1
|
Guo S, Zhao Q, Li Y, Chu S, He F, Li X, Sun N, Zong W, Liu R. Potential toxicity of bisphenol A to α-chymotrypsin and the corresponding mechanisms of their binding. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121910. [PMID: 36167003 DOI: 10.1016/j.saa.2022.121910] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA) is an endocrine disruptor widely existing in plastics and resins, which can accumulate in animals and human bodies, posing a potential threat to the physiological and biochemical reactions of human beings or other organisms. α-Chymotrypsin is a kind of proteolytic enzyme existing in humans and animals, which can cause diseases when its activity is excessive. However, there is a lack of research on the mechanism of endocrine disruptors affecting α-chymotrypsin activity. In this study, the interaction between BPA and α-chymotrypsin was proved via multiple spectroscopic approaches, enzyme activity change, isothermal titration calorimetry and molecular docking. Results showed that α-chymotrypsin's polypeptide chains were unfolded, and protein skeletons were loosened with the exposure to BPA. α-Helix content increased and β-sheet content was decreased. The particle size of the BPA-α-chymotrypsin complex became smaller. Fluorescence sensitization may also be explained by a perturbation of the chromophore Trp 141. The thermodynamic parameters of the binding reaction were measured by isothermal titration calorimetry (ITC), which showed that there was hydrophobic interaction between BPA and α-chymotrypsin, which was consistent with the results of molecular docking. Moreover, BPA may stop near the active center of α-chymotrypsin and interact with the key residues His 57 and Ser 195. The above phenomenon explained the result that the activity of α-chymotrypsin increased to 139% when exposed to high dose BPA (40 μM). Taken together, the effects of BPA on the structure and function of α-chymotrypsin were clarified at the molecular level, which made up the gap in the mechanism of BPA on the proteolytic enzyme, and provided a reliable basis for disease avoidance and prevention.
Collapse
Affiliation(s)
- Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Qiang Zhao
- Shandong Provincial Eco-environment Monitoring Center, 3377 Jingshi Dong Lu, Jinan, Shandong 250100, PR China
| | - Yuze Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shanshan Chu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Ning Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
2
|
Illes-Toth E, Stubbs CJ, Sisley EK, Bellamy-Carter J, Simmonds AL, Mize TH, Styles IB, Goodwin RJA, Cooper HJ. Quantitative Characterization of Three Carbonic Anhydrase Inhibitors by LESA Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1168-1175. [PMID: 35675480 PMCID: PMC9264382 DOI: 10.1021/jasms.2c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liquid extraction surface analysis (LESA) coupled to native mass spectrometry (MS) presents unique analytical opportunities due to its sensitivity, speed, and automation. Here, we examine whether this tool can be used to quantitatively probe protein-ligand interactions through calculation of equilibrium dissociation constants (Kd values). We performed native LESA MS analyses for a well-characterized system comprising bovine carbonic anhydrase II and the ligands chlorothiazide, dansylamide, and sulfanilamide, and compared the results with those obtained from direct infusion mass spectrometry and surface plasmon resonance measurements. Two LESA approaches were considered: In one approach, the protein and ligand were premixed in solution before being deposited and dried onto a solid substrate for LESA sampling, and in the second, the protein alone was dried onto the substrate and the ligand was included in the LESA sampling solvent. Good agreement was found between the Kd values derived from direct infusion MS and LESA MS when the protein and ligand were premixed; however, Kd values determined from LESA MS measurements where the ligand was in the sampling solvent were inconsistent. Our results suggest that LESA MS is a suitable tool for quantitative analysis of protein-ligand interactions when the dried sample comprises both protein and ligand.
Collapse
Affiliation(s)
- Eva Illes-Toth
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Christopher J. Stubbs
- Mechanistic
and Structural Biology, Discovery Sciences,
R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Emma K. Sisley
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | - Anna L. Simmonds
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Todd H. Mize
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Iain B. Styles
- School
of Computer Science and Centre of Membrane Proteins and Receptors
(COMPARE), University of Birmingham, Birmingham B15 2TT, United Kingdom
- The Alan Turing Institute, London NW1 2DB, United Kingdom
- University of Nottingham, Midlands NG7 2RD, United Kingdom
| | - Richard J. A. Goodwin
- Imaging and
Data Analytics, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals
R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Helen J. Cooper
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
3
|
Abstract
Native mass spectrometry (MS) involves the analysis and characterization of macromolecules, predominantly intact proteins and protein complexes, whereby as much as possible the native structural features of the analytes are retained. As such, native MS enables the study of secondary, tertiary, and even quaternary structure of proteins and other biomolecules. Native MS represents a relatively recent addition to the analytical toolbox of mass spectrometry and has over the past decade experienced immense growth, especially in enhancing sensitivity and resolving power but also in ease of use. With the advent of dedicated mass analyzers, sample preparation and separation approaches, targeted fragmentation techniques, and software solutions, the number of practitioners and novel applications has risen in both academia and industry. This review focuses on recent developments, particularly in high-resolution native MS, describing applications in the structural analysis of protein assemblies, proteoform profiling of─among others─biopharmaceuticals and plasma proteins, and quantitative and qualitative analysis of protein-ligand interactions, with the latter covering lipid, drug, and carbohydrate molecules, to name a few.
Collapse
Affiliation(s)
- Sem Tamara
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Maurits A. den Boer
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
4
|
Ren C, Bailey AO, VanderPorten E, Oh A, Phung W, Mulvihill MM, Harris SF, Liu Y, Han G, Sandoval W. Quantitative Determination of Protein–Ligand Affinity by Size Exclusion Chromatography Directly Coupled to High-Resolution Native Mass Spectrometry. Anal Chem 2018; 91:903-911. [DOI: 10.1021/acs.analchem.8b03829] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Aaron O. Bailey
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Zhu Y, Yang Z, Rodgers MT. Influence of Linkage Stereochemistry and Protecting Groups on Glycosidic Bond Stability of Sodium Cationized Glycosyl Phosphates. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2602-2613. [PMID: 28924832 DOI: 10.1007/s13361-017-1780-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/05/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
Energy-resolved collision-induced dissociation (ER-CID) experiments of sodium cationized glycosyl phosphate complexes, [GP x +Na]+, are performed to elucidate the effects of linkage stereochemistry (α versus β), the geometry of the leaving groups (1,2-cis versus 1,2-trans), and protecting groups (cyclic versus non-cyclic) on the stability of the glycosyl phosphate linkage via survival yield analyses. A four parameter logistic dynamic fitting model is used to determine CID50% values, which correspond to the level of rf excitation required to produce 50% dissociation of the precursor ion complexes. Present results suggest that dissociation of 1,2-trans [GP x +Na]+ occurs via a McLafferty-type rearrangement that is facilitated by a syn orientation of the leaving groups, whereas dissociation of 1,2-cis [GPx+Na]+ is more energetic as it involves the formation of an oxocarbenium ion intermediate. Thus, the C1-C2 configuration plays a major role in determining the stability/reactivity of glycosyl phosphate stereoisomers. For 1,2-cis anomers, the cyclic protecting groups at the C4 and C6 positions stabilize the glycosidic bond, whereas for 1,2-trans anomers, the cyclic protecting groups at the C4 and C6 positions tend to activate the glycosidic bond. The C3 O-benzyl (3 BnO) substituent is key to determining whether the sugar or phosphate moiety retains the sodium cation upon CID. For 1,2-cis anomers, the 3 BnO substituent weakens the glycosidic bond, whereas for 1,2-trans anomers, the 3 BnO substituent stabilizes the glycosidic bond. The C2 O-benzyl substituent does not significantly impact the glycosidic bond stability regardless of its orientation. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Y Zhu
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Zhihua Yang
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
6
|
Lee S, Barron MG. Structure-Based Understanding of Binding Affinity and Mode of Estrogen Receptor α Agonists and Antagonists. PLoS One 2017; 12:e0169607. [PMID: 28061508 PMCID: PMC5218732 DOI: 10.1371/journal.pone.0169607] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/18/2016] [Indexed: 11/18/2022] Open
Abstract
The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interactions and specific hydrogen bonds with the ligand. Here we present a framework for quantitative analysis of the steric and electronic features of the human ERα-ligand complex using three dimensional (3D) protein-ligand interaction description combined with 3D-QSAR approach. An empirical hydrophobicity density field is applied to account for hydrophobic contacts of ligand within the LBP. The obtained 3D-QSAR model revealed that hydrophobic contacts primarily determine binding affinity and govern binding mode with hydrogen bonds. Several residues of the LBP appear to be quite flexible and adopt a spectrum of conformations in various ERα-ligand complexes, in particular His524. The 3D-QSAR was combined with molecular docking based on three receptor conformations to accommodate receptor flexibility. The model indicates that the dynamic character of the LBP allows accommodation and stable binding of structurally diverse ligands, and proper representation of the protein flexibility is critical for reasonable description of binding of the ligands. Our results provide a quantitative and mechanistic understanding of binding affinity and mode of ERα agonists and antagonists that may be applicable to other nuclear receptors.
Collapse
Affiliation(s)
- Sehan Lee
- U.S. Environmental Protection Agency, Gulf Ecology Division, Gulf Breeze, FL, United States of America
- * E-mail:
| | - Mace G. Barron
- U.S. Environmental Protection Agency, Gulf Ecology Division, Gulf Breeze, FL, United States of America
| |
Collapse
|
7
|
Thammaporn R, Ishii K, Yagi-Utsumi M, Uchiyama S, Hannongbua S, Kato K. Mass Spectrometric Characterization of HIV-1 Reverse Transcriptase Interactions with Non-nucleoside Reverse Transcriptase Inhibitors. Biol Pharm Bull 2016; 39:450-4. [PMID: 26934936 DOI: 10.1248/bpb.b15-00880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) have been developed for the treatment of acquired immunodeficiency syndrome. HIV-1 RT binding to NNRTIs has been characterized by various biophysical techniques. However, these techniques are often hampered by the low water solubility of the inhibitors, such as the current promising diarylpyrimidine-based inhibitors rilpivirine and etravirine. Hence, a conventional and rapid method that requires small sample amounts is desirable for studying NNRTIs with low water solubility. Here we successfully applied a recently developed mass spectrometric technique under non-denaturing conditions to characterize the interactions between the heterodimeric HIV-1 RT enzyme and NNRTIs with different inhibitory activities. Our data demonstrate that mass spectrometry serves as a semi-quantitative indicator of NNRTI binding affinity for HIV-1 RT using low and small amounts of samples, offering a new high-throughput screening tool for identifying novel RT inhibitors as anti-HIV drugs.
Collapse
|
8
|
Native Mass Spectrometry in Fragment-Based Drug Discovery. Molecules 2016; 21:molecules21080984. [PMID: 27483215 PMCID: PMC6274484 DOI: 10.3390/molecules21080984] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/14/2016] [Accepted: 07/23/2016] [Indexed: 11/17/2022] Open
Abstract
The advent of native mass spectrometry (MS) in 1990 led to the development of new mass spectrometry instrumentation and methodologies for the analysis of noncovalent protein-ligand complexes. Native MS has matured to become a fast, simple, highly sensitive and automatable technique with well-established utility for fragment-based drug discovery (FBDD). Native MS has the capability to directly detect weak ligand binding to proteins, to determine stoichiometry, relative or absolute binding affinities and specificities. Native MS can be used to delineate ligand-binding sites, to elucidate mechanisms of cooperativity and to study the thermodynamics of binding. This review highlights key attributes of native MS for FBDD campaigns.
Collapse
|
9
|
Ishii K, Noda M, Uchiyama S. Mass spectrometric analysis of protein-ligand interactions. Biophys Physicobiol 2016; 13:87-95. [PMID: 27924262 PMCID: PMC5042164 DOI: 10.2142/biophysico.13.0_87] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/16/2016] [Indexed: 12/01/2022] Open
Abstract
The interactions of small molecules with proteins (protein–ligand interactions) mediate various biological phenomena including signal transduction and protein transcription and translation. Synthetic compounds such as drugs can also bind to target proteins, leading to the inhibition of protein–ligand interactions. These interactions typically accompany association–dissociation equilibrium according to the free energy difference between free and bound states; therefore, the quantitative biophysical analysis of the interactions, which uncovers the stoichiometry and dissociation constant, is important for understanding biological reactions as well as for rational drug development. Mass spectrometry (MS) has been used to determine the precise molecular masses of molecules. Recent advancements in MS enable us to determine the molecular masses of protein–ligand complexes without disrupting the non-covalent interactions through the gentle desolvation of the complexes by increasing the vacuum pressure of a chamber in a mass spectrometer. This method is called MS under non-denaturing conditions or native MS and allows the unambiguous determination of protein–ligand interactions. Under a few assumptions, MS has also been applied to determine the dissociation constants for protein–ligand interactions. The structural information of a protein–ligand interaction, such as the location of the interaction and conformational change in a protein, can also be analyzed using hydrogen/deuterium exchange MS. In this paper, we briefly describe the history, principle, and recent applications of MS for the study of protein–ligand interactions.
Collapse
Affiliation(s)
- Kentaro Ishii
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Masanori Noda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Susumu Uchiyama
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Sun Y, Vahidi S, Sowole MA, Konermann L. Protein Structural Studies by Traveling Wave Ion Mobility Spectrometry: A Critical Look at Electrospray Sources and Calibration Issues. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:31-40. [PMID: 26369778 DOI: 10.1007/s13361-015-1244-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 06/05/2023]
Abstract
The question whether electrosprayed protein ions retain solution-like conformations continues to be a matter of debate. One way to address this issue involves comparisons of collision cross sections (Ω) measured by ion mobility spectrometry (IMS) with Ω values calculated for candidate structures. Many investigations in this area employ traveling wave IMS (TWIMS). It is often implied that nanoESI is more conducive for the retention of solution structure than regular ESI. Focusing on ubiquitin, cytochrome c, myoglobin, and hemoglobin, we demonstrate that Ω values and collisional unfolding profiles are virtually indistinguishable under both conditions. These findings suggest that gas-phase structures and ion internal energies are independent of the type of electrospray source. We also note that TWIMS calibration can be challenging because differences in the extent of collisional activation relative to drift tube reference data may lead to ambiguous peak assignments. It is demonstrated that this problem can be circumvented by employing collisionally heated calibrant ions. Overall, our data are consistent with the view that exposure of native proteins to electrospray conditions can generate kinetically trapped ions that retain solution-like structures on the millisecond time scale of TWIMS experiments. ᅟ
Collapse
Affiliation(s)
- Yu Sun
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Siavash Vahidi
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Modupeola A Sowole
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
11
|
Otsuka Y, Minamisawa T. Evaluation of intermolecular association of glycosaminoglycan oligosaccharides using nanoelectrospray ionization mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:669-678. [PMID: 26353989 DOI: 10.1255/ejms.1376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study examines the non-covalent interactions between glycosaminoglycan (GAG) oligosaccharides using nanoelectrospray ionization mass spectrometry (nanoESI-MS). It is the first time that interactions between oligosaccharides have been observed using MS. The importance of interactions between GAGs has recently attracted much interest because they are related to biological functions. For instance, hyaluronic acid (HA) is known to associate with chondroitin sulfates (CSs), although the details of the interaction remain unclear. In general, non-covalent interactions between glycans are too weak to detect by general means. In this work, we applied nanoESI-MS with high sensitivity, which is widely used to observe non-covalent interactions, to investigate the interaction between HA and CSs. HA and CS oligosaccharides are used to discuss the results in a simplified manner. Our approach is aimed at interpreting the behavior of GAG polysaccharides from the information obtained using the oligosaccharides. HA and CS tetrasaccharides were demonstrated to associate to form heterodimer ions that were easily detected using nanoESI-MS. We also determined the stoichiometry of the interaction and calculated the K(d) values of the interactions between HA and CS tetrasaccharides. How these structures affect the strength and stability of the non-covalent complexes is discussed. Further study of the interactions between HA and CS oligosaccharides will clarify the biological meaning of the coexistence of HA and CS in body fluids and tissues.
Collapse
Affiliation(s)
- Yuya Otsuka
- Central Research Laboratories, Seikagaku Corporation, 1253, Tateno 3-chome, Higashiyamato-shi, Tokyo, 207-0021, Japan.
| | - Toshikazu Minamisawa
- Central Research Laboratories, Seikagaku Corporation, 1253, Tateno 3-chome, Higashiyamato-shi, Tokyo, 207-0021, Japan.
| |
Collapse
|
12
|
Stojko J, Fieulaine S, Petiot-Bécard S, Van Dorsselaer A, Meinnel T, Giglione C, Cianférani S. Ion mobility coupled to native mass spectrometry as a relevant tool to investigate extremely small ligand-induced conformational changes. Analyst 2015; 140:7234-45. [DOI: 10.1039/c5an01311a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Native and ion-mobility mass spectrometry reveal the conformational evolution over time of a peptide deformylase binding different ligands, which is consistent with slow-tight inhibition of the enzyme.
Collapse
Affiliation(s)
- Johann Stojko
- BioOrganic Mass Spectrometry Laboratory (LSMBO)
- IPHC
- Université de Strasbourg
- 67087 Strasbourg
- France
| | - Sonia Fieulaine
- Institute for Integrative Biology of the Cell (I2BC)
- CEA
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
| | - Stéphanie Petiot-Bécard
- BioOrganic Mass Spectrometry Laboratory (LSMBO)
- IPHC
- Université de Strasbourg
- 67087 Strasbourg
- France
| | - Alain Van Dorsselaer
- BioOrganic Mass Spectrometry Laboratory (LSMBO)
- IPHC
- Université de Strasbourg
- 67087 Strasbourg
- France
| | - Thierry Meinnel
- Institute for Integrative Biology of the Cell (I2BC)
- CEA
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell (I2BC)
- CEA
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
| | - Sarah Cianférani
- BioOrganic Mass Spectrometry Laboratory (LSMBO)
- IPHC
- Université de Strasbourg
- 67087 Strasbourg
- France
| |
Collapse
|
13
|
Barylyuk K, Gülbakan B, Xie X, Zenobi R. DNA oligonucleotides: a model system with tunable binding strength to study monomer-dimer equilibria with electrospray ionization-mass spectrometry. Anal Chem 2013; 85:11902-12. [PMID: 24274465 DOI: 10.1021/ac402669e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Electrospray ionization (ESI) is increasingly used to measure binding strengths, but it is not always clear whether the ESI process introduces artifacts. Here we propose a model monomer-dimer equilibrium system based on DNA oligonucleotides to systematically explore biomolecular self-association with the ESI-mass spectrometry (MS) titration method. The oligonucleotides are designed to be self-complementary and have the same chemical composition and mass, allowing for equal ionization probability, ion transmission, and detection efficiency in ESI-MS. The only difference is the binding strength, which is determined by the nucleotide sequence and can be tuned to cover a range of dissociation constant values. This experimental design allows one to focus on the impact of ESI on the chemical equilibrium and to avoid the other typical sources of variation in ESI-MS signal responses, which yields a direct comparison of samples with different binding strengths. For a set of seven model DNA oligonucleotides, the monomer-dimer binding equilibrium was probed with the ESI-MS titration method in both positive and negative ion modes. A mathematical model describing the dependence of the monomer-to-dimer peak intensity ratio on the DNA concentration was proposed and used to extract apparent Kd values and the fraction of DNA duplex that irreversibly dissociates in the gas phase. The Kd values determined via ESI-MS titration were compared to those determined in solution with isothermal titration calorimetry and equilibrium thermal denaturation methods and were found to be significantly lower. The observed discrepancy was attributed to a greater electrospray response of dimers relative to that of monomers.
Collapse
Affiliation(s)
- Konstantin Barylyuk
- Department of Chemistry and Applied Biosciences, ETH Zurich , Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
14
|
Hyung SJ, Ruotolo BT. Integrating mass spectrometry of intact protein complexes into structural proteomics. Proteomics 2012; 12:1547-64. [PMID: 22611037 DOI: 10.1002/pmic.201100520] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MS analysis of intact protein complexes has emerged as an established technology for assessing the composition and connectivity within dynamic, heterogeneous multiprotein complexes at low concentrations and in the context of mixtures. As this technology continues to move forward, one of the main challenges is to integrate the information content of such intact protein complex measurements with other MS approaches in structural biology. Methods such as H/D exchange, oxidative foot-printing, chemical cross-linking, affinity purification, and ion mobility separation add complementary information that allows access to every level of protein structure and organization. Here, we survey the structural information that can be retrieved by such experiments, demonstrate the applicability of integrative MS approaches in structural proteomics, and look to the future to explore upcoming innovations in this rapidly advancing area.
Collapse
Affiliation(s)
- Suk-Joon Hyung
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
15
|
Cubrilovic D, Biela A, Sielaff F, Steinmetzer T, Klebe G, Zenobi R. Quantifying protein-ligand binding constants using electrospray ionization mass spectrometry: a systematic binding affinity study of a series of hydrophobically modified trypsin inhibitors. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1768-77. [PMID: 22869298 DOI: 10.1007/s13361-012-0451-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 07/12/2012] [Accepted: 07/17/2012] [Indexed: 05/22/2023]
Abstract
NanoESI-MS is used for determining binding strengths of trypsin in complex with two different series of five congeneric inhibitors, whose binding affinity in solution depends on the size of the P3 substituent. The ligands of the first series contain a 4-amidinobenzylamide as P1 residue, and form a tight complex with trypsin. The inhibitors of the second series have a 2-aminomethyl-5-chloro-benzylamide as P1 group, and represent a model system for weak binders. The five different inhibitors of each group are based on the same scaffold and differ only in the length of the hydrophobic side chain of their P3 residue, which modulates the interactions in the S3/4 binding pocket of trypsin. The dissociation constants (K(D)) for high affinity ligands investigated by nanoESI-MS ranges from 15 nM to 450 nM and decreases with larger hydrophobic P3 side chains. Collision-induced dissociation (CID) experiments of five trypsin and benzamidine-based complexes show a correlation between trends in K(D) and gas-phase stability. For the second inhibitor series we could show that the effect of imidazole, a small stabilizing additive, can avoid the dissociation of the complex ions and as a result increases the relative abundance of weakly bound complexes. Here the K(D) values ranging from 2.9 to 17.6 μM, some 1-2 orders of magnitude lower than the first series. For both ligand series, the dissociation constants (K(D)) measured via nanoESI-MS were compared with kinetic inhibition constants (K(i)) in solution.
Collapse
Affiliation(s)
- Dragana Cubrilovic
- Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
16
|
Maple HJ, Garlish RA, Rigau-Roca L, Porter J, Whitcombe I, Prosser CE, Kennedy J, Henry AJ, Taylor RJ, Crump MP, Crosby J. Automated Protein–Ligand Interaction Screening by Mass Spectrometry. J Med Chem 2012; 55:837-51. [DOI: 10.1021/jm201347k] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hannah J. Maple
- School of Chemistry, University of Bristol, Cantock’s
Close, Clifton, Bristol BS8 1TS, United Kingdom
| | - Rachel A. Garlish
- UCB Pharma, 216 Bath Road, Slough, Berkshire SL1 4EN, United Kingdom
| | - Laura Rigau-Roca
- School of Chemistry, University of Bristol, Cantock’s
Close, Clifton, Bristol BS8 1TS, United Kingdom
| | - John Porter
- UCB Pharma, 216 Bath Road, Slough, Berkshire SL1 4EN, United Kingdom
| | - Ian Whitcombe
- UCB Pharma, 216 Bath Road, Slough, Berkshire SL1 4EN, United Kingdom
| | | | - Jeff Kennedy
- UCB Pharma, 216 Bath Road, Slough, Berkshire SL1 4EN, United Kingdom
| | - Alistair J. Henry
- UCB Pharma, 216 Bath Road, Slough, Berkshire SL1 4EN, United Kingdom
| | - Richard J. Taylor
- UCB Pharma, 216 Bath Road, Slough, Berkshire SL1 4EN, United Kingdom
| | - Matthew P. Crump
- School of Chemistry, University of Bristol, Cantock’s
Close, Clifton, Bristol BS8 1TS, United Kingdom
| | - John Crosby
- School of Chemistry, University of Bristol, Cantock’s
Close, Clifton, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
17
|
Pacholarz KJ, Garlish RA, Taylor RJ, Barran PE. Mass spectrometry based tools to investigate protein–ligand interactions for drug discovery. Chem Soc Rev 2012; 41:4335-55. [DOI: 10.1039/c2cs35035a] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Kool J, Jonker N, Irth H, Niessen WMA. Studying protein-protein affinity and immobilized ligand-protein affinity interactions using MS-based methods. Anal Bioanal Chem 2011; 401:1109-25. [PMID: 21755271 PMCID: PMC3151372 DOI: 10.1007/s00216-011-5207-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 06/12/2011] [Accepted: 06/24/2011] [Indexed: 12/31/2022]
Abstract
This review discusses the most important current methods employing mass spectrometry (MS) analysis for the study of protein affinity interactions. The methods are discussed in depth with particular reference to MS-based approaches for analyzing protein-protein and protein-immobilized ligand interactions, analyzed either directly or indirectly. First, we introduce MS methods for the study of intact protein complexes in the gas phase. Next, pull-down methods for affinity-based analysis of protein-protein and protein-immobilized ligand interactions are discussed. Presently, this field of research is often called interactomics or interaction proteomics. A slightly different approach that will be discussed, chemical proteomics, allows one to analyze selectivity profiles of ligands for multiple drug targets and off-targets. Additionally, of particular interest is the use of surface plasmon resonance technologies coupled with MS for the study of protein interactions. The review addresses the principle of each of the methods with a focus on recent developments and the applicability to lead compound generation in drug discovery as well as the elucidation of protein interactions involved in cellular processes. The review focuses on the analysis of bioaffinity interactions of proteins with other proteins and with ligands, where the proteins are considered as the bioactives analyzed by MS.
Collapse
Affiliation(s)
- Jeroen Kool
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
19
|
Database searching for structural identification of metabolites in complex biofluids for mass spectrometry-based metabonomics. Bioanalysis 2011; 1:1627-43. [PMID: 21083108 DOI: 10.4155/bio.09.145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
MS and HPLC are commonly used for compound characterization and obtaining structural information; in the field of metabonomics, these two analytical techniques are often combined to characterize unknown endogenous or exogenous metabolites present in complex biological samples. Since the structures of a majority of these metabolites are not actually identified, the result of most metabonomic studies is a list of m/z values and retention times. However, without knowing actual structures, the biological significance of these 'features' cannot be determined. The process of identifying the structures of unknown compounds can be time intensive, costly and frequently requires the use of multiple orthogonal analytical techniques - this laborious procedure seems insurmountable for the long lists of unknowns that must be identified for each study. In addition, the limited sample volume and the extremely low concentration of most endogenous analytes frequently make purification and identification by other instrumentation nearly impossible. This review is intended to explore the problems and progress with current tools that are available for MS-based structure identification for both endogenous and exogenous metabolites.
Collapse
|
20
|
Liu J, Konermann L. Protein-protein binding affinities in solution determined by electrospray mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:408-17. [PMID: 21472560 DOI: 10.1007/s13361-010-0052-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/10/2010] [Accepted: 12/10/2010] [Indexed: 05/23/2023]
Abstract
Electrospray ionization (ESI) allows the transfer of multi-protein complexes into the gas phase, thereby providing a simple approach for monitoring the stoichiometry of these noncovalent assemblies by mass spectrometry (MS). It remains unclear, however, whether the measured ion abundance ratios of free and bound species are suitable for determining solution-phase binding affinities (K(d) values). Many types of mass spectrometers employ rf-only quadrupoles as ion guides. This work demonstrates that the settings used for these devices are a key factor for ensuring uniform transmission behavior, which is a prerequisite for meaningful affinity measurements. Using bovine β-lactoglobulin and hemoglobin as model systems, it is demonstrated that under carefully adjusted conditions the "direct" ESI-MS approach is capable of providing K(d) values that are in good agreement with previously published solution-phase data. Of the several ion sources tested, a regular ESI emitter operated with pressure-driven flow at 1 μL min(-1) provided the most favorable results. Potential problems in these experiments include conformationally-induced differences in ionization efficiencies, inadvertent collision-induced dissociation, and ESI-induced clustering artifacts. A number of simple tests can be conducted to assess whether or not these factors are prevalent under the conditions used. In addition, the fidelity of the method can be scrutinized by performing measurements over a wide concentration range. Overall, this work supports the viability of the direct ESI-MS approach for determining binding affinities of protein-protein complexes in solution.
Collapse
Affiliation(s)
- Jiangjiang Liu
- Department of Chemistry, The University of Western Ontario, N6A 5B7 London, Ontario, Canada
| | | |
Collapse
|
21
|
Bergsdorf C, Ottl J. Affinity-based screening techniques: their impact and benefit to increase the number of high quality leads. Expert Opin Drug Discov 2010; 5:1095-107. [DOI: 10.1517/17460441.2010.524641] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christian Bergsdorf
- Novartis Institutes of BioMedical Research, CPC/LFP/LFT, WSJ-88.07.31, CH-4002 Basel, Switzerland ;
| | - Johannes Ottl
- Novartis Institutes of BioMedical Research, CPC/LFP/LFT, WSJ-88.10.03, CH-4002 Basel, Switzerland
| |
Collapse
|
22
|
Design and automated generation of artificial estrogen receptor as potential endocrine disruptor chemical binders. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.06.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
23
|
Bich C, Bovet C, Rochel N, Peluso-Iltis C, Panagiotidis A, Nazabal A, Moras D, Zenobi R. Detection of nucleic acid-nuclear hormone receptor complexes with mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:635-645. [PMID: 20097575 DOI: 10.1016/j.jasms.2009.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Revised: 12/09/2009] [Accepted: 12/12/2009] [Indexed: 05/28/2023]
Abstract
Nuclear receptors, such as the retinoic acid receptor (RAR) or the 9-cis retinoic acid receptor (RXR), interact not only with their ligands but also with other types of receptors and with DNA. Here, two complementary mass spectrometry (MS) methods were used to study the interactions between retinoic receptors (RXR/RAR) and DNA: non-denaturing nano-electrospray (nanoESI MS), and high-mass matrix-assisted laser desorption ionization (MALDI MS) combined with chemical cross-linking. The RAR x RXR heterodimer was studied in the presence of a specific DNA sequence (DR5), and a specific RAR x RXR x DNA complex was detected with both MS techniques. RAR by itself showed no significant homodimerization. A complex between RAR and the double stranded DR5 was detected with nanoESI. After cross-linking, high-mass MALDI mass spectra showed that the RAR binds the single stranded DR5, and the RAR dimer binds both single and double stranded DR5. Moreover, the MALDI mass spectrum shows a larger RAR dimer signal in the presence of DNA. These results suggest that a gene-regulatory site on DNA can induce quaternary structural changes in a transcription factor such as RAR.
Collapse
Affiliation(s)
- Claudia Bich
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Bich C, Baer S, Jecklin MC, Zenobi R. Probing the hydrophobic effect of noncovalent complexes by mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:286-289. [PMID: 19931466 DOI: 10.1016/j.jasms.2009.10.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Revised: 10/15/2009] [Accepted: 10/15/2009] [Indexed: 05/28/2023]
Abstract
The study of noncovalent interactions by mass spectrometry has become an active field of research in recent years. The role of the different noncovalent intermolecular forces is not yet fully understood since they tend to be modulated upon transfer into the gas phase. The hydrophobic effect, which plays a major role in protein folding, adhesion of lipid bilayers, etc., is absent in the gas phase. Here, noncovalent complexes with different types of interaction forces were investigated by mass spectrometry and compared with the complex present in solution. Creatine kinase (CK), glutathione S-transferase (GST), ribonuclease S (RNase S), and leucine zipper (LZ), which have dissociation constants in the nM range, were studied by native nanoelectrospray mass spectrometry (nanoESI-MS) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) combined with chemical cross-linking (XL). Complexes interacting with hydrogen bonds survived the transfer into gas phase intact and were observed by nanoESI-MS. Complexes that are bound largely by the hydrophobic effect in solution were not detected or only at very low intensity. Complexes with mixed polar and hydrophobic interactions were detected by nanoESI-MS, most likely due to the contribution from polar interactions. All noncovalent complexes could easily be studied by XL MALDI-MS, which demonstrates that the noncovalently bound complexes are conserved, and a real "snap-shot" of the situation in solution can be obtained.
Collapse
Affiliation(s)
- Claudia Bich
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
25
|
Fontenele EGP, Martins MRA, Quidute ARP, Montenegro Júnior RM. Contaminantes ambientais e os interferentes endócrinos. ACTA ACUST UNITED AC 2010; 54:6-16. [DOI: 10.1590/s0004-27302010000100003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Accepted: 11/22/2009] [Indexed: 11/22/2022]
Abstract
A toxicidade de diversos poluentes ambientais em seres humanos e demais espécies tem sido habitualmente investigada quanto aos seus efeitos teratogênicos e cancerígenos. Nas últimas décadas, muitos contaminantes têm demonstrado efeitos adversos sobre o sistema endócrino. Atualmente, cerca de onze milhões de substâncias químicas são conhecidas em todo mundo, sendo três mil delas produzidas em larga escala. Numerosos compostos químicos de uso doméstico, industrial e agrícola possuem comprovada atividade hormonal. Entre os produtos químicos com atividade estrogênica, destacam-se hormônios presentes em cosméticos, anabolizantes utilizados em rações animais, fitoestrógenos e poluentes orgânicos persistentes (POPs). Esses agentes que estão presentes nos efluentes industriais, residenciais e das estações de tratamento de água e esgoto representam uma importante fonte de contaminação ambiental. O Programa Internacional de Segurança Química (International Programme on Chemical Safety - IPCS) define como interferente endócrino substâncias ou misturas presentes no ambiente capazes de interferir nas funções do sistema endócrino, causando efeitos adversos em um organismo intacto ou na sua prole. No presente artigo, os autores apresentam uma revisão da literatura atual sobre o papel desses elementos nas doenças endócrinas e metabólicas, os prováveis mecanismos de ação envolvidos, discutindo-se perspectivas futuras em termos de investigação e estratégias para prevenção e redução dos seus possíveis danos.
Collapse
|
26
|
Native MS: an ’ESI‚ way to support structure- and fragment-based drug discovery. Future Med Chem 2010; 2:35-50. [DOI: 10.4155/fmc.09.141] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The success of early drug-discovery programs depends on the adequate combination of complementary and orthogonal technologies allowing hit/lead compounds to be optimized and improve therapeutic activity. Among the available biophysical methods, native MS recently emerged as an efficient method for compound-binding screening. Native MS is a highly sensitive and accurate screening technique. This review provides a description of the general approach and an overview of the possible characterization of ligand-binding properties. How native MS supports structure- and fragment-based drug research will also be discussed, with examples from the literature and internal developments. Native MS shows strong potential for in-depth characterization of ligand-binding properties. It is also a reliable screening technique in drug-discovery processes.
Collapse
|
27
|
Kertesz TM, Hall LH, Hill DW, Grant DF. CE50: quantifying collision induced dissociation energy for small molecule characterization and identification. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:1759-1767. [PMID: 19616966 DOI: 10.1016/j.jasms.2009.06.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/28/2009] [Accepted: 06/02/2009] [Indexed: 05/28/2023]
Abstract
Survival yield analysis is routinely used in mass spectroscopy as a tool for assessing precursor ion stability and internal energy. Because ion internal energy and decomposition reaction rates are dependent on chemical structure, we reasoned that survival yield curves should be compound-specific and therefore useful for chemical identification. In this study, a quantitative approach for analyzing the correlation between survival yield and collision energy was developed and validated. This method is based on determining the collision energy (CE) at which the survival yield is 50% (CE(50)) and, further, provides slope and intercept values for each survival yield curve. In initial experiments using a defined set of homologous compounds, we found that CE(50) values were easily determined, quantitative, highly reproducible, and could discriminate between structural and even positional isomers. Further analysis demonstrated that CE(50) values were independent of cone potential and orthogonal to compound mass. Experimentally determined CE(50) values for a diverse set of 54 compounds were correlated to Molconn molecular structure descriptors. The resulting model yielded a statistically significant linear correlation between experimental and calculated CE(50) values and identified several structural characteristics related to precursor ion stability and fragmentation mechanism. Thus, the CE(50) is a promising method for compound identification and discrimination.
Collapse
Affiliation(s)
- Tzipporah M Kertesz
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269-3092, USA
| | | | | | | |
Collapse
|
28
|
Hyung SJ, Robinson CV, Ruotolo BT. Gas-Phase Unfolding and Disassembly Reveals Stability Differences in Ligand-Bound Multiprotein Complexes. ACTA ACUST UNITED AC 2009; 16:382-90. [DOI: 10.1016/j.chembiol.2009.02.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 02/16/2009] [Accepted: 02/18/2009] [Indexed: 10/20/2022]
|
29
|
Bovet C, Plet B, Ruff M, Eiler S, Granger F, Panagiotidis A, Wenzel R, Nazabal A, Moras D, Zenobi R. Towards high-throughput identification of endocrine disrupting compounds with mass spectrometry. Toxicol In Vitro 2009; 23:704-9. [PMID: 19233257 DOI: 10.1016/j.tiv.2009.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 02/06/2009] [Accepted: 02/06/2009] [Indexed: 10/21/2022]
Abstract
High-mass matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) combined with chemical cross-linking has the ability to monitor the ligand-dependent dimerization of the human estrogen receptor alpha ligand binding domain (hERalpha LBD) in solution. Because only ER ligands enhance the homodimer abundance, we evaluated the ability of this label-free approach for identifying endocrine disrupting compounds (EDCs) in a high-throughput manner. This was achieved by combining an automated liquid handler with an automated MS acquisition procedure, which allowed a five-fold gain in operator time compared to a fully manual approach. To detect ligand binding with enough confidence, the receptor has to be incubated with at least a 10 microM concentration of the test compound. Based on the increase of the measured homodimer intensity, eight compounds with a relative binding affinity (RBA, relative to the natural hormone estradiol) >7% were identified as ER ligands among the 28 chemicals tested. Two other compounds, quercetin and 4-tert-amylphenol, were also identified as ER ligands, although their RBAs have been reported to be only 0.01% and 0.000055%, respectively. This suggests that these two ligands have a higher affinity for hERalpha LBD than reported in the literature. The high-mass MALDI approach thus allows identifying high affinity EDCs in an efficient way.
Collapse
Affiliation(s)
- Cédric Bovet
- Department of Chemistry and Applied Biosciences, ETH Zurich, HCI E 329, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tocchini-Valentini GD, Rochel N, Escriva H, Germain P, Peluso-Iltis C, Paris M, Sanglier-Cianferani S, Van Dorsselaer A, Moras D, Laudet V. Structural and Functional Insights into the Ligand-binding Domain of a Nonduplicated Retinoid X Nuclear Receptor from the Invertebrate Chordate Amphioxus. J Biol Chem 2009; 284:1938-48. [DOI: 10.1074/jbc.m805692200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
31
|
Bovet C, Ruff M, Eiler S, Granger F, Wenzel R, Nazabal A, Moras D, Zenobi R. Monitoring ligand modulation of protein-protein interactions by mass spectrometry: estrogen receptor alpha-SRC1. Anal Chem 2008; 80:7833-9. [PMID: 18778086 DOI: 10.1021/ac8007169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many drugs and chemicals exert their biological effect by modulating protein-protein interactions. In vitro approaches to characterize these mechanisms are often based on indirect measurements (e.g., fluorescence). Here, we used mass spectrometry (MS) to directly monitor the effect of small-molecule ligands on the binding of a coactivator peptide (SRC1) by the human estrogen receptor alpha ligand binding domain (hERalpha LBD). Nanoelectrospray mass spectrometry (nanoESI-MS) and high-mass matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) combined with chemical cross-linking were employed to follow these processes. The chemical cross-linking protocol used prior to high-mass MALDI analysis allows detection of intact noncovalent complexes. The binding of intact hERalpha LBD homodimer with two coactivator peptides was detected with nanoESI-MS and high-mass MALDI-MS only in the presence of an agonist ligand. Furthermore, high-mass MALDI-MS revealed an increase of the homodimer abundance after incubating the receptor with a ligand, independent of the ligand character (i.e., agonist, antagonist). The binding characteristics of the compounds tested by MS correlate very well with their biological activity reported by cell-based assays. High-mass MALDI appears to be an efficient and simple tool for directly monitoring ligand regulation mechanisms involved in protein-protein interactions. Furthermore, the combination of both MS methods allows identifying and characterizing endocrine-disrupting compounds or new drug compounds in an efficient way.
Collapse
Affiliation(s)
- Cédric Bovet
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Dai ZY, Chu YQ, Wu B, Wu L, Ding CF. Investigation of non-covalent complexes of glutathione with common amino acids by electrospray ionization mass spectrometry. Acta Pharmacol Sin 2008; 29:759-71. [PMID: 18501124 DOI: 10.1111/j.1745-7254.2008.00791.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To study the non-covalent interaction between glutathione and common amino acids. METHODS A stoichiometry of glutathione and common amino acids were mixed to reach the equilibrium, and then the mixed solution was investigated by electrospray ionization mass spectrometry (ESI-MS). The binding of the complexes was further examined by collision-induced dissociation (CID) in a tandem mass spectrometer as well as UV spectroscopy. To avoid distinct ionization efficiency discrepancy and signal suppression in the ESI-MS measurements, the interaction between glutathione (GSH) and glutamate (Glu) was quantitatively evaluated. The total concentrations and series of m/z of peak intensities for glutathione and amino acids could be achieved, respectively. Due to the existence of some oligomeric species arising from glutathione or amino acids, an improved calculation formula was proposed to calculate the dissociation constants of glutathione binding to amino acids. RESULTS The ESI mass spectra revealed that glutathione could interact easily with Met, Phe, Tyr, Ser, or Ile to form non-covalent complexes. The binding of the complexes was further confirmed by CID experiments in a tandem mass spectrometer as well as UV spectroscopy. Moreover, an improved calculation formula was successfully applied to determine the dissociation constants of glutathione binding to Glu, His, or Gln. Finally, a possible formation mechanism for the complexes of glutathione with amino acids was proposed. CONCLUSION The reduced polypeptide gamma-glutathione can interact with each of 8 common amino acids, including Glu, His, and Gln to form non-covalent complexes with different affinity.
Collapse
Affiliation(s)
- Zhao-yun Dai
- Department of Infectious Disease, Huadong Hospital, Shanghai 200040, China
| | | | | | | | | |
Collapse
|
33
|
Richardson SD. Environmental Mass Spectrometry: Emerging Contaminants and Current Issues. Anal Chem 2008; 80:4373-402. [DOI: 10.1021/ac800660d] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Susan D. Richardson
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Athens, Georgia 30605
| |
Collapse
|
34
|
Wortmann A, Jecklin MC, Touboul D, Badertscher M, Zenobi R. Binding constant determination of high-affinity protein-ligand complexes by electrospray ionization mass spectrometry and ligand competition. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:600-608. [PMID: 18074334 DOI: 10.1002/jms.1355] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We describe an approach for the determination of binding constants for protein-ligand complexes with electrospray ionization mass spectrometry, based on the observation of unbound ligands competing for binding to a protein target. For the first time, dissociation constants lower than picomolar could be determined with good accuracy by electrospray ionization mass spectrometry. The presented methodology relies only on the determination of signal intensity ratios for free ligands in the low mass region. Therefore, all the advantages of measuring low masses with mass spectrometry, such as high resolution are preserved. By using a reference ligand with known binding affinity, the affinity of a second ligand can be determined. Since no noncovalently bound species are observed, assumptions about response factors are not necessary. The method is validated with ligands binding to avidin and applied to ligands binding to p38 mitogen-activated protein kinase.
Collapse
Affiliation(s)
- Arno Wortmann
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|