1
|
Harirchi S, Sar T, Ramezani M, Aliyu H, Etemadifar Z, Nojoumi SA, Yazdian F, Awasthi MK, Taherzadeh MJ. Bacillales: From Taxonomy to Biotechnological and Industrial Perspectives. Microorganisms 2022; 10:2355. [PMID: 36557608 PMCID: PMC9781867 DOI: 10.3390/microorganisms10122355] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
For a long time, the genus Bacillus has been known and considered among the most applicable genera in several fields. Recent taxonomical developments resulted in the identification of more species in Bacillus-related genera, particularly in the order Bacillales (earlier heterotypic synonym: Caryophanales), with potential application for biotechnological and industrial purposes such as biofuels, bioactive agents, biopolymers, and enzymes. Therefore, a thorough understanding of the taxonomy, growth requirements and physiology, genomics, and metabolic pathways in the highly diverse bacterial order, Bacillales, will facilitate a more robust designing and sustainable production of strain lines relevant to a circular economy. This paper is focused principally on less-known genera and their potential in the order Bacillales for promising applications in the industry and addresses the taxonomical complexities of this order. Moreover, it emphasizes the biotechnological usage of some engineered strains of the order Bacillales. The elucidation of novel taxa, their metabolic pathways, and growth conditions would make it possible to drive industrial processes toward an upgraded functionality based on the microbial nature.
Collapse
Affiliation(s)
- Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Mohaddaseh Ramezani
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Habibu Aliyu
- Institute of Process Engineering in Life Science II: Technical Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Zahra Etemadifar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran
| | - Seyed Ali Nojoumi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Xianyang 712100, China
| | | |
Collapse
|
2
|
The Right-Handed Parallel β-Helix Topology of Erwinia chrysanthemi Pectin Methylesterase Is Intimately Associated with Both Sequential Folding and Resistance to High Pressure. Biomolecules 2021; 11:biom11081083. [PMID: 34439750 PMCID: PMC8392785 DOI: 10.3390/biom11081083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/30/2022] Open
Abstract
The complex topologies of large multi-domain globular proteins make the study of their folding and assembly particularly demanding. It is often characterized by complex kinetics and undesired side reactions, such as aggregation. The structural simplicity of tandem-repeat proteins, which are characterized by the repetition of a basic structural motif and are stabilized exclusively by sequentially localized contacts, has provided opportunities for dissecting their folding landscapes. In this study, we focus on the Erwinia chrysanthemi pectin methylesterase (342 residues), an all-β pectinolytic enzyme with a right-handed parallel β-helix structure. Chemicals and pressure were chosen as denaturants and a variety of optical techniques were used in conjunction with stopped-flow equipment to investigate the folding mechanism of the enzyme at 25 °C. Under equilibrium conditions, both chemical- and pressure-induced unfolding show two-state transitions, with average conformational stability (ΔG° = 35 ± 5 kJ·mol−1) but exceptionally high resistance to pressure (Pm = 800 ± 7 MPa). Stopped-flow kinetic experiments revealed a very rapid (τ < 1 ms) hydrophobic collapse accompanied by the formation of an extended secondary structure but did not reveal stable tertiary contacts. This is followed by three distinct cooperative phases and the significant population of two intermediate species. The kinetics followed by intrinsic fluorescence shows a lag phase, strongly indicating that these intermediates are productive species on a sequential folding pathway, for which we propose a plausible model. These combined data demonstrate that even a large repeat protein can fold in a highly cooperative manner.
Collapse
|
3
|
Dumoulin M. Reflections on professor Sir Christopher M. Dobson (1949-2019). Biophys Rev 2020; 12:13-18. [PMID: 31981089 DOI: 10.1007/s12551-020-00612-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2020] [Indexed: 12/11/2022] Open
Abstract
I have been invited to summarize my career with an emphasis on the time I spent in the laboratory of Prof Christopher M. Dobson, who sadly passed away on September 8th 2019, and to describe his role as a mentor. I accepted this slightly unusual request as it constitutes a unique way for me to express my deep gratitude and admiration for Chris.
Collapse
Affiliation(s)
- Mireille Dumoulin
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBios, Departement of Life Sciences, University of Liege, Liege, Belgium.
| |
Collapse
|
4
|
Rouster P, Dondelinger M, Galleni M, Nysten B, Jonas AM, Glinel K. Layer-by-layer assembly of enzyme-loaded halloysite nanotubes for the fabrication of highly active coatings. Colloids Surf B Biointerfaces 2019; 178:508-514. [DOI: 10.1016/j.colsurfb.2019.03.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/18/2019] [Accepted: 03/20/2019] [Indexed: 12/19/2022]
|
5
|
Risso VA, Ermácora MR. Equilibrium partially folded states of B. licheniformis
β
-lactamase. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2019; 48:341-348. [PMID: 30929094 DOI: 10.1007/s00249-019-01361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 02/14/2019] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
Abstract
β -Lactamases (penicillinases) facilitate bacterial resistance to antibiotics and are excellent theoretical and experimental models in protein structure, dynamics and evolution. Bacillus licheniformis exo-small penicillinase (ESP) is a Class Aβ -lactamase with three tryptophan residues located one in each of its two domains and one in the interface between domains. The conformational landscape of three well-characterized ESP Trp→ Phe mutants was characterized in equilibrium unfolding experiments by measuring tryptophan fluorescence, far-UV CD, activity, hydrodynamic radius, and limited proteolysis. The Trp→ Phe substitutions had little impact on the native conformation, but changed the properties of the partially folded states populated at equilibrium. The results were interpreted in the framework of modern theories of protein folding.
Collapse
Affiliation(s)
- Valeria A Risso
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Buenos Aires, Argentina
- Departamento de Quimica Fisica, Facultad de Ciencias, University of Granada, 18071, Granada, Spain
| | - Mario R Ermácora
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Buenos Aires, Argentina.
- Instituto Multidisciplinario de Biología Celular, Conicet-CIC-UNLP, Calle 526 y Camino General Belgrano, B1906APO, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Thorn D, Kay J, Rhazi N, Dumoulin M, Corazza A, Damblon C. 1H, 13C and 15N backbone resonance assignments of the β-lactamase BlaP from Bacillus licheniformis 749/C and two mutational variants. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:69-77. [PMID: 29030803 DOI: 10.1007/s12104-017-9782-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
Class A β-lactamases have been widely used as versatile scaffolds to create hybrid (or chimeric) proteins for a series of applications ranging from basic research to medicine. We have, in particular, used the β-lactamase BlaP from Bacillus licheniformis 749/C (BlaP) as a protein scaffold to create model polyglutamine (polyQ) proteins in order to better understand the mechanism(s) by which an expanded polyQ sequence triggers the formation of amyloid fibrils. The model chimeras were designed by inserting a polyQ sequence of various lengths at two different locations within BlaP (i.e. position 197 or position 216) allowing a detailed comparison of the effects of subtle differences in the environment of the polyQ sequence on its ability to trigger protein aggregation. In order to investigate the effects of the polyQ insertion at both positions on the structure, stability and dynamics of BlaP, a series of NMR experiments including H/D exchange are foreseen. Accordingly, as necessitated by these studies, here we report the NMR assignment of the wild-type BlaP (BlaP-WT) and of the two reference proteins, BlaP197Q0 and BlaP216Q0, wherein a Pro-Gly dipeptide has been introduced at position 197 and 216, respectively; this dipeptide originates from the addition of the Sma1 restriction site at the genetic level to allow further polyQ sequence insertion.
Collapse
Affiliation(s)
- David Thorn
- Laboratory of Enzymology and Protein Folding, Center for Protein Engineering, InBios, University of Liège, Allée du Six Août 13, Sart-Tilman, 4000, Liège, Belgium
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia
| | - Jennifer Kay
- Laboratory of Enzymology and Protein Folding, Center for Protein Engineering, InBios, University of Liège, Allée du Six Août 13, Sart-Tilman, 4000, Liège, Belgium
| | - Noureddine Rhazi
- Laboratory of Enzymology and Protein Folding, Center for Protein Engineering, InBios, University of Liège, Allée du Six Août 13, Sart-Tilman, 4000, Liège, Belgium
- Molecular Biomimetic and Protein Engineering Laboratory, GIGA-Research, University of Liège, Quartier Hôpital, avenue de l'Hopital 1, Sart-Tilman, 4000, Liège, Belgium
| | - Mireille Dumoulin
- Laboratory of Enzymology and Protein Folding, Center for Protein Engineering, InBios, University of Liège, Allée du Six Août 13, Sart-Tilman, 4000, Liège, Belgium
| | - Alessandra Corazza
- Department of Medicine, University of Udine, Piazzale Kolbe, 4, 33100, Udine, Italy.
| | - Christian Damblon
- Laboratory of Biological Structural Chemistry, Department of Chemistry, University of Liège, Allée du Six Août 13, Sart-Tilman, 4000, Liège, Belgium.
| |
Collapse
|
7
|
Vandevenne M, Dondelinger M, Yunus S, Freischels A, Freischels R, Crasson O, Rhazi N, Bogaerts P, Galleni M, Filée P. The Use of a β-lactamase-based Conductimetric Biosensor Assay to Detect Biomolecular Interactions. J Vis Exp 2018. [PMID: 29443069 DOI: 10.3791/55414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Biosensors are becoming increasingly important and implemented in various fields such as pathogen detection, molecular diagnosis, environmental monitoring, and food safety control. In this context, we used β-lactamases as efficient reporter enzymes in several protein-protein interaction studies. Furthermore, their ability to accept insertions of peptides or structured proteins/domains strongly encourages the use of these enzymes to generate chimeric proteins. In a recent study, we inserted a single-domain antibody fragment into the Bacillus licheniformis BlaP β-lactamase. These small domains, also called nanobodies, are defined as the antigen-binding domains of single chain antibodies from camelids. Like common double chain antibodies, they show high affinities and specificities for their targets. The resulting chimeric protein exhibited a high affinity against its target while retaining the β-lactamase activity. This suggests that the nanobody and β-lactamase moieties remain functional. In the present work, we report a detailed protocol that combines our hybrid β-lactamase system to the biosensor technology. The specific binding of the nanobody to its target can be detected thanks to a conductimetric measurement of the protons released by the catalytic activity of the enzyme.
Collapse
Affiliation(s)
| | | | - Sami Yunus
- Institute of Condensed Matter and Nanoscience, Catholic University of Louvain
| | | | | | | | | | - Pierre Bogaerts
- Laboratory of Clinical Microbiology, Catholic University of Louvain
| | | | | |
Collapse
|
8
|
Van Assche R, Borghgraef C, Vaneyck J, Dumoulin M, Schoofs L, Temmerman L. In vitro aggregating β-lactamase-polyQ chimeras do not induce toxic effects in an in vivo Caenorhabditis elegans model. J Negat Results Biomed 2017; 16:14. [PMID: 28830560 PMCID: PMC5568214 DOI: 10.1186/s12952-017-0080-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/14/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A series of human diseases are caused by the misfolding and aggregation of specific proteins or peptides into amyloid fibrils; nine of these diseases, referred to as polyglutamine diseases, are associated with proteins carrying an expanded polyglutamine (polyQ) region. While the presence of this latter is thought to be the determinant factor for the development of polyQ diseases, the non-polyQ regions of the host proteins are thought to play a significant modulating role. METHOD In order to better understand the role of non-polyQ regions, the toxic effects of model proteins bearing different polyQ regions (containing up to 79 residues) embedded at two distinct locations within the β-lactamase (BlaP) host enzyme were evaluated in Caenorhabditis elegans. This small organism can be advantageous for the validation of in vitro findings, as it provides a multicellular context yet avoids the typical complexity of common studies relying on vertebrate models. Several phenotypic assays were performed in order to screen for potential toxic effects of the different BlaP-polyQ proteins. RESULTS Despite the significant in vitro aggregation of BlaP-polyQ proteins with long polyQ regions, none of the BlaP-polyQ chimeras aggregated in the generated transgenic in vivo models. CONCLUSION The absence of a toxic effect of the expression of BlaP-polyQ chimeras may find its cause in biochemical mechanisms present in vivo to cope with protein aggregation (e.g. presence of chaperones) or in C. elegans' limitations such as its short lifespan. It is plausible that the aggregation propensities of the different BlaP chimeras containing embedded polyQ sequences are too low in this in vivo environment to permit their aggregation. These experiments emphasize the need for several comparative and in vivo verification studies of biologically relevant in vitro findings, which reveal both the strengths and limitations of widely used model systems.
Collapse
Affiliation(s)
- Roel Van Assche
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven (University of Leuven), Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium
| | - Charline Borghgraef
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven (University of Leuven), Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium
| | - Jonathan Vaneyck
- Enzymology and Protein Folding, Center for Protein Engineering, InBioS, Institute of Chemistry, University of Liège, Sart-Tilman, 4000 Liège, Belgium
| | - Mireille Dumoulin
- Enzymology and Protein Folding, Center for Protein Engineering, InBioS, Institute of Chemistry, University of Liège, Sart-Tilman, 4000 Liège, Belgium
| | - Liliane Schoofs
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven (University of Leuven), Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven (University of Leuven), Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium
| |
Collapse
|
9
|
Bland MJ, Ducos-Galand M, Val ME, Mazel D. An att site-based recombination reporter system for genome engineering and synthetic DNA assembly. BMC Biotechnol 2017; 17:62. [PMID: 28705159 PMCID: PMC5512741 DOI: 10.1186/s12896-017-0382-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/09/2017] [Indexed: 11/25/2022] Open
Abstract
Background Direct manipulation of the genome is a widespread technique for genetic studies and synthetic biology applications. The tyrosine and serine site-specific recombination systems of bacteriophages HK022 and ΦC31 are widely used for stable directional exchange and relocation of DNA sequences, making them valuable tools in these contexts. We have developed site-specific recombination tools that allow the direct selection of recombination events by embedding the attB site from each system within the β-lactamase resistance coding sequence (bla). Results The HK and ΦC31 tools were developed by placing the attB sites from each system into the signal peptide cleavage site coding sequence of bla. All possible open reading frames (ORFs) were inserted and tested for recombination efficiency and bla activity. Efficient recombination was observed for all tested ORFs (3 for HK, 6 for ΦC31) as shown through a cointegrate formation assay. The bla gene with the embedded attB site was functional for eight of the nine constructs tested. Conclusions The HK/ΦC31 att-bla system offers a simple way to directly select recombination events, thus enhancing the use of site-specific recombination systems for carrying out precise, large-scale DNA manipulation, and adding useful tools to the genetics toolbox. We further show the power and flexibility of bla to be used as a reporter for recombination.
Collapse
Affiliation(s)
- Michael J Bland
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, 75015, Paris, France.,UMR3525, Centre National de la Recherche Scientifique, 75015, Paris, France
| | - Magaly Ducos-Galand
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, 75015, Paris, France.,UMR3525, Centre National de la Recherche Scientifique, 75015, Paris, France
| | - Marie-Eve Val
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, 75015, Paris, France.,UMR3525, Centre National de la Recherche Scientifique, 75015, Paris, France
| | - Didier Mazel
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, 75015, Paris, France. .,UMR3525, Centre National de la Recherche Scientifique, 75015, Paris, France.
| |
Collapse
|
10
|
Human Chitotriosidase: Catalytic Domain or Carbohydrate Binding Module, Who's Leading HCHT's Biological Function. Sci Rep 2017; 7:2768. [PMID: 28584264 PMCID: PMC5459812 DOI: 10.1038/s41598-017-02382-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 04/10/2017] [Indexed: 01/07/2023] Open
Abstract
Chitin is an important structural component of numerous fungal pathogens and parasitic nematodes. The human macrophage chitotriosidase (HCHT) is a chitinase that hydrolyses glycosidic bonds between the N-acetyl-D-glucosamine units of this biopolymer. HCHT belongs to the Glycoside Hydrolase (GH) superfamily and contains a well-characterized catalytic domain appended to a chitin-binding domain (ChBDCHIT1). Although its precise biological function remains unclear, HCHT has been described to be involved in innate immunity. In this study, the molecular basis for interaction with insoluble chitin as well as with soluble chito-oligosaccharides has been determined. The results suggest a new mechanism as a common binding mode for many Carbohydrate Binding Modules (CBMs). Furthermore, using a phylogenetic approach, we have analysed the modularity of HCHT and investigated the evolutionary paths of its catalytic and chitin binding domains. The phylogenetic analyses indicate that the ChBDCHIT1 domain dictates the biological function of HCHT and not its appended catalytic domain. This observation may also be a general feature of GHs. Altogether, our data have led us to postulate and discuss that HCHT acts as an immune catalyser.
Collapse
|
11
|
Ramalapa B, Crasson O, Vandevenne M, Gibaud A, Garcion E, Cordonnier T, Galleni M, Boury F. Protein–polysaccharide complexes for enhanced protein delivery in hyaluronic acid templated calcium carbonate microparticles. J Mater Chem B 2017; 5:7360-7368. [DOI: 10.1039/c7tb01538k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chimeric proteins facilitate protein–polysaccharide interactions for enhanced delivery and controlled release of proteins.
Collapse
Affiliation(s)
- Bathabile Ramalapa
- GLIAD – Design and application of innovative local treatments in glioblastoma
- Institut de Biologie en Santé – IRIS – CHU; CRCINA
- INSERM, Université de Nantes
- Université d'Angers
- 49933 Angers
| | - Oscar Crasson
- Laboratory for Biological Macromolecules
- Center for Protein Engineering
- Institut de Chimie B6
- University of Liège
- Liège 4000
| | - Marylène Vandevenne
- Laboratory for Biological Macromolecules
- Center for Protein Engineering
- Institut de Chimie B6
- University of Liège
- Liège 4000
| | - Alain Gibaud
- CNRS UMR 6283-Institut des Molécules et des Matériaux du Mans
- 72085 LE MANS Cedex 09
- France
| | - Emmanuel Garcion
- GLIAD – Design and application of innovative local treatments in glioblastoma
- Institut de Biologie en Santé – IRIS – CHU; CRCINA
- INSERM, Université de Nantes
- Université d'Angers
- 49933 Angers
| | - Thomas Cordonnier
- GLIAD – Design and application of innovative local treatments in glioblastoma
- Institut de Biologie en Santé – IRIS – CHU; CRCINA
- INSERM, Université de Nantes
- Université d'Angers
- 49933 Angers
| | - Moreno Galleni
- Laboratory for Biological Macromolecules
- Center for Protein Engineering
- Institut de Chimie B6
- University of Liège
- Liège 4000
| | - Frank Boury
- GLIAD – Design and application of innovative local treatments in glioblastoma
- Institut de Biologie en Santé – IRIS – CHU; CRCINA
- INSERM, Université de Nantes
- Université d'Angers
- 49933 Angers
| |
Collapse
|
12
|
Pierre B, Labonte JW, Xiong T, Aoraha E, Williams A, Shah V, Chau E, Helal KY, Gray JJ, Kim JR. Molecular Determinants for Protein Stabilization by Insertional Fusion to a Thermophilic Host Protein. Chembiochem 2015; 16:2392-402. [DOI: 10.1002/cbic.201500310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Brennal Pierre
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Jason W. Labonte
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; 3400 North Charles Street Baltimore MD 21218 USA
| | - Tina Xiong
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; 3400 North Charles Street Baltimore MD 21218 USA
| | - Edwin Aoraha
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Asher Williams
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Vandan Shah
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Edward Chau
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Kazi Yasin Helal
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Jeffrey J. Gray
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; 3400 North Charles Street Baltimore MD 21218 USA
| | - Jin Ryoun Kim
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| |
Collapse
|
13
|
Crasson O, Rhazi N, Jacquin O, Freichels A, Jérôme C, Ruth N, Galleni M, Filée P, Vandevenne M. Enzymatic functionalization of a nanobody using protein insertion technology. Protein Eng Des Sel 2015; 28:451-60. [PMID: 25852149 DOI: 10.1093/protein/gzv020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/05/2015] [Indexed: 11/14/2022] Open
Abstract
Antibody-based products constitute one of the most attractive biological molecules for diagnostic, medical imagery and therapeutic purposes with very few side effects. Their development has become a major priority of biotech and pharmaceutical industries. Recently, a growing number of modified antibody-based products have emerged including fragments, multi-specific and conjugate antibodies. In this study, using protein engineering, we have functionalized the anti-hen egg-white lysozyme (HEWL) camelid VHH antibody fragment (cAb-Lys3), by insertion into a solvent-exposed loop of the Bacillus licheniformis β-lactamase BlaP. We showed that the generated hybrid protein conserved its enzymatic activity while the displayed nanobody retains its ability to inhibit HEWL with a nanomolar affinity range. Then, we successfully implemented the functionalized cAb-Lys3 in enzyme-linked immunosorbent assay, potentiometric biosensor and drug screening assays. The hybrid protein was also expressed on the surface of phage particles and, in this context, was able to interact specifically with HEWL while the β-lactamase activity was used to monitor phage interactions. Finally, using thrombin-cleavage sites surrounding the permissive insertion site in the β-lactamase, we reported an expression system in which the nanobody can be easily separated from its carrier protein. Altogether, our study shows that insertion into the BlaP β-lactamase constitutes a suitable technology to functionalize nanobodies and allows the creation of versatile tools that can be used in innovative biotechnological assays.
Collapse
Affiliation(s)
- O Crasson
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| | - N Rhazi
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| | - O Jacquin
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| | - A Freichels
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| | - C Jérôme
- Chimie des Macromolécules et des Matériaux Organiques (CERM), Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| | - N Ruth
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| | - M Galleni
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| | - P Filée
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium CER Groupe, Rue de la Science, n°8, Aye B6900, Belgium
| | - M Vandevenne
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| |
Collapse
|
14
|
Huynen C, Willet N, Buell AK, Duwez AS, Jerôme C, Dumoulin M. Influence of the protein context on the polyglutamine length-dependent elongation of amyloid fibrils. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:239-48. [PMID: 25489872 DOI: 10.1016/j.bbapap.2014.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/20/2014] [Accepted: 12/01/2014] [Indexed: 12/24/2022]
Abstract
Polyglutamine (polyQ) diseases, including Huntington's disease, are neurodegenerative disorders associated with the abnormal expansion of a polyQ tract within nine proteins. The polyQ expansion is thought to be a major determinant in the development of neurotoxicity, triggering protein aggregation into amyloid fibrils, although non-polyQ regions play a modulating role. In this work, we investigate the relative importance of the polyQ length, its location within a host protein, and the conformational state of the latter in the amyloid fibril elongation. Model polyQ proteins made of the β-lactamase BlaP containing up to 79Q inserted at two different positions, and quartz crystal microbalance and atomic force microscopy were used for this purpose. We demonstrate that, independently of the polyQ tract location and the conformational state of the host protein, the relative elongation rate of fibrils increases linearly with the polyQ length. The slope of the linear fit is similar for both sets of chimeras (i.e., the elongation rate increases by ~1.9% for each additional glutamine), and is also similar to that previously observed for polyQ peptides. The elongation rate is, however, strongly influenced by the location of the polyQ tract within BlaP and the conformational state of BlaP. Moreover, comparison of our results with those previously reported for aggregation in solution indicates that these two parameters also modulate the ability of BlaP-polyQ chimeras to form the aggregation nucleus. Altogether our results suggest that non-polyQ regions are valuable targets in order to interfere with the process of amyloid fibril formation associated with polyQ diseases.
Collapse
Affiliation(s)
- Céline Huynen
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, University of Liege, Liege, Belgium
| | - Nicolas Willet
- Nanochemistry and Molecular Systems, Department of Chemistry, University of Liege, Liege, Belgium
| | - Alexander K Buell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Anne-Sophie Duwez
- Nanochemistry and Molecular Systems, Department of Chemistry, University of Liege, Liege, Belgium
| | - Christine Jerôme
- Center for Education and Research on Macromolecules (CERM), Department of Chemistry, University of Liege, Liege, Belgium
| | - Mireille Dumoulin
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, University of Liege, Liege, Belgium.
| |
Collapse
|
15
|
Class A β-lactamases as versatile scaffolds to create hybrid enzymes: applications from basic research to medicine. BIOMED RESEARCH INTERNATIONAL 2013; 2013:827621. [PMID: 24066299 PMCID: PMC3771265 DOI: 10.1155/2013/827621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/04/2013] [Indexed: 01/13/2023]
Abstract
Designing hybrid proteins is a major aspect of protein engineering and covers a very wide range of applications from basic research to medical applications. This review focuses on the use of class A β-lactamases as versatile scaffolds to design hybrid enzymes (referred to as β-lactamase hybrid proteins, BHPs) in which an exogenous peptide, protein or fragment thereof is inserted at various permissive positions. We discuss how BHPs can be specifically designed to create bifunctional proteins, to produce and to characterize proteins that are otherwise difficult to express, to determine the epitope of specific antibodies, to generate antibodies against nonimmunogenic epitopes, and to better understand the structure/function relationship of proteins.
Collapse
|
16
|
Vandevenne M, Campisi V, Freichels A, Gillard C, Gaspard G, Frère JM, Galleni M, Filée P. Comparative functional analysis of the human macrophage chitotriosidase. Protein Sci 2013; 20:1451-63. [PMID: 21674664 DOI: 10.1002/pro.676] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This work analyses the chitin-binding and catalytic domains of the human macrophage chitotriosidase and investigates the physiological role of this glycoside hydrolase in a complex mechanism such as the innate immune system, especially its antifungal activity. Accordingly, we first analyzed the ability of its chitin-binding domain to interact with chitin embedded in fungal cell walls using the β-lactamase activity reporter system described in our previous work. The data showed that the chitin-binding activity was related to the cell wall composition of the fungi strains and that their peptide-N-glycosidase/zymolyase treatments increased binding to fungal by increasing protein permeability. We also investigated the antifungal activity of the enzyme against Candida albicans. The antifungal properties of the complete chitotriosidase were analyzed and compared with those of the isolated chitin-binding and catalytic domains. The isolated catalytic domain but not the chitin-binding domain was sufficient to provide antifungal activity. Furthermore, to explain the lack of obvious pathologic phenotypes in humans homozygous for a widespread mutation that renders chitotriosidase inactive, we postulated that the absence of an active chitotriosidase might be compensated by the expression of another human hydrolytic enzyme such as lysozyme. The comparison of the antifungal properties of chitotriosidase and lysozyme indicated that surprisingly, both enzymes have similar in vitro antifungal properties. Furthermore, despite its more efficient hydrolytic activity on chitin, the observed antifungal activity of chitotriosidase was lower than that of lysozyme. Finally, this antifungal duality between chitotriosidase and lysozyme is discussed in the context of innate immunity.
Collapse
Affiliation(s)
- Marylène Vandevenne
- Macromolécules Biologiques, Centre d'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Geitner AJ, Schmid FX. Combination of the Human Prolyl Isomerase FKBP12 with Unrelated Chaperone Domains Leads to Chimeric Folding Enzymes with High Activity. J Mol Biol 2012; 420:335-49. [DOI: 10.1016/j.jmb.2012.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/10/2012] [Accepted: 04/18/2012] [Indexed: 12/11/2022]
|
18
|
Scarafone N, Pain C, Fratamico A, Gaspard G, Yilmaz N, Filée P, Galleni M, Matagne A, Dumoulin M. Amyloid-like fibril formation by polyQ proteins: a critical balance between the polyQ length and the constraints imposed by the host protein. PLoS One 2012; 7:e31253. [PMID: 22438863 PMCID: PMC3305072 DOI: 10.1371/journal.pone.0031253] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 01/05/2012] [Indexed: 11/18/2022] Open
Abstract
Nine neurodegenerative disorders, called polyglutamine (polyQ) diseases, are characterized by the formation of intranuclear amyloid-like aggregates by nine proteins containing a polyQ tract above a threshold length. These insoluble aggregates and/or some of their soluble precursors are thought to play a role in the pathogenesis. The mechanism by which polyQ expansions trigger the aggregation of the relevant proteins remains, however, unclear. In this work, polyQ tracts of different lengths were inserted into a solvent-exposed loop of the β-lactamase BlaP and the effects of these insertions on the properties of BlaP were investigated by a range of biophysical techniques. The insertion of up to 79 glutamines does not modify the structure of BlaP; it does, however, significantly destabilize the enzyme. The extent of destabilization is largely independent of the polyQ length, allowing us to study independently the effects intrinsic to the polyQ length and those related to the structural integrity of BlaP on the aggregating properties of the chimeras. Only chimeras with 55Q and 79Q readily form amyloid-like fibrils; therefore, similarly to the proteins associated with diseases, there is a threshold number of glutamines above which the chimeras aggregate into amyloid-like fibrils. Most importantly, the chimera containing 79Q forms amyloid-like fibrils at the same rate whether BlaP is folded or not, whereas the 55Q chimera aggregates into amyloid-like fibrils only if BlaP is unfolded. The threshold value for amyloid-like fibril formation depends, therefore, on the structural integrity of the β-lactamase moiety and thus on the steric and/or conformational constraints applied to the polyQ tract. These constraints have, however, no significant effect on the propensity of the 79Q tract to trigger fibril formation. These results suggest that the influence of the protein context on the aggregating properties of polyQ disease-associated proteins could be negligible when the latter contain particularly long polyQ tracts.
Collapse
Affiliation(s)
- Natacha Scarafone
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, Institute of Chemistry, University of Liège, Liège, Belgium
| | - Coralie Pain
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, Institute of Chemistry, University of Liège, Liège, Belgium
| | - Anthony Fratamico
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, Institute of Chemistry, University of Liège, Liège, Belgium
| | - Gilles Gaspard
- Biological Macromolecules, Centre for Protein Engineering, Institute of Chemistry, University of Liège, Liège, Belgium
| | - Nursel Yilmaz
- Biological Macromolecules, Centre for Protein Engineering, Institute of Chemistry, University of Liège, Liège, Belgium
| | - Patrice Filée
- Biological Macromolecules, Centre for Protein Engineering, Institute of Chemistry, University of Liège, Liège, Belgium
| | - Moreno Galleni
- Biological Macromolecules, Centre for Protein Engineering, Institute of Chemistry, University of Liège, Liège, Belgium
| | - André Matagne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, Institute of Chemistry, University of Liège, Liège, Belgium
| | - Mireille Dumoulin
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, Institute of Chemistry, University of Liège, Liège, Belgium
| |
Collapse
|
19
|
Vandevenne M, Gaspard G, Belgsir EM, Ramnath M, Cenatiempo Y, Marechal D, Dumoulin M, Frere JM, Matagne A, Galleni M, Filee P. Effects of monopropanediamino-β-cyclodextrin on the denaturation process of the hybrid protein BlaPChBD. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1146-53. [PMID: 21621654 DOI: 10.1016/j.bbapap.2011.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 05/08/2011] [Accepted: 05/09/2011] [Indexed: 11/27/2022]
Abstract
Irreversible accumulation of protein aggregates represents an important problem both in vivo and in vitro. The aggregation of proteins is of critical importance in a wide variety of biomedical situations, ranging from diseases (such as Alzheimer's and Parkinson's diseases) to the production (e.g. inclusion bodies), stability, storage and delivery of protein drugs. β-Cyclodextrin (β-CD) is a circular heptasaccharide characterized by a hydrophilic exterior and a hydrophobic interior ring structure. In this research, we studied the effects of a chemically modified β-CD (BCD07056), on the aggregating and refolding properties of BlaPChBD, a hybrid protein obtained by inserting the chitin binding domain of the human macrophage chitotriosidase into the class A β-lactamase BlaP from Bacillus licheniformis 749/I during its thermal denaturation. The results show that BCD07056 strongly increases the refolding yield of BlaPChBD after thermal denaturation and constitutes an excellent additive to stabilize the protein over time at room temperature. Our data suggest that BCD07056 acts early in the denaturation process by preventing the formation of an intermediate which leads to an aggregated state. Finally, the role of β-CD derivatives on the stability of proteins is discussed.
Collapse
Affiliation(s)
- Marylène Vandevenne
- Centre d'Ingénierie des Protéines, Université de Liège, Institut de Chimie B6, Sart-Tilman, Liège, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
More than 200 genes required for methane formation from H₂ and CO₂ and energy conservation are present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2011; 2011:973848. [PMID: 21559116 PMCID: PMC3087415 DOI: 10.1155/2011/973848] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 12/07/2010] [Accepted: 02/18/2011] [Indexed: 12/19/2022]
Abstract
The hydrogenotrophic methanogens Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus can easily be mass cultured. They have therefore been used almost exclusively to study the biochemistry of methanogenesis from H2 and CO2, and the genomes of these two model organisms have been sequenced. The close relationship of the two organisms is reflected in their genomic architecture and coding potential. Within the 1,607 protein coding sequences (CDS) in common, we identified approximately 200 CDS required for the synthesis of the enzymes, coenzymes, and prosthetic groups involved in CO2 reduction to methane and in coupling this process with the phosphorylation of ADP. Approximately 20 additional genes, such as those for the biosynthesis of F430 and methanofuran and for the posttranslational modifications of the two methyl-coenzyme M reductases, remain to be identified.
Collapse
|
21
|
Pierre B, Xiong T, Hayles L, Guntaka VR, Kim JR. Stability of a guest protein depends on stability of a host protein in insertional fusion. Biotechnol Bioeng 2011; 108:1011-20. [DOI: 10.1002/bit.23039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/03/2010] [Accepted: 12/06/2010] [Indexed: 11/11/2022]
|
22
|
Bannister D, Popovic B, Sridharan S, Giannotta F, Filée P, Yilmaz N, Minter R. Epitope mapping and key amino acid identification of anti-CD22 immunotoxin CAT-8015 using hybrid β-lactamase display. Protein Eng Des Sel 2010; 24:351-60. [PMID: 21159620 PMCID: PMC3049344 DOI: 10.1093/protein/gzq114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Monoclonal antibodies are a commercially successful class of drug molecules and there are now a growing number of antibodies coupled to toxic payloads, which demonstrate clinical efficacy. Determining the precise epitope of therapeutic antibodies is beneficial in understanding the structure-activity relationship of the drug, but in many cases is not done due to the structural complexity of, in particular, conformational protein epitopes. Using the immunotoxin CAT-8015 as a test case, this study demonstrates that a new methodology, hybrid β-lactamase display, can be employed to elucidate a complex epitope on CD22. Following insertion of random CD22 gene fragments into a permissive site within β-lactamase, proteins expressed in Escherichia coli were first screened for correct folding by resistance to ampicillin and then selected by phage display for affinity to CAT-8015. The optimal protein region recognised by CAT-8015 could then be used as a tool for fine epitope mapping, using alanine-scanning analysis, demonstrating that this technology is well suited to the rapid characterisation of antibody epitopes.
Collapse
Affiliation(s)
- D Bannister
- MedImmune Research, Granta Park, Cambridge CB21 6GH, UK
| | | | | | | | | | | | | |
Collapse
|
23
|
Gersbach CA, Gaj T, Gordley RM, Barbas CF. Directed evolution of recombinase specificity by split gene reassembly. Nucleic Acids Res 2010; 38:4198-206. [PMID: 20194120 PMCID: PMC2896519 DOI: 10.1093/nar/gkq125] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The engineering of new enzymes that efficiently and specifically modify DNA sequences is necessary for the development of enhanced gene therapies and genetic studies. To address this need, we developed a robust strategy for evolving site-specific recombinases with novel substrate specificities. In this system, recombinase variants are selected for activity on new substrates based on enzyme-mediated reassembly of the gene encoding β-lactamase that confers ampicillin resistance to Escherichia coli. This stringent evolution method was used to alter the specificities of catalytic domains in the context of a modular zinc finger-recombinase fusion protein. Gene reassembly was detectable over several orders of magnitude, which allowed for tunable selectivity and exceptional sensitivity. Engineered recombinases were evolved to react with sequences from the human genome with only three rounds of selection. Many of the evolved residues, selected from a randomly-mutated library, were conserved among other members of this family of recombinases. This enhanced evolution system will translate recombinase engineering and genome editing into a practical and expedient endeavor for academic, industrial and clinical applications.
Collapse
Affiliation(s)
- Charles A Gersbach
- The Skaggs Institute for Chemical Biology, Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
24
|
Zoldák G, Carstensen L, Scholz C, Schmid FX. Consequences of domain insertion on the stability and folding mechanism of a protein. J Mol Biol 2008; 386:1138-52. [PMID: 19136015 DOI: 10.1016/j.jmb.2008.12.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 12/17/2008] [Accepted: 12/18/2008] [Indexed: 11/30/2022]
Abstract
SlyD, the sensitive-to-lysis protein from Escherichia coli, consists of two domains. They are not arranged successively along the protein chain, but one domain, the "insert-in-flap" (IF) domain, is inserted internally as a guest into a surface loop of the host domain, which is a prolyl isomerase of the FK506 binding protein (FKBP) type. We used SlyD as a model to elucidate how such a domain insertion affects the stability and folding mechanism of the host and the guest domain. For these studies, the two-domain protein was compared with a single-domain variant SlyDDeltaIF, SlyD* without the chaperone domain (residues 1-69 and 130-165) in which the IF domain was removed and replaced by a short loop, as present in human FKBP12. Equilibrium unfolding and folding kinetics followed an apparent two-state mechanism in the absence and in the presence of the IF domain. The inserted domain decreased, however, the stability of the host domain in the transition region and decelerated its refolding reaction by about 10-fold. This originates from the interruption of the chain connectivity by the IF domain and its inherent instability. To monitor folding processes in this domain selectively, a Trp residue was introduced as fluorescent probe. Kinetic double-mixing experiments revealed that, in intact SlyD, the IF domain folds and unfolds about 1000-fold more rapidly than the FKBP domain, and that it is strongly stabilized when linked with the folded FKBP domain. The unfolding limbs of the kinetic chevrons of SlyD show a strong downward curvature. This deviation from linearity is not caused by a transition-state movement, as often assumed, but by the accumulation of a silent unfolding intermediate at high denaturant concentrations. In this kinetic intermediate, the FKBP domain is still folded, whereas the IF domain is already unfolded.
Collapse
Affiliation(s)
- Gabriel Zoldák
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, D-95440 Bayreuth, Germany
| | | | | | | |
Collapse
|
25
|
Vandevenne M, Gaspard G, Yilmaz N, Giannotta F, Frère JM, Galleni M, Filée P. Rapid and easy development of versatile tools to study protein/ligand interactions. Protein Eng Des Sel 2008; 21:443-51. [PMID: 18456870 DOI: 10.1093/protein/gzn021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The system described here allows the expression of protein fragments into a solvent-exposed loop of a carrier protein, the beta-lactamase BlaP. When using Escherichia coli constitutive expression vectors, a positive selection of antibioresistant bacteria expressing functional hybrid beta-lactamases is achieved in the presence of beta-lactams making further screening of correctly folded and secreted hybrid beta-lactamases easier. Protease-specific recognition sites have been engineered on both sides of the beta-lactamase permissive loop in order to cleave off the exogenous protein fragment from the carrier protein by an original two-step procedure. According to our data, this approach constitutes a suitable alternative for production of difficult to express protein domains. This work demonstrates that the use of BlaP as a carrier protein does not alter the biochemical activity and the native disulphide bridge formation of the inserted chitin binding domain of the human macrophage chitotriosidase. We also report that the beta-lactamase activity of the hybrid protein can be used to monitor interactions between the inserted protein fragments and its ligands and to screen neutralizing molecules.
Collapse
Affiliation(s)
- M Vandevenne
- Macromolécules biologiques, Centre d'Ingénierie des Protéines, Université de Liège, Sart-Tilman, Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|