controls enzyme activation by different co-activators. PKC has also been implicated in physiological responses to alcohol consumption and it has been proposed that PKCα (Slater et al. J Biol Chem 272(10):6167-6173, 1997; Slater et al. Biochemistry 43(23):7601-7609, 2004), PKCε (Das et al. Biochem J 421(3):405-413, 2009) and PKCδ (Das et al. J Biol Chem 279(36):37964-37972, 2004; Das et al. Protein Sci 15(9):2107-2119, 2006) contain specific alcohol-binding sites in their C1 domains. We are interested in understanding how ethanol affects signal transduction processes through its affects on the structure and function of the C1 domains of PKC. Here we present the (1)H, (15)N and (13)C NMR chemical shift assignments for the Rattus norvegicus PKCδ C1A and C1B proteins.
Collapse
Affiliation(s)
- Brian P Ziemba
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | |
Collapse
|
16
|
Das J, Pany S, Panchal S, Majhi A, Rahman GM. Binding of isoxazole and pyrazole derivatives of curcumin with the activator binding domain of novel protein kinase C. Bioorg Med Chem 2011; 19:6196-202. [PMID: 21975067 DOI: 10.1016/j.bmc.2011.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 09/08/2011] [Indexed: 11/26/2022]
Abstract
The protein kinase C (PKC) family of serine/threonine kinases is an attractive drug target because of its involvement in the regulation of various cellular functions, including cell growth, differentiation, metabolism, and apoptosis. The endogenous PKC activator diacylglycerol contains two long carbon chains, which are attached to the glycerol moiety via ester linkage. Natural product curcumin (1), the active constituent of Curcuma L., contains two carbonyl and two hydroxyl groups. It modulates PKC activity and binds to the activator binding site (Majhi et al., Bioorg. Med. Chem.2010, 18, 1591). To investigate the role of the carbonyl and hydroxyl groups of curcumin in PKC binding and to develop curcumin derivatives as effective PKC modulators, we synthesized several isoxazole and pyrazole derivatives of curcumin (2-6), characterized their absorption and fluorescence properties, and studied their interaction with the activator-binding second cysteine-rich C1B subdomain of PKCδ, PKCε and PKCθ. The EC(50)s of the curcumin derivatives for protein fluorescence quenching varied in the range of 3-25 μM. All the derivatives showed higher binding with the PKCθC1B compared with PKCδC1B and PKCεC1B. Fluorescence emission maxima of 2-5 were blue shifted in the presence of the C1B domains, confirming their binding to the protein. Molecular docking revealed that hydroxyl, carbonyl and pyrazole ring of curcumin (1), pyrazole (2), and isoxazole (4) derivatives form hydrogen bonds with the protein residues. The present result shows that isoxazole and pyrazole derivatives bind to the activator binding site of novel PKCs and both carbonyl and hydroxy groups of curcumin play roles in the binding process, depending on the nature of curcumin derivative and the PKC isotype used.
Collapse
Affiliation(s)
- Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States.
| | | | | | | | | |
Collapse
|
17
|
Das J, Pany S, Majhi A. Chemical modifications of resveratrol for improved protein kinase C alpha activity. Bioorg Med Chem 2011; 19:5321-33. [PMID: 21880495 DOI: 10.1016/j.bmc.2011.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 07/28/2011] [Accepted: 08/03/2011] [Indexed: 12/20/2022]
Abstract
Resveratrol (1) is a naturally occurring phytoalexin that affects a variety of human disease models, including cardio- and neuroprotection, immune regulation, and cancer chemoprevention. One of the possible mechanisms by which resveratrol affects these disease states is by affecting the cellular signaling network involving protein kinase C alpha (PKCα). PKCα is a member of the family of serine/threonine kinases, whose activity is inhibited by resveratrol. To study the structure-activity relationship, several monoalkoxy, dialkoxy and hydroxy analogs of resveratrol have been synthesized, tested for their cytotoxic effects on HEK293 cells, measured their effects on the membrane translocation properties of PKCα in the presence and absence of the PKC activator TPA, and studied their binding with the activator binding domain of PKCα. The analogs showed less cytotoxic effects on HEK293 cells and caused higher membrane translocation (activation) than that of resveratrol. Among all the analogs, 3, 16 and 25 showed significantly higher activation than resveratrol. Resveratrol analogs, however, inhibited phorbol ester-induced membrane translocation, and the inhibition was less than that of resveratrol. Binding studies using steady state fluorescence spectroscopy indicated that resveratrol and the analogs bind to the second cysteine-rich domain of PKCα. The molecular docking studies indicated that resveratrol and the analogs interact with the protein by forming hydrogen bonds through its hydroxyl groups. These results signify that molecules developed on a resveratrol scaffold can attenuate PKCα activity and this strategy can be used to regulate various disease states involving PKCα.
Collapse
Affiliation(s)
- Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States.
| | | | | |
Collapse
|
18
|
Das J. Aliphatic diazirines as photoaffinity probes for proteins: recent developments. Chem Rev 2011; 111:4405-17. [PMID: 21466226 DOI: 10.1021/cr1002722] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, USA.
| |
Collapse
|
19
|
Taylor EJ, Campbell SG, Griffiths CD, Reid PJ, Slaven JW, Harrison RJ, Sims PFG, Pavitt GD, Delneri D, Ashe MP. Fusel alcohols regulate translation initiation by inhibiting eIF2B to reduce ternary complex in a mechanism that may involve altering the integrity and dynamics of the eIF2B body. Mol Biol Cell 2010; 21:2202-16. [PMID: 20444979 PMCID: PMC2893985 DOI: 10.1091/mbc.e09-11-0962] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study highlights a connection between the eIF2B body and the regulation of translation initiation as a response to stress in Saccharomyces cerevisiae. Fusel alcohols are involved in signaling nitrogen scarcity to the cell and they inhibit protein synthesis by preventing the movement of the eIF2B body throughout the cell. Recycling of eIF2-GDP to the GTP-bound form constitutes a core essential, regulated step in eukaryotic translation. This reaction is mediated by eIF2B, a heteropentameric factor with important links to human disease. eIF2 in the GTP-bound form binds to methionyl initiator tRNA to form a ternary complex, and the levels of this ternary complex can be a critical determinant of the rate of protein synthesis. Here we show that eIF2B serves as the target for translation inhibition by various fusel alcohols in yeast. Fusel alcohols are endpoint metabolites from amino acid catabolism, which signal nitrogen scarcity. We show that the inhibition of eIF2B leads to reduced ternary complex levels and that different eIF2B subunit mutants alter fusel alcohol sensitivity. A DNA tiling array strategy was developed that overcame difficulties in the identification of these mutants where the phenotypic distinctions were too subtle for classical complementation cloning. Fusel alcohols also lead to eIF2α dephosphorylation in a Sit4p-dependent manner. In yeast, eIF2B occupies a large cytoplasmic body where guanine nucleotide exchange on eIF2 can occur and be regulated. Fusel alcohols impact on both the movement and dynamics of this 2B body. Overall, these results confirm that the guanine nucleotide exchange factor, eIF2B, is targeted by fusel alcohols. Moreover, they highlight a potential connection between the movement or integrity of the 2B body and eIF2B regulation.
Collapse
Affiliation(s)
- Eleanor J Taylor
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Majhi A, Rahman GM, Panchal S, Das J. Binding of curcumin and its long chain derivatives to the activator binding domain of novel protein kinase C. Bioorg Med Chem 2010; 18:1591-8. [PMID: 20100661 PMCID: PMC2843403 DOI: 10.1016/j.bmc.2009.12.075] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 12/24/2009] [Accepted: 12/31/2009] [Indexed: 01/08/2023]
Abstract
Protein kinase C (PKC) is a family of serine/threonine kinases that play a central role in cellular signal transduction. The second messenger diacylglycerol having two long carbon chains acts as the endogenous ligand for the PKCs. Polyphenol curcumin, the active constituent of Curcuma longa is an anti-cancer agent and modulates PKC activity. To develop curcumin derivatives as effective PKC activators, we synthesized several long chain derivatives of curcumin, characterized their absorption and fluorescence properties and studied their interaction with the activator binding second cysteine-rich C1B subdomain of PKCdelta, PKCepsilon and PKCtheta. Curcumin (1) and its C16 long chain analog (4) quenched the intrinsic fluorescence of PKCdeltaC1B, PKCepsilonC1B and PKCthetaC1B in a manner similar to that of PKC activator 12-O-tetradecanoylphorbol 13-acetate (TPA). The EC(50)s of the curcumin derivatives for fluorescence quenching varied in the range of 4-11 microM, whereas, EC(50)s for TPA varied in the range of 3-6 microM. Fluorescence emission maxima of 1 and 4 were blue shifted and the fluorescence anisotropy values were increased in the presence of the C1B domains in a manner similar to that shown by the fluorescent analog of TPA, sapintoxin-D, confirming that they were bound to the proteins. Molecular docking of 1 and 4 with novel PKC C1B revealed that both the molecules form hydrogen bonds with the protein residues. The present result shows that curcumin and its long chain derivatives bind to the C1B subdomain of novel PKCs and can be further modified structurally to improve its binding and activity.
Collapse
Affiliation(s)
- Anjoy Majhi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204
| | - Ghazi M. Rahman
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204
| | - Shyam Panchal
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204
| | - Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204
| |
Collapse
|
21
|
Chen J, Zhang Y, Shen P. Protein kinase C deficiency-induced alcohol insensitivity and underlying cellular targets in Drosophila. Neuroscience 2009; 166:34-9. [PMID: 20006676 DOI: 10.1016/j.neuroscience.2009.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 12/03/2009] [Accepted: 12/04/2009] [Indexed: 10/20/2022]
Abstract
Multiple subtypes of protein kinase C (PKC) isozymes are implicated in various neurological disorders including alcohol insensitivity, a trait strongly associated with alcoholism in humans, but molecular and cellular mechanisms underlying the PKC activities remain poorly understood. Here we show that functional knockdown of conventional, novel or atypical PKC in the fly nervous system each resulted in alcohol insensitivity. Neuroanatomical mapping of conventional Ca(2+)-sensitive PKC53E activity uncovers a previously uncharacterized role of Drosophila serotonin neurons in alcohol sensitivity. The deficiency of PKC53E but not novel Ca(2+)-independent PKC98E appears to reduce synaptic serotonin levels, since acute inhibition of serotonin reuptake by citalopram and Prozac reversed alcohol insensitivity in flies expressing PKC53E double-stranded RNA in serotonin neurons. Together, findings from this and our previous studies indicate that PKC53E and PKC98E differentially regulate fly alcohol sensitivity through independent modulation of conserved serotonin and neuropeptide Y-like systems.
Collapse
Affiliation(s)
- J Chen
- Department of Cellular Biology and Biomedical and Health Sciences Institute, University of Georgia, 500 DW Brooks Drive, Athens, GA 30602, USA
| | | | | |
Collapse
|
22
|
Abstract
Alcohols regulate the expression and function of PKC (protein kinase C), and it has been proposed that an alcohol-binding site is present in PKCα in its C1 domain, which consists of two cysteine-rich subdomains, C1A and C1B. A PKCϵ-knockout mouse showed a significant decrease in alcohol consumption compared with the wild-type. The aim of the present study was to investigate whether an alcohol-binding site could be present in PKCϵ. Here we show that ethanol inhibited PKCϵ activity in a concentration-dependent manner with an EC50 (equilibrium ligand concentration at half-maximum effect) of 43 mM. Ethanol, butanol and octanol increased the binding affinity of a fluorescent phorbol ester SAPD (sapintoxin-D) to PKCϵC1B in a concentration-dependent manner with EC50 values of 78 mM, 8 mM and 340 μM respectively, suggesting the presence of an allosteric alcohol-binding site in this subdomain. To identify this site, PKCϵC1B was photolabelled with 3-azibutanol and 3-azioctanol and analysed by MS. Whereas azibutanol preferentially labelled His236, Tyr238 was the preferred site for azioctanol. Inspection of the model structure of PKCϵC1B reveals that these residues are 3.46 Å (1 Å=0.1 nm) apart from each other and form a groove where His236 is surface-exposed and Tyr238 is buried inside. When these residues were replaced by alanine, it significantly decreased alcohol binding in terms of both photolabelling and alcohol-induced SAPD binding in the mutant H236A/Y238A. Whereas Tyr238 was labelled in mutant H236A, His236 was labelled in mutant Y238A. The present results provide direct evidence for the presence of an allosteric alcohol-binding site on protein kinase Cϵ and underscore the role of His236 and Tyr238 residues in alcohol binding.
Collapse
|
23
|
Pardin C, Roy I, Chica RA, Bonneil E, Thibault P, Lubell WD, Pelletier JN, Keillor JW. Photolabeling of tissue transglutaminase reveals the binding mode of potent cinnamoyl inhibitors. Biochemistry 2009; 48:3346-53. [PMID: 19271761 DOI: 10.1021/bi802021c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have recently developed a new class of cinnamoyl derivatives as potent tissue transglutaminase (TG2) inhibitors. Herein, we report the synthesis of a diazirine derivative of these inhibitors and its application to the photolabeling of its binding site on guinea pig liver transglutaminase. Two novel homology models were generated for this commonly studied TG2, which differ in the conformational state they represent. Tryptic digest and mass spectrometric analysis of the photolabeling experiment showed that only residue Cys230 was labeled, and our homology models were used to visualize these results. This visualization suggested that Cys230 is somewhat more solvent-exposed in the "closed" conformation of TG2, compared to the "open" conformation. Docking experiments suggested binding modes consistent with the labeling pattern that would block access to the tunnel leading to the active site, consistent with the observed mode of inhibition. However, while these modeling simulations favored the closed conformation as the target of our cinnamoyl inhibitors, native PAGE experiments indicated the open conformation of the enzyme in fact predominates in the presence of our photolabeling derivative. These results are important for understanding the binding modes of TG2 inhibitors in general and will be critical for the structure-based design of future inhibitors.
Collapse
|
24
|
Ho C, Shanmugasundararaj S, Miller KW, Malinowski SA, Cook AC, Slater SJ. Interaction of anesthetics with the Rho GTPase regulator Rho GDP dissociation inhibitor. Biochemistry 2008; 47:9540-52. [PMID: 18702520 DOI: 10.1021/bi800544d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The physiological effects of anesthetics have been ascribed to their interaction with hydrophobic sites within functionally relevant CNS proteins. Studies have shown that volatile anesthetics compete for luciferin binding to the hydrophobic substrate binding site within firefly luciferase and inhibit its activity (Franks, N. P., and Lieb, W. R. (1984) Nature 310, 599-601). To assess whether anesthetics also compete for ligand binding to a mammalian signal transduction protein, we investigated the interaction of the volatile anesthetic, halothane, with the Rho GDP dissociation inhibitor (RhoGDIalpha), which binds the geranylgeranyl moiety of GDP-bound Rho GTPases. Consistent with the existence of a discrete halothane binding site, the intrinsic tryptophan fluorescence of RhoGDIalpha was quenched by halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) in a saturable, concentration-dependent manner. Bromine quenching of tryptophan fluorescence is short-range and W192 and W194 of the RhoGDIalpha are located within the geranylgeranyl binding pocket, suggesting that halothane binds within this region. Supporting this, N-acetyl-geranylgeranyl cysteine reversed tryptophan quenching by halothane. Short chain n-alcohols ( n < 6) also reversed tryptophan quenching, suggesting that RhoGDIalpha may also bind n-alkanols. Consistent with this, E193 was photolabeled by 3-azibutanol. This residue is located in the vicinity of, but outside, the geranylgeranyl chain binding pocket, suggesting that the alcohol binding site is distinct from that occupied by halothane. Supporting this, N-acetyl-geranylgeranyl cysteine enhanced E193 photolabeling by 3-azibutanol. Overall, the results suggest that halothane binds to a site within the geranylgeranyl chain binding pocket of RhoGDIalpha, whereas alcohols bind to a distal site that interacts allosterically with this pocket.
Collapse
Affiliation(s)
- Cojen Ho
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
25
|
Thode AB, Kruse SW, Nix JC, Jones DNM. The role of multiple hydrogen-bonding groups in specific alcohol binding sites in proteins: insights from structural studies of LUSH. J Mol Biol 2008; 376:1360-76. [PMID: 18234222 PMCID: PMC2293277 DOI: 10.1016/j.jmb.2007.12.063] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 12/21/2007] [Accepted: 12/21/2007] [Indexed: 11/16/2022]
Abstract
It is now generally accepted that many of the physiological effects of alcohol consumption are a direct result of binding to specific sites in neuronal proteins such as ion channels or other components of neuronal signaling cascades. Binding to these targets generally occurs in water-filled pockets and leads to alterations in protein structure and dynamics. However, the precise interactions required to confer alcohol sensitivity to a particular protein remain undefined. Using information from the previously solved crystal structures of the Drosophila melanogaster protein LUSH in complexes with short-chain alcohols, we have designed and tested the effects of specific amino acid substitutions on alcohol binding. The effects of these substitutions, specifically S52A, T57S, and T57A, were examined using a combination of molecular dynamics, X-ray crystallography, fluorescence spectroscopy, and thermal unfolding. These studies reveal that the binding of ethanol is highly sensitive to small changes in the composition of the alcohol binding site. We find that T57 is the most critical residue for binding alcohols; the T57A substitution completely abolishes binding, while the T57S substitution differentially affects ethanol binding compared to longer-chain alcohols. The additional requirement for a potential hydrogen-bond acceptor at position 52 suggests that both the presence of multiple hydrogen-bonding groups and the identity of the hydrogen-bonding residues are critical for defining an ethanol binding site. These results provide new insights into the detailed chemistry of alcohol's interactions with proteins.
Collapse
Affiliation(s)
- Anna B. Thode
- Program in Biomolecular Structure, University of Colorado, Denver School of Medicine, 12801 East 17 Avenue, MS 8303, PO Box 6511, Aurora, CO 80045
| | - Schoen W Kruse
- Department of Pharmacology, University of Colorado Denver School of Medicine, 12801 East 17 Avenue, MS 8303, PO Box 6511, Aurora, CO 80045
| | - Jay C. Nix
- Molecular Biology Consortium, Advanced Light Source Beamline 4.2.2, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - David N. M. Jones
- Department of Pharmacology, University of Colorado Denver School of Medicine, 12801 East 17 Avenue, MS 8303, PO Box 6511, Aurora, CO 80045
- Program in Biomolecular Structure, University of Colorado, Denver School of Medicine, 12801 East 17 Avenue, MS 8303, PO Box 6511, Aurora, CO 80045
| |
Collapse
|