1
|
Bagde SR, Kim CY. Architecture of full-length type I modular polyketide synthases revealed by X-ray crystallography, cryo-electron microscopy, and AlphaFold2. Nat Prod Rep 2024; 41:1219-1234. [PMID: 38501175 PMCID: PMC11324418 DOI: 10.1039/d3np00060e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Covering: up to the end of 2023Type I modular polyketide synthases construct polyketide natural products in an assembly line-like fashion, where the growing polyketide chain attached to an acyl carrier protein is passed from catalytic domain to catalytic domain. These enzymes have immense potential in drug development since they can be engineered to produce non-natural polyketides by strategically adding, exchanging, and deleting individual catalytic domains. In practice, however, this approach frequently results in complete failures or dramatically reduced product yields. A comprehensive understanding of modular polyketide synthase architecture is expected to resolve these issues. We summarize the three-dimensional structures and the proposed mechanisms of three full-length modular polyketide synthases, Lsd14, DEBS module 1, and PikAIII. We also describe the advantages and limitations of using X-ray crystallography, cryo-electron microscopy, and AlphaFold2 to study intact type I polyketide synthases.
Collapse
Affiliation(s)
- Saket R Bagde
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Chu-Young Kim
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
2
|
Soohoo AM, Cogan DP, Brodsky KL, Khosla C. Structure and Mechanisms of Assembly-Line Polyketide Synthases. Annu Rev Biochem 2024; 93:471-498. [PMID: 38663033 PMCID: PMC11907408 DOI: 10.1146/annurev-biochem-080923-043654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Three decades of studies on the multifunctional 6-deoxyerythronolide B synthase have laid a foundation for understanding the chemistry and evolution of polyketide antibiotic biosynthesis by a large family of versatile enzymatic assembly lines. Recent progress in applying chemical and structural biology tools to this prototypical assembly-line polyketide synthase (PKS) and related systems has highlighted several features of their catalytic cycles and associated protein dynamics. There is compelling evidence that multiple mechanisms have evolved in this enzyme family to channel growing polyketide chains along uniquely defined sequences of 10-100 active sites, each of which is used only once in the overall catalytic cycle of an assembly-line PKS. Looking forward, one anticipates major advances in our understanding of the mechanisms by which the free energy of a repetitive Claisen-like reaction is harnessed to guide the growing polyketide chain along the assembly line in a manner that is kinetically robust yet evolutionarily adaptable.
Collapse
Affiliation(s)
- Alexander M Soohoo
- Sarafan ChEM-H, Stanford University, Stanford, California, USA
- Department of Chemical Engineering, Stanford University, Stanford, California, USA;
| | - Dillon P Cogan
- Current affiliation: Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Krystal L Brodsky
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Chaitan Khosla
- Sarafan ChEM-H, Stanford University, Stanford, California, USA
- Department of Chemistry, Stanford University, Stanford, California, USA
- Department of Chemical Engineering, Stanford University, Stanford, California, USA;
| |
Collapse
|
3
|
Scat S, Weissman KJ, Chagot B. Insights into docking in megasynthases from the investigation of the toblerol trans-AT polyketide synthase: many α-helical means to an end. RSC Chem Biol 2024; 5:669-683. [PMID: 38966669 PMCID: PMC11221535 DOI: 10.1039/d4cb00075g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
The fidelity of biosynthesis by modular polyketide synthases (PKSs) depends on specific moderate affinity interactions between successive polypeptide subunits mediated by docking domains (DDs). These sequence elements are notably portable, allowing their transplantation into alternative biosynthetic and metabolic contexts. Herein, we use integrative structural biology to characterize a pair of DDs from the toblerol trans-AT PKS. Both are intrinsically disordered regions (IDRs) that fold into a 3 α-helix docking complex of unprecedented topology. The C-terminal docking domain (CDD) resembles the 4 α-helix type (4HB) CDDs, which shows that the same type of DD can be redeployed to form complexes of distinct geometry. By carefully re-examining known DD structures, we further extend this observation to type 2 docking domains, establishing previously unsuspected structural relations between DD types. Taken together, these data illustrate the plasticity of α-helical DDs, which allow the formation of a diverse topological spectrum of docked complexes. The newly identified DDs should also find utility in modular PKS genetic engineering.
Collapse
Affiliation(s)
- Serge Scat
- Université de Lorraine, CNRS, IMoPA F-54000 Nancy France
| | | | | |
Collapse
|
4
|
Dell M, Tran MA, Capper MJ, Sundaram S, Fiedler J, Koehnke J, Hellmich UA, Hertweck C. Trapping of a Polyketide Synthase Module after C-C Bond Formation Reveals Transient Acyl Carrier Domain Interactions. Angew Chem Int Ed Engl 2024; 63:e202315850. [PMID: 38134222 DOI: 10.1002/anie.202315850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/24/2023]
Abstract
Modular polyketide synthases (PKSs) are giant assembly lines that produce an impressive range of biologically active compounds. However, our understanding of the structural dynamics of these megasynthases, specifically the delivery of acyl carrier protein (ACP)-bound building blocks to the catalytic site of the ketosynthase (KS) domain, remains severely limited. Using a multipronged structural approach, we report details of the inter-domain interactions after C-C bond formation in a chain-branching module of the rhizoxin PKS. Mechanism-based crosslinking of an engineered module was achieved using a synthetic substrate surrogate that serves as a Michael acceptor. The crosslinked protein allowed us to identify an asymmetric state of the dimeric protein complex upon C-C bond formation by cryo-electron microscopy (cryo-EM). The possible existence of two ACP binding sites, one of them a potential "parking position" for substrate loading, was also indicated by AlphaFold2 predictions. NMR spectroscopy showed that a transient complex is formed in solution, independent of the linker domains, and photochemical crosslinking/mass spectrometry of the standalone domains allowed us to pinpoint the interdomain interaction sites. The structural insights into a branching PKS module arrested after C-C bond formation allows a better understanding of domain dynamics and provides valuable information for the rational design of modular assembly lines.
Collapse
Affiliation(s)
- Maria Dell
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745, Jena, Germany
| | - Mai Anh Tran
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Michael J Capper
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Srividhya Sundaram
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745, Jena, Germany
| | - Jonas Fiedler
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745, Jena, Germany
| | - Jesko Koehnke
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
- Institute of Food Chemistry, Leibniz University Hannover, 30167, Hannover, Germany
| | - Ute A Hellmich
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, 60438, Frankfurt am Main, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
5
|
Wang Q, Liu N, Deng Y, Guan Y, Xiao H, Nitka TA, Yang H, Yadav A, Vukovic L, Mathews II, Chen X, Kim CY. Triepoxide formation by a flavin-dependent monooxygenase in monensin biosynthesis. Nat Commun 2023; 14:6273. [PMID: 37805629 PMCID: PMC10560226 DOI: 10.1038/s41467-023-41889-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 09/18/2023] [Indexed: 10/09/2023] Open
Abstract
Monensin A is a prototypical natural polyether polyketide antibiotic. It acts by binding a metal cation and facilitating its transport across the cell membrane. Biosynthesis of monensin A involves construction of a polyene polyketide backbone, subsequent epoxidation of the alkenes, and, lastly, formation of cyclic ethers via epoxide-opening cyclization. MonCI, a flavin-dependent monooxygenase, is thought to transform all three alkenes in the intermediate polyketide premonensin A into epoxides. Our crystallographic study has revealed that MonCI's exquisite stereocontrol is due to the preorganization of the active site residues which allows only one specific face of the alkene to approach the reactive C(4a)-hydroperoxyflavin moiety. Furthermore, MonCI has an unusually large substrate-binding cavity that can accommodate premonensin A in an extended or folded conformation which allows any of the three alkenes to be placed next to C(4a)-hydroperoxyflavin. MonCI, with its ability to perform multiple epoxidations on the same substrate in a stereospecific manner, demonstrates the extraordinary versatility of the flavin-dependent monooxygenase family of enzymes.
Collapse
Affiliation(s)
- Qian Wang
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Ning Liu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China
| | - Yaming Deng
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China
| | - Yuze Guan
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China
| | - Hongli Xiao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China
| | - Tara A Nitka
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Hui Yang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China
| | - Anju Yadav
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Lela Vukovic
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 95124, USA
| | - Xi Chen
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China.
| | - Chu-Young Kim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
6
|
Guzman KM, Cogan DP, Brodsky KL, Soohoo AM, Li X, Sevillano N, Mathews II, Nguyen KP, Craik CS, Khosla C. Discovery and Characterization of Antibody Probes of Module 2 of the 6-Deoxyerythronolide B Synthase. Biochemistry 2023. [PMID: 37184546 DOI: 10.1021/acs.biochem.3c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Fragment antigen-binding domains of antibodies (Fabs) are powerful probes of structure-function relationships of assembly line polyketide synthases (PKSs). We report the discovery and characterization of Fabs interrogating the structure and function of the ketosynthase-acyltransferase (KS-AT) core of Module 2 of the 6-deoxyerythronolide B synthase (DEBS). Two Fabs (AC2 and BB1) were identified to potently inhibit the catalytic activity of Module 2. Both AC2 and BB1 were found to modulate ACP-mediated reactions catalyzed by this module, albeit by distinct mechanisms. AC2 primarily affects the rate (kcat), whereas BB1 increases the KM of an ACP-mediated reaction. A third Fab, AA5, binds to the KS-AT fragment of DEBS Module 2 without altering either parameter; it is phenotypically reminiscent of a previously characterized Fab, 1B2, shown to principally recognize the N-terminal helical docking domain of DEBS Module 3. Crystal structures of AA5 and 1B2 bound to the KS-AT fragment of Module 2 were solved to 2.70 and 2.65 Å resolution, respectively, and revealed entirely distinct recognition features of the two antibodies. The new tools and insights reported here pave the way toward advancing our understanding of the structure-function relationships of DEBS Module 2, arguably the most well-studied module of an assembly line PKS.
Collapse
Affiliation(s)
- Katarina M Guzman
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Dillon P Cogan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Krystal L Brodsky
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Alexander M Soohoo
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xiuyuan Li
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Natalia Sevillano
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Khanh P Nguyen
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
| | - Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan ChEM-H, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
7
|
Bonhomme S, Contreras-Martel C, Dessen A, Macheboeuf P. Architecture of a PKS-NRPS hybrid megaenzyme involved in the biosynthesis of the genotoxin colibactin. Structure 2023:S0969-2126(23)00095-3. [PMID: 37059096 DOI: 10.1016/j.str.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/21/2022] [Accepted: 03/20/2023] [Indexed: 04/16/2023]
Abstract
The genotoxin colibactin produced by Escherichia coli is involved in the development of colorectal cancers. This secondary metabolite is synthesized by a multi-protein machinery, mainly composed of non-ribosomal peptide synthetase (NRPS)/polyketide synthase (PKS) enzymes. In order to decipher the function of a PKS-NRPS hybrid enzyme implicated in a key step of colibactin biosynthesis, we conducted an extensive structural characterization of the ClbK megaenzyme. Here we present the crystal structure of the complete trans-AT PKS module of ClbK showing structural specificities of hybrid enzymes. In addition, we report the SAXS solution structure of the full-length ClbK hybrid that reveals a dimeric organization as well as several catalytic chambers. These results provide a structural framework for the transfer of a colibactin precursor through a PKS-NRPS hybrid enzyme and can pave the way for re-engineering PKS-NRPS hybrid megaenzymes to generate diverse metabolites with many applications.
Collapse
Affiliation(s)
- Sarah Bonhomme
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, 38000 Grenoble, France
| | - Carlos Contreras-Martel
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, 38000 Grenoble, France
| | - Andréa Dessen
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, 38000 Grenoble, France
| | - Pauline Macheboeuf
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, 38000 Grenoble, France.
| |
Collapse
|
8
|
Decrypting the programming of β-methylation in virginiamycin M biosynthesis. Nat Commun 2023; 14:1327. [PMID: 36899003 PMCID: PMC10006238 DOI: 10.1038/s41467-023-36974-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
During biosynthesis by multi-modular trans-AT polyketide synthases, polyketide structural space can be expanded by conversion of initially-formed electrophilic β-ketones into β-alkyl groups. These multi-step transformations are catalysed by 3-hydroxy-3-methylgluratryl synthase cassettes of enzymes. While mechanistic aspects of these reactions have been delineated, little information is available concerning how the cassettes select the specific polyketide intermediate(s) to target. Here we use integrative structural biology to identify the basis for substrate choice in module 5 of the virginiamycin M trans-AT polyketide synthase. Additionally, we show in vitro that module 7, at minimum, is a potential additional site for β-methylation. Indeed, analysis by HPLC-MS coupled with isotopic labelling and pathway inactivation identifies a metabolite bearing a second β-methyl at the expected position. Collectively, our results demonstrate that several control mechanisms acting in concert underpin β-branching programming. Furthermore, variations in this control - whether natural or by design - open up avenues for diversifying polyketide structures towards high-value derivatives.
Collapse
|
9
|
Feng Y, Zhang F, Huang S, Deng Z, Bai L, Zheng J. Structural visualization of transient interactions between the cis-acting acyltransferase and acyl carrier protein of the salinomycin modular polyketide synthase. ACTA CRYSTALLOGRAPHICA SECTION D STRUCTURAL BIOLOGY 2022; 78:779-791. [DOI: 10.1107/s2059798322004612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
Transient protein–protein interactions between cis-acting acyltransferase (AT) and acyl carrier protein (ACP) domains are critical for the catalysis and processivity of modular polyketide synthases (mPKSs), but are challenging for structural characterization due to the intrinsically weak binding affinity. Here, a stable complex of cis-acting AT and ACP domains from the ninth module of the salinomycin mPKS was obtained using a maleimide cross-linker and the structure of the complex was determined at 2.6 Å resolution. The crystal structure shows that the AT in combination with the ketosynthase (KS)-to-AT linker forms a C-shaped architecture to embrace the ACP. The large hydrolase subdomain of the AT serves as a major binding platform for the ACP, while the small ferredoxin-like subdomain of the AT and the KS-to-AT linker cooperate with each other to constrain binding of the ACP. The importance of interface residues in cis-acting AT–ACP interactions was confirmed by mutagenesis assays. The interaction mode observed in the cis-acting AT–ACP complex is completely different from those observed in trans-acting AT–ACP complexes, where the ACP primarily contacts the small domain of the AT. The complex structure provides detailed mechanistic insights into AT–ACP recognition in cis-AT mPKSs.
Collapse
|
10
|
Klaus M, Rossini E, Linden A, Paithankar KS, Zeug M, Ignatova Z, Urlaub H, Khosla C, Köfinger J, Hummer G, Grininger M. Solution Structure and Conformational Flexibility of a Polyketide Synthase Module. JACS AU 2021; 1:2162-2171. [PMID: 34977887 PMCID: PMC8717363 DOI: 10.1021/jacsau.1c00043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 05/28/2023]
Abstract
Polyketide synthases (PKSs) are versatile C-C bond-forming enzymes that are broadly distributed in bacteria and fungi. The polyketide compound family includes many clinically useful drugs such as the antibiotic erythromycin, the antineoplastic epothilone, and the cholesterol-lowering lovastatin. Harnessing PKSs for custom compound synthesis remains an open challenge, largely because of the lack of knowledge about key structural properties. Particularly, the domains-well characterized on their own-are poorly understood in their arrangement, conformational dynamics, and interplay in the intricate quaternary structure of modular PKSs. Here, we characterize module 2 from the 6-deoxyerythronolide B synthase by small-angle X-ray scattering and cross-linking mass spectrometry with coarse-grained structural modeling. The results of this hybrid approach shed light on the solution structure of a cis-AT type PKS module as well as its inherent conformational dynamics. Supported by a directed evolution approach, we also find that acyl carrier protein (ACP)-mediated substrate shuttling appears to be steered by a nonspecific electrostatic interaction network.
Collapse
Affiliation(s)
- Maja Klaus
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue Strasse 15, Frankfurt am Main 60438, Germany
| | - Emanuele Rossini
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, Frankfurt am Main 60438, Germany
| | - Andreas Linden
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany
- Institute for Clinical Chemistry, University Medical Center Göttingen, Robert Koch Strasse 40, Goettingen 37075, Germany
| | - Karthik S Paithankar
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue Strasse 15, Frankfurt am Main 60438, Germany
| | - Matthias Zeug
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue Strasse 15, Frankfurt am Main 60438, Germany
| | - Zoya Ignatova
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Notkestrasse 85, Hamburg 22607, Germany
| | - Henning Urlaub
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany
- Institute for Clinical Chemistry, University Medical Center Göttingen, Robert Koch Strasse 40, Goettingen 37075, Germany
| | - Chaitan Khosla
- Department of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford University, Stanford, California 94305, United States
| | - Jürgen Köfinger
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, Frankfurt am Main 60438, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, Frankfurt am Main 60438, Germany
- Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue Strasse 1, Frankfurt am Main 60438, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue Strasse 15, Frankfurt am Main 60438, Germany
| |
Collapse
|
11
|
Bagde SR, Mathews II, Fromme JC, Kim CY. Modular polyketide synthase contains two reaction chambers that operate asynchronously. Science 2021; 374:723-729. [PMID: 34735234 DOI: 10.1126/science.abi8532] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Saket R Bagde
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA.,Department of Molecular Biology and Genetics/Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics/Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Chu-Young Kim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA.,Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
12
|
Wang Y, Correa Marrero M, Medema MH, van Dijk ADJ. Coevolution-based prediction of protein-protein interactions in polyketide biosynthetic assembly lines. Bioinformatics 2021; 36:4846-4853. [PMID: 32592463 DOI: 10.1093/bioinformatics/btaa595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 05/20/2020] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Polyketide synthases (PKSs) are enzymes that generate diverse molecules of great pharmaceutical importance, including a range of clinically used antimicrobials and antitumor agents. Many polyketides are synthesized by cis-AT modular PKSs, which are organized in assembly lines, in which multiple enzymes line up in a specific order. This order is defined by specific protein-protein interactions (PPIs). The unique modular structure and catalyzing mechanism of these assembly lines makes their products predictable and also spurred combinatorial biosynthesis studies to produce novel polyketides using synthetic biology. However, predicting the interactions of PKSs, and thereby inferring the order of their assembly line, is still challenging, especially for cases in which this order is not reflected by the ordering of the PKS-encoding genes in the genome. RESULTS Here, we introduce PKSpop, which uses a coevolution-based PPI algorithm to infer protein order in PKS assembly lines. Our method accurately predicts protein orders (93% accuracy). Additionally, we identify new residue pairs that are key in determining interaction specificity, and show that coevolution of N- and C-terminal docking domains of PKSs is significantly more predictive for PPIs than coevolution between ketosynthase and acyl carrier protein domains. AVAILABILITY AND IMPLEMENTATION The code is available on http://www.bif.wur.nl/ (under 'Software'). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | | | - Aalt D J van Dijk
- Bioinformatics Group.,Department of Plant Sciences Biometris, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
13
|
Sulpizio A, Crawford CEW, Koweek RS, Charkoudian LK. Probing the structure and function of acyl carrier proteins to unlock the strategic redesign of type II polyketide biosynthetic pathways. J Biol Chem 2021; 296:100328. [PMID: 33493513 PMCID: PMC7949117 DOI: 10.1016/j.jbc.2021.100328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 02/04/2023] Open
Abstract
Type II polyketide synthases (PKSs) are protein assemblies, encoded by biosynthetic gene clusters in microorganisms, that manufacture structurally complex and pharmacologically relevant molecules. Acyl carrier proteins (ACPs) play a central role in biosynthesis by shuttling malonyl-based building blocks and polyketide intermediates to catalytic partners for chemical transformations. Because ACPs serve as central hubs in type II PKSs, they can also represent roadblocks to successfully engineering synthases capable of manufacturing 'unnatural natural products.' Therefore, understanding ACP conformational dynamics and protein interactions is essential to enable the strategic redesign of type II PKSs. However, the inherent flexibility and transience of ACP interactions pose challenges to gaining insight into ACP structure and function. In this review, we summarize how the application of chemical probes and molecular dynamic simulations has increased our understanding of the structure and function of type II PKS ACPs. We also share how integrating these advances in type II PKS ACP research with newfound access to key enzyme partners, such as the ketosynthase-chain length factor, sets the stage to unlock new biosynthetic potential.
Collapse
Affiliation(s)
- Ariana Sulpizio
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, USA
| | | | - Rebecca S Koweek
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, USA
| | | |
Collapse
|
14
|
Thongkawphueak T, Winter AJ, Williams C, Maple HJ, Soontaranon S, Kaewhan C, Campopiano DJ, Crump MP, Wattana-Amorn P. Solution Structure and Conformational Dynamics of a Doublet Acyl Carrier Protein from Prodigiosin Biosynthesis. Biochemistry 2021; 60:219-230. [PMID: 33416314 DOI: 10.1021/acs.biochem.0c00830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The acyl carrier protein (ACP) is an indispensable component of both fatty acid and polyketide synthases and is primarily responsible for delivering acyl intermediates to enzymatic partners. At present, increasing numbers of multidomain ACPs have been discovered with roles in molecular recognition of trans-acting enzymatic partners as well as increasing metabolic flux. Further structural information is required to provide insight into their function, yet to date, the only high-resolution structure of this class to be determined is that of the doublet ACP (two continuous ACP domains) from mupirocin synthase. Here we report the solution nuclear magnetic resonance (NMR) structure of the doublet ACP domains from PigH (PigH ACP1-ACP2), which is an enzyme that catalyzes the formation of the bipyrrolic intermediate of prodigiosin, a potent anticancer compound with a variety of biological activities. The PigH ACP1-ACP2 structure shows each ACP domain consists of three conserved helices connected by a linker that is partially restricted by interactions with the ACP1 domain. Analysis of the holo (4'-phosphopantetheine, 4'-PP) form of PigH ACP1-ACP2 by NMR revealed conformational exchange found predominantly in the ACP2 domain reflecting the inherent plasticity of this ACP. Furthermore, ensemble models obtained from SAXS data reveal two distinct conformers, bent and extended, of both apo (unmodified) and holo PigH ACP1-ACP2 mediated by the central linker. The bent conformer appears to be a result of linker-ACP1 interactions detected by NMR and might be important for intradomain communication during the biosynthesis. These results provide new insights into the behavior of the interdomain linker of multiple ACP domains that may modulate protein-protein interactions. This is likely to become an increasingly important consideration for metabolic engineering in prodigiosin and other related biosynthetic pathways.
Collapse
Affiliation(s)
- Thitapa Thongkawphueak
- Department of Chemistry, Special Research Unit for Advanced Magnetic Resonance and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Ashley J Winter
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Christopher Williams
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K.,BrisSynBio, Centre for Synthetic Biology Research, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol BS8 1TQ, U.K
| | - Hannah J Maple
- School of Social and Community Medicine, University of Bristol, Oakfield House, Bristol BS8 2BN, U.K
| | - Siriwat Soontaranon
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
| | - Chonthicha Kaewhan
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
| | - Dominic J Campopiano
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Matthew P Crump
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K.,BrisSynBio, Centre for Synthetic Biology Research, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol BS8 1TQ, U.K
| | - Pakorn Wattana-Amorn
- Department of Chemistry, Special Research Unit for Advanced Magnetic Resonance and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
15
|
Risser F, Collin S, Dos Santos-Morais R, Gruez A, Chagot B, Weissman KJ. Towards improved understanding of intersubunit interactions in modular polyketide biosynthesis: Docking in the enacyloxin IIa polyketide synthase. J Struct Biol 2020; 212:107581. [DOI: 10.1016/j.jsb.2020.107581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022]
|
16
|
Drufva EE, Hix EG, Bailey CB. Site directed mutagenesis as a precision tool to enable synthetic biology with engineered modular polyketide synthases. Synth Syst Biotechnol 2020; 5:62-80. [PMID: 32637664 PMCID: PMC7327777 DOI: 10.1016/j.synbio.2020.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/04/2022] Open
Abstract
Modular polyketide synthases (PKSs) are a multidomain megasynthase class of biosynthetic enzymes that have great promise for the development of new compounds, from new pharmaceuticals to high value commodity and specialty chemicals. Their colinear biosynthetic logic has been viewed as a promising platform for synthetic biology for decades. Due to this colinearity, domain swapping has long been used as a strategy to introduce molecular diversity. However, domain swapping often fails because it perturbs critical protein-protein interactions within the PKS. With our increased level of structural elucidation of PKSs, using judicious targeted mutations of individual residues is a more precise way to introduce molecular diversity with less potential for global disruption of the protein architecture. Here we review examples of targeted point mutagenesis to one or a few residues harbored within the PKS that alter domain specificity or selectivity, affect protein stability and interdomain communication, and promote more complex catalytic reactivity.
Collapse
Key Words
- ACP, acyl carrier protein
- AT, acyltransferase
- DEBS, 6-deoxyerthronolide B synthase
- DH, dehydratase
- EI, enoylisomerase
- ER, enoylreductase
- KR, ketoreductase
- KS, ketosynthase
- LM, loading module
- MT, methyltransferase
- Mod, module
- PKS, polyketide synthase
- PS, pyran synthase
- Polyketide synthase
- Protein engineering
- Rational design
- SNAC, N-acetyl cysteamine
- Saturation mutagenesis
- Site directed mutagenesis
- Synthetic biology
Collapse
Affiliation(s)
- Erin E. Drufva
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| | - Elijah G. Hix
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| | - Constance B. Bailey
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| |
Collapse
|
17
|
Chen H, Bian Z, Ravichandran V, Li R, Sun Y, Huo L, Fu J, Bian X, Xia L, Tu Q, Zhang Y. Biosynthesis of polyketides by trans-AT polyketide synthases in Burkholderiales. Crit Rev Microbiol 2019; 45:162-181. [PMID: 31218924 DOI: 10.1080/1040841x.2018.1514365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Widely used as drugs and agrochemicals, polyketides are a family of bioactive natural products, with diverse structures and functions. Polyketides are produced by megaenzymes termed as polyketide synthases (PKSs). PKS biosynthetic pathways are divided into the cis-AT PKSs and trans-AT PKSs; a division based mainly on the absence of an acyltransferase (AT) domain in the trans-AT PKS modules. In trans-AT biosynthesis, the AT activity is contributed via one or several independent proteins, and there are few other characteristics that distinguish trans-AT PKSs from cis-AT PKSs, especially in the formation of the β-branch. The trans-AT PKSs constitute a major PKS pathway, and many are found in Burkholderia species, which are prevalent in the environment and prolific sources of polyketides. This review summarizes studies from 1973 to 2017 on the biosynthesis of natural products by trans-AT PKSs from Burkholderia species.
Collapse
Affiliation(s)
- Hanna Chen
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China.,b State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science , Hunan Normal University , Changsha , People's Republic of China
| | - Zhilong Bian
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Vinothkannan Ravichandran
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Ruijuan Li
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Yi Sun
- c Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences , Beijing , People's Republic of China
| | - Liujie Huo
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Jun Fu
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Xiaoying Bian
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Liqiu Xia
- b State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science , Hunan Normal University , Changsha , People's Republic of China
| | - Qiang Tu
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Youming Zhang
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China.,b State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science , Hunan Normal University , Changsha , People's Republic of China
| |
Collapse
|
18
|
Moretto L, Heylen R, Holroyd N, Vance S, Broadhurst RW. Modular type I polyketide synthase acyl carrier protein domains share a common N-terminally extended fold. Sci Rep 2019; 9:2325. [PMID: 30787330 PMCID: PMC6382882 DOI: 10.1038/s41598-019-38747-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/15/2018] [Indexed: 11/09/2022] Open
Abstract
Acyl carrier protein (ACP) domains act as interaction hubs within modular polyketide synthase (PKS) systems, employing specific protein-protein interactions to present acyl substrates to a series of enzyme active sites. Many domains from the multimodular PKS that generates the toxin mycolactone display an unusually high degree of sequence similarity, implying that the few sites which vary may do so for functional reasons. When domain boundaries based on prior studies were used to prepare two isolated ACP segments from this system for studies of their interaction properties, one fragment adopted the expected tertiary structure, but the other failed to fold, despite sharing a sequence identity of 49%. Secondary structure prediction uncovered a previously undetected helical region (H0) that precedes the canonical helix-bundle ACP topology in both cases. This article reports the NMR solution structures of two N-terminally extended mycolactone mACP constructs, mH0ACPa and mH0ACPb, both of which possess an additional α-helix that behaves like a rigid component of the domain. The interactions of these species with a phosphopantetheinyl transferase and a ketoreductase domain are unaffected by the presence of H0, but a shorter construct that lacks the H0 region is shown to be substantially less thermostable than mH0ACPb. Bioinformatics analysis suggests that the extended H0-ACP motif is present in 98% of type I cis-acyltransferase PKS chain-extension modules. The polypeptide linker that connects an H0-ACP motif to the preceding domain must therefore be ~12 residues shorter than previously thought, imposing strict limits on ACP-mediated substrate delivery within and between PKS modules.
Collapse
Affiliation(s)
- Luisa Moretto
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Smålandsgatan-24, 392 34, Kalmar, Sweden
| | - Rachel Heylen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Natalie Holroyd
- Department of Medical Physics and Bioengineering, University College London, London, WC1E 6BT, UK
| | - Steven Vance
- Crescendo Biologics Ltd, Meditrina Building 260, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - R William Broadhurst
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| |
Collapse
|
19
|
Rittner A, Paithankar KS, Drexler DJ, Himmler A, Grininger M. Probing the modularity of megasynthases by rational engineering of a fatty acid synthase Type I. Protein Sci 2018; 28:414-428. [PMID: 30394635 DOI: 10.1002/pro.3550] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/25/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022]
Abstract
Modularity is a fundamental property of megasynthases such as polyketide synthases (PKSs). In this study, we exploit the close resemblance between PKSs and animal fatty acid synthase (FAS) to re-engineer animal FAS to probe the modularity of the FAS/PKS family. Guided by sequence and structural information, we truncate and dissect animal FAS into its components, and reassemble them to generate new PKS-like modules as well as bimodular constructs. The novel re-engineered modules resemble all four common types of PKSs and demonstrate that this approach can be a powerful tool to deliver products with higher catalytic efficiency. Our data exemplify the inherent plasticity and robustness of the overall FAS/PKS fold, and open new avenues to explore FAS-based biosynthetic pathways for custom compound design.
Collapse
Affiliation(s)
- Alexander Rittner
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main, D-60438, Germany
| | - Karthik S Paithankar
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main, D-60438, Germany
| | - David Jan Drexler
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main, D-60438, Germany
| | - Aaron Himmler
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main, D-60438, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main, D-60438, Germany
| |
Collapse
|
20
|
Wang Z, Bagde SR, Zavala G, Matsui T, Chen X, Kim CY. De Novo Design and Implementation of a Tandem Acyl Carrier Protein Domain in a Type I Modular Polyketide Synthase. ACS Chem Biol 2018; 13:3072-3077. [PMID: 30354045 DOI: 10.1021/acschembio.8b00896] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During polyketide and fatty acid biosynthesis, the growing acyl chain is attached to the acyl carrier protein via a thioester linkage. The acyl carrier protein interacts with other enzymes that perform chain elongation and chain modification on the bound acyl chain. Most type I polyketide synthases and fatty acid synthases contain only one acyl carrier protein. However, polyunsaturated fatty acid synthases from deep-sea bacteria contain anywhere from two to nine acyl carrier proteins. Recent studies have shown that this tandem acyl carrier protein feature is responsible for the unusually high fatty acid production rate of deep-sea bacteria. To investigate if a similar strategy can be used to increase the production rate of type I polyketide synthases, a 3×ACP domain was rationally designed and genetically installed in module 6 of 6-deoxyerythronolide B synthase, which is a prototypical type I modular polyketide synthase that naturally harbors just one acyl carrier protein. This modification resulted in an ∼2.5-fold increase in the total amount of polyketide produced in vitro, demonstrating that installing a tandem acyl carrier domain in a type I polyketide synthase is an effective strategy for enhancing the rate of polyketide natural product biosynthesis.
Collapse
Affiliation(s)
- Zilong Wang
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Centre for Life Sciences, National University of Singapore, 119077 Singapore
| | - Saket R. Bagde
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Gerardo Zavala
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, 14 2575 Sand Hill Road, MS69, Menlo Park, California 94025, United States
| | - Xi Chen
- College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Xi’an 710127, People’s Republic of China
| | - Chu-Young Kim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
- Border Biomedical Research Center, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| |
Collapse
|
21
|
Sabatini M, Comba S, Altabe S, Recio-Balsells AI, Labadie GR, Takano E, Gramajo H, Arabolaza A. Biochemical characterization of the minimal domains of an iterative eukaryotic polyketide synthase. FEBS J 2018; 285:4494-4511. [PMID: 30300504 PMCID: PMC6334511 DOI: 10.1111/febs.14675] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/03/2018] [Accepted: 09/25/2018] [Indexed: 01/19/2023]
Abstract
Iterative type I polyketide synthases (PKS) are megaenzymes essential to the biosynthesis of an enormously diverse array of bioactive natural products. Each PKS contains minimally three functional domains, β-ketosynthase (KS), acyltransferase (AT), and acyl carrier protein (ACP), and a subset of reducing domains such as ketoreductase (KR), dehydratase (DH), and enoylreductase (ER). The substrate selection, condensation reactions, and β-keto processing of the polyketide growing chain are highly controlled in a programmed manner. However, the structural features and mechanistic rules that orchestrate the iterative cycles, processing domains functionality, and chain termination in this kind of megaenzymes are often poorly understood. Here, we present a biochemical and functional characterization of the KS and the AT domains of a PKS from the mallard duck Anas platyrhynchos (ApPKS). ApPKS belongs to an animal PKS family phylogenetically more related to bacterial PKS than to metazoan fatty acid synthases. Through the dissection of the ApPKS enzyme into mono- to didomain fragments and its reconstitution in vitro, we determined its substrate specificity toward different starters and extender units. ApPKS AT domain can effectively transfer acetyl-CoA and malonyl-CoA to the ApPKS ACP stand-alone domain. Furthermore, the KS and KR domains, in the presence of Escherichia coli ACP, acetyl-CoA, and malonyl-CoA, showed the ability to catalyze the chain elongation and the β-keto reduction steps necessary to yield a 3-hydroxybutyryl-ACP derivate. These results provide new insights into the catalytic efficiency and specificity of this uncharacterized family of PKSs.
Collapse
Affiliation(s)
- Martin Sabatini
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Argentina
| | - Santiago Comba
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Argentina
| | - Silvia Altabe
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Argentina
| | - Alejandro I Recio-Balsells
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Química de Rosario (IQUIR-CONICET), Universidad Nacional de Rosario, Argentina
| | - Guillermo R Labadie
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Química de Rosario (IQUIR-CONICET), Universidad Nacional de Rosario, Argentina
| | - Eriko Takano
- Manchester Centre of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology (MIB), University of Manchester, UK
| | - Hugo Gramajo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Argentina
| | - Ana Arabolaza
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Argentina
| |
Collapse
|
22
|
Dodge GJ, Maloney FP, Smith JL. Protein-protein interactions in "cis-AT" polyketide synthases. Nat Prod Rep 2018; 35:1082-1096. [PMID: 30188553 PMCID: PMC6207950 DOI: 10.1039/c8np00058a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to the end of 2018 Polyketides are a valuable source of bioactive and clinically important molecules. The biosynthesis of these chemically complex molecules has led to the discovery of equally complex polyketide synthase (PKS) pathways. Crystallography has yielded snapshots of individual catalytic domains, di-domains, and multi-domains from a variety of PKS megasynthases, and cryo-EM studies have provided initial views of a PKS module in a series of defined biochemical states. Here, we review the structural and biochemical results that shed light on the protein-protein interactions critical to catalysis by PKS systems with an embedded acyltransferase. Interactions include those that occur both within and between PKS modules, as well as with accessory enzymes.
Collapse
Affiliation(s)
- Greg J Dodge
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA 48109.
| | | | | |
Collapse
|
23
|
Miyanaga A, Ouchi R, Ishikawa F, Goto E, Tanabe G, Kudo F, Eguchi T. Structural Basis of Protein–Protein Interactions between a trans-Acting Acyltransferase and Acyl Carrier Protein in Polyketide Disorazole Biosynthesis. J Am Chem Soc 2018; 140:7970-7978. [DOI: 10.1021/jacs.8b04162] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Risako Ouchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Fumihiro Ishikawa
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Ena Goto
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Genzoh Tanabe
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
24
|
Abstract
X-ray scattering is uniquely suited to the study of disordered systems and thus has the potential to provide insight into dynamic processes where diffraction methods fail. In particular, while X-ray crystallography has been a staple of structural biology for more than half a century and will continue to remain so, a major limitation of this technique has been the lack of dynamic information. Solution X-ray scattering has become an invaluable tool in structural and mechanistic studies of biological macromolecules where large conformational changes are involved. Such systems include allosteric enzymes that play key roles in directing metabolic fluxes of biochemical pathways, as well as large, assembly-line type enzymes that synthesize secondary metabolites with pharmaceutical applications. Furthermore, crystallography has the potential to provide information on protein dynamics via the diffuse scattering patterns that are overlaid with Bragg diffraction. Historically, these patterns have been very difficult to interpret, but recent advances in X-ray detection have led to a renewed interest in diffuse scattering analysis as a way to probe correlated motions. Here, we will review X-ray scattering theory and highlight recent advances in scattering-based investigations of protein solutions and crystals, with a particular focus on complex enzymes.
Collapse
Affiliation(s)
- Steve P Meisburger
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - William C Thomas
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Maxwell B Watkins
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Nozomi Ando
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|
25
|
Robbins T, Liu YC, Cane DE, Khosla C. Structure and mechanism of assembly line polyketide synthases. Curr Opin Struct Biol 2016; 41:10-18. [PMID: 27266330 PMCID: PMC5136517 DOI: 10.1016/j.sbi.2016.05.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 11/16/2022]
Abstract
Assembly line polyketide synthases (PKSs) are remarkable biosynthetic machines with considerable potential for structure-based engineering. Several types of protein-protein interactions, both within and between PKS modules, play important roles in the catalytic cycle of a multimodular PKS. Additionally, vectorial biosynthesis is enabled by the energetic coupling of polyketide chain elongation to the channeling of intermediates between successive modules. A combination of high-resolution analysis of smaller PKS components and lower resolution characterization of intact modules and bimodules has yielded insights into the structure and organization of a prototypical assembly line PKS. This review discusses our understanding of key structure-function relationships in this family of megasynthases, along with a recap of key unanswered questions in the field.
Collapse
Affiliation(s)
- Thomas Robbins
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States
| | - Yu-Chen Liu
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States
| | - David E Cane
- Department of Chemistry, Brown University, Providence, RI 02912-9108, United States
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
26
|
Maloney FP, Gerwick L, Gerwick WH, Sherman DH, Smith JL. Anatomy of the β-branching enzyme of polyketide biosynthesis and its interaction with an acyl-ACP substrate. Proc Natl Acad Sci U S A 2016; 113:10316-21. [PMID: 27573844 PMCID: PMC5027445 DOI: 10.1073/pnas.1607210113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alkyl branching at the β position of a polyketide intermediate is an important variation on canonical polyketide natural product biosynthesis. The branching enzyme, 3-hydroxy-3-methylglutaryl synthase (HMGS), catalyzes the aldol addition of an acyl donor to a β-keto-polyketide intermediate acceptor. HMGS is highly selective for two specialized acyl carrier proteins (ACPs) that deliver the donor and acceptor substrates. The HMGS from the curacin A biosynthetic pathway (CurD) was examined to establish the basis for ACP selectivity. The donor ACP (CurB) had high affinity for the enzyme (Kd = 0.5 μM) and could not be substituted by the acceptor ACP. High-resolution crystal structures of HMGS alone and in complex with its donor ACP reveal a tight interaction that depends on exquisite surface shape and charge complementarity between the proteins. Selectivity is explained by HMGS binding to an unusual surface cleft on the donor ACP, in a manner that would exclude the acceptor ACP. Within the active site, HMGS discriminates between pre- and postreaction states of the donor ACP. The free phosphopantetheine (Ppant) cofactor of ACP occupies a conserved pocket that excludes the acetyl-Ppant substrate. In comparison with HMG-CoA (CoA) synthase, the homologous enzyme from primary metabolism, HMGS has several differences at the active site entrance, including a flexible-loop insertion, which may account for the specificity of one enzyme for substrates delivered by ACP and the other by CoA.
Collapse
Affiliation(s)
- Finn P Maloney
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109; Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, MI 48109
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109
| | - Janet L Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
27
|
Sticky swinging arm dynamics: studies of an acyl carrier protein domain from the mycolactone polyketide synthase. Biochem J 2016; 473:1097-110. [PMID: 26920023 PMCID: PMC4847154 DOI: 10.1042/bcj20160041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/18/2016] [Indexed: 11/17/2022]
Abstract
When covalently linked to an acyl carrier protein (ACP) and loaded with acyl substrate-mimics, some 4′-phosphopantetheine prosthetic group arms swing freely, whereas others stick to the protein surface, suggesting a possible mode of interaction with enzyme domains during polyketide biosynthesis. Type I modular polyketide synthases (PKSs) produce polyketide natural products by passing a growing acyl substrate chain between a series of enzyme domains housed within a gigantic multifunctional polypeptide assembly. Throughout each round of chain extension and modification reactions, the substrate stays covalently linked to an acyl carrier protein (ACP) domain. In the present study we report on the solution structure and dynamics of an ACP domain excised from MLSA2, module 9 of the PKS system that constructs the macrolactone ring of the toxin mycolactone, cause of the tropical disease Buruli ulcer. After modification of apo ACP with 4′-phosphopantetheine (Ppant) to create the holo form, 15N nuclear spin relaxation and paramagnetic relaxation enhancement (PRE) experiments suggest that the prosthetic group swings freely. The minimal chemical shift perturbations displayed by Ppant-attached C3 and C4 acyl chains imply that these substrate-mimics remain exposed to solvent at the end of a flexible Ppant arm. By contrast, hexanoyl and octanoyl chains yield much larger chemical shift perturbations, indicating that they interact with the surface of the domain. The solution structure of octanoyl-ACP shows the Ppant arm bending to allow the acyl chain to nestle into a nonpolar pocket, whereas the prosthetic group itself remains largely solvent exposed. Although the highly reduced octanoyl group is not a natural substrate for the ACP from MLSA2, similar presentation modes would permit partner enzyme domains to recognize an acyl group while it is bound to the surface of its carrier protein, allowing simultaneous interactions with both the substrate and the ACP.
Collapse
|
28
|
Chiu HT, Weng CP, Lin YC, Chen KH. Target-specific identification and characterization of the putative gene cluster for brasilinolide biosynthesis revealing the mechanistic insights and combinatorial synthetic utility of 2-deoxy-l-fucose biosynthetic enzymes. Org Biomol Chem 2016; 14:1988-2006. [DOI: 10.1039/c5ob02292d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
From Nocardia was cloned and functionally characterized a giant gene cluster for biosyntheses of brasilinolides as potent immunosuppressive and anticancer agents.
Collapse
Affiliation(s)
- Hsien-Tai Chiu
- Department of Chemistry
- National Cheng Kung University
- Tainan 701
- Taiwan
| | - Chien-Pao Weng
- Department of Chemistry
- National Cheng Kung University
- Tainan 701
- Taiwan
| | - Yu-Chin Lin
- Department of Chemistry
- National Cheng Kung University
- Tainan 701
- Taiwan
- Department of Biological Science and Technology
| | - Kuan-Hung Chen
- Department of Biological Science and Technology
- National Chiao Tung University
- Hsinchu 300
- Taiwan
| |
Collapse
|
29
|
The structural biology of biosynthetic megaenzymes. Nat Chem Biol 2015; 11:660-70. [PMID: 26284673 DOI: 10.1038/nchembio.1883] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/02/2015] [Indexed: 01/27/2023]
Abstract
The modular polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) are among the largest and most complicated enzymes in nature. In these biosynthetic systems, independently folding protein domains, which are organized into units called 'modules', operate in assembly-line fashion to construct polymeric chains and tailor their functionalities. Products of PKSs and NRPSs include a number of blockbuster medicines, and this has motivated researchers to understand how they operate so that they can be modified by genetic engineering. Beginning in the 1990s, structural biology has provided a number of key insights. The emerging picture is one of remarkable dynamics and conformational programming in which the chemical states of individual catalytic domains are communicated to the others, configuring the modules for the next stage in the biosynthesis. This unexpected level of complexity most likely accounts for the low success rate of empirical genetic engineering experiments and suggests ways forward for productive megaenzyme synthetic biology.
Collapse
|
30
|
Goodrich AC, Harden BJ, Frueh DP. Solution Structure of a Nonribosomal Peptide Synthetase Carrier Protein Loaded with Its Substrate Reveals Transient, Well-Defined Contacts. J Am Chem Soc 2015; 137:12100-9. [PMID: 26334259 DOI: 10.1021/jacs.5b07772] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) are microbial enzymes that produce a wealth of important natural products by condensing substrates in an assembly line manner. The proper sequence of substrates is obtained by tethering them to phosphopantetheinyl arms of holo carrier proteins (CPs) via a thioester bond. CPs in holo and substrate-loaded forms visit NRPS catalytic domains in a series of transient interactions. A lack of structural information on substrate-loaded carrier proteins has hindered our understanding of NRPS synthesis. Here, we present the first structure of an NRPS aryl carrier protein loaded with its substrate via a native thioester bond, together with the structure of its holo form. We also present the first quantification of NRPS CP backbone dynamics. Our results indicate that prosthetic moieties in both holo and loaded forms are in contact with the protein core, but they also sample states in which they are disordered and extend in solution. We observe that substrate loading induces a large conformational change in the phosphopantetheinyl arm, thereby modulating surfaces accessible for binding to other domains. Our results are discussed in the context of NRPS domain interactions.
Collapse
Affiliation(s)
- Andrew C Goodrich
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine , Hunterian 701, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Bradley J Harden
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine , Hunterian 701, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Dominique P Frueh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine , Hunterian 701, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
31
|
Winter JM, Cascio D, Dietrich D, Sato M, Watanabe K, Sawaya MR, Vederas JC, Tang Y. Biochemical and Structural Basis for Controlling Chemical Modularity in Fungal Polyketide Biosynthesis. J Am Chem Soc 2015; 137:9885-93. [PMID: 26172141 DOI: 10.1021/jacs.5b04520] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Modular collaboration between iterative fungal polyketide synthases (IPKSs) is an important mechanism for generating structural diversity of polyketide natural products. Inter-PKS communication and substrate channeling are controlled in large by the starter unit acyl carrier protein transacylase (SAT) domain found in the accepting IPKS module. Here, we reconstituted the modular biosynthesis of the benzaldehyde core of the chaetoviridin and chaetomugilin azaphilone natural products using the IPKSs CazF and CazM. Our studies revealed a critical role of CazM's SAT domain in selectively transferring a highly reduced triketide product from CazF. In contrast, a more oxidized triketide that is also produced by CazF and required in later stages of biosynthesis of the final product is not recognized by the SAT domain. The structural basis for the acyl unit selectivity was uncovered by the first X-ray structure of a fungal SAT domain, highlighted by a covalent hexanoyl thioester intermediate in the SAT active site. The crystal structure of SAT domain will enable protein engineering efforts aimed at mixing and matching different IPKS modules for the biosynthesis of new compounds.
Collapse
Affiliation(s)
- Jaclyn M Winter
- †Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Duilio Cascio
- §Department of Energy (DOE) Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095, United States
| | - David Dietrich
- ∥Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Michio Sato
- ⊥Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kenji Watanabe
- ⊥Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Michael R Sawaya
- §Department of Energy (DOE) Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095, United States
| | - John C Vederas
- ∥Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Yi Tang
- †Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States.,‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
32
|
Annaval T, Paris C, Leadlay PF, Jacob C, Weissman KJ. Evaluating Ketoreductase Exchanges as a Means of Rationally Altering Polyketide Stereochemistry. Chembiochem 2015; 16:1357-64. [DOI: 10.1002/cbic.201500113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Indexed: 12/22/2022]
|
33
|
Abstract
This review covers a breakthrough in the structural biology of the gigantic modular polyketide synthases (PKS): the structural characterization of intact modules by single-particle cryo-electron microscopy and small-angle X-ray scattering.
Collapse
Affiliation(s)
- Kira J. Weissman
- Molecular and Structural Enzymology Group
- Université de Lorraine
- IMoPA
- UMR 7365
- Vandœuvre-lès-Nancy
| |
Collapse
|
34
|
Johnson MR, Londergan CH, Charkoudian LK. Probing the phosphopantetheine arm conformations of acyl carrier proteins using vibrational spectroscopy. J Am Chem Soc 2014; 136:11240-3. [PMID: 25080832 PMCID: PMC4140477 DOI: 10.1021/ja505442h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Indexed: 12/23/2022]
Abstract
Acyl carrier proteins (ACPs) are universal and highly conserved domains central to both fatty acid and polyketide biosynthesis. These proteins tether reactive acyl intermediates with a swinging 4'-phosphopantetheine (Ppant) arm and interact with a suite of catalytic partners during chain transport and elongation while stabilizing the growing chain throughout the biosynthetic pathway. The flexible nature of the Ppant arm and the transient nature of ACP-enzyme interactions impose a major obstacle to obtaining structural information relevant to understanding polyketide and fatty acid biosynthesis. To overcome this challenge, we installed a thiocyanate vibrational spectroscopic probe on the terminal thiol of the ACP Ppant arm. This site-specific probe successfully reported on the local environment of the Ppant arm of two ACPs previously characterized by solution NMR, and was used to determine the solution exposure of the Ppant arm of an ACP from 6-deoxyerythronolide B synthase (DEBS). Given the sensitivity of the probe's CN stretching band to conformational distributions resolved on the picosecond time scale, this work lays a foundation for observing the dynamic action-related structural changes of ACPs using vibrational spectroscopy.
Collapse
Affiliation(s)
- Matthew
N. R. Johnson
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041-1392, United States
| | - Casey H. Londergan
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041-1392, United States
| | - Louise K. Charkoudian
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041-1392, United States
| |
Collapse
|
35
|
Structural rearrangements of a polyketide synthase module during its catalytic cycle. Nature 2014; 510:560-4. [PMID: 24965656 PMCID: PMC4074775 DOI: 10.1038/nature13409] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 04/28/2014] [Indexed: 12/12/2022]
Abstract
The polyketide synthase (PKS) mega-enzyme assembly line uses a modular architecture to synthesize diverse and bioactive natural products that often constitute the core structures or complete chemical entities for many clinically approved therapeutic agents. The architecture of a full-length PKS module from the pikromycin pathway of Streptomyces venezuelae creates a reaction chamber for the intramodule acyl carrier protein (ACP) domain that carries building blocks and intermediates between acyltransferase, ketosynthase and ketoreductase active sites (see accompanying paper). Here we determine electron cryo-microscopy structures of a full-length pikromycin PKS module in three key biochemical states of its catalytic cycle. Each biochemical state was confirmed by bottom-up liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry. The ACP domain is differentially and precisely positioned after polyketide chain substrate loading on the active site of the ketosynthase, after extension to the β-keto intermediate, and after β-hydroxy product generation. The structures reveal the ACP dynamics for sequential interactions with catalytic domains within the reaction chamber, and for transferring the elongated and processed polyketide substrate to the next module in the PKS pathway. During the enzymatic cycle the ketoreductase domain undergoes dramatic conformational rearrangements that enable optimal positioning for reductive processing of the ACP-bound polyketide chain elongation intermediate. These findings have crucial implications for the design of functional PKS modules, and for the engineering of pathways to generate pharmacologically relevant molecules.
Collapse
|
36
|
Abstract
Polyketide natural products constitute a broad class of compounds with diverse structural features and biological activities. Their biosynthetic machinery, represented by type I polyketide synthases (PKSs), has an architecture in which successive modules catalyse two-carbon linear extensions and keto-group processing reactions on intermediates covalently tethered to carrier domains. Here we used electron cryo-microscopy to determine sub-nanometre-resolution three-dimensional reconstructions of a full-length PKS module from the bacterium Streptomyces venezuelae that revealed an unexpectedly different architecture compared to the homologous dimeric mammalian fatty acid synthase. A single reaction chamber provides access to all catalytic sites for the intramodule carrier domain. In contrast, the carrier from the preceding module uses a separate entrance outside the reaction chamber to deliver the upstream polyketide intermediate for subsequent extension and modification. This study reveals for the first time, to our knowledge, the structural basis for both intramodule and intermodule substrate transfer in polyketide synthases, and establishes a new model for molecular dissection of these multifunctional enzyme systems.
Collapse
|
37
|
Dunn BJ, Watts KR, Robbins T, Cane DE, Khosla C. Comparative analysis of the substrate specificity of trans- versus cis-acyltransferases of assembly line polyketide synthases. Biochemistry 2014; 53:3796-806. [PMID: 24871074 PMCID: PMC4067149 DOI: 10.1021/bi5004316] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Due
to their pivotal role in extender unit selection during polyketide
biosynthesis, acyltransferase (AT) domains are important engineering
targets. A subset of assembly line polyketide synthases (PKSs) are
serviced by discrete, trans-acting ATs. Theoretically,
these trans-ATs can complement an inactivated cis-AT, promoting introduction of a noncognate extender
unit. This approach requires a better understanding of the substrate
specificity and catalytic mechanism of naturally occurring trans-ATs. We kinetically analyzed trans-ATs from the disorazole and kirromycin synthases and compared them
to a representative cis-AT from the 6-deoxyerythronolide
B synthase (DEBS). During transacylation, the disorazole AT favored
malonyl-CoA over methylmalonyl-CoA by >40000-fold, whereas the
kirromycin
AT favored ethylmalonyl-CoA over methylmalonyl-CoA by 20-fold. Conversely,
the disorazole AT had broader specificity than its kirromycin counterpart
for acyl carrier protein (ACP) substrates. The presence of the ACP
had little effect on the specificity (kcat/KM) of the cis-AT domain
for carboxyacyl-CoA substrates but had a marked influence on the corresponding
specificity parameters for the trans-ATs, suggesting
that these enzymes do not act strictly by a canonical ping-pong mechanism.
To investigate the relevance of the kinetic analysis of isolated ATs
in the context of intact PKSs, we complemented an in vitro AT-null DEBS assembly line with either trans-AT.
Whereas the disorazole AT efficiently complemented the mutant PKS
at substoichiometric protein ratios, the kirromycin AT was considerably
less effective. Our findings suggest that knowledge of both carboxyacyl-CoA
and ACP specificity is critical to the choice of a trans-AT in combination with a mutant PKS to generate novel polyketides.
Collapse
Affiliation(s)
- Briana J Dunn
- Department of Chemical Engineering, ‡Department of Chemistry, and ∥Department of Biochemistry, Stanford University , Stanford, California 94305, United States
| | | | | | | | | |
Collapse
|
38
|
Allen CL, Gulick AM. Structural and bioinformatic characterization of an Acinetobacter baumannii type II carrier protein. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1718-25. [PMID: 24914982 PMCID: PMC4051507 DOI: 10.1107/s1399004714008311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/12/2014] [Indexed: 02/02/2023]
Abstract
Microorganisms produce a variety of natural products via secondary metabolic biosynthetic pathways. Two of these types of synthetic systems, the nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), use large modular enzymes containing multiple catalytic domains in a single protein. These multidomain enzymes use an integrated carrier protein domain to transport the growing, covalently bound natural product to the neighboring catalytic domains for each step in the synthesis. Interestingly, some PKS and NRPS clusters contain free-standing domains that interact intermolecularly with other proteins. Being expressed outside the architecture of a multi-domain protein, these so-called type II proteins present challenges to understand the precise role they play. Additional structures of individual and multi-domain components of the NRPS enzymes will therefore provide a better understanding of the features that govern the domain interactions in these interesting enzyme systems. The high-resolution crystal structure of a free-standing carrier protein from Acinetobacter baumannii that belongs to a larger NRPS-containing operon, encoded by the ABBFA_003406-ABBFA_003399 genes of A. baumannii strain AB307-0294, that has been implicated in A. baumannii motility, quorum sensing and biofilm formation, is presented here. Comparison with the closest structural homologs of other carrier proteins identifies the requirements for a conserved glycine residue and additional important sequence and structural requirements within the regions that interact with partner proteins.
Collapse
Affiliation(s)
- C. Leigh Allen
- Hauptman–Woodward Medical Research Institute and Department of Structural Biology, University at Buffalo, Buffalo, NY 14203, USA
| | - Andrew M. Gulick
- Hauptman–Woodward Medical Research Institute and Department of Structural Biology, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
39
|
Edwards AL, Matsui T, Weiss TM, Khosla C. Architectures of whole-module and bimodular proteins from the 6-deoxyerythronolide B synthase. J Mol Biol 2014; 426:2229-45. [PMID: 24704088 PMCID: PMC4284093 DOI: 10.1016/j.jmb.2014.03.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
The 6-deoxyerythronolide B synthase (DEBS) is a prototypical assembly line polyketide synthase produced by the actinomycete Saccharopolyspora erythraea that synthesizes the macrocyclic core of the antibiotic erythromycin 6-deoxyerythronolide B. The megasynthase is a 2-MDa trimeric complex composed of three unique homodimers assembled from the gene products DEBS1, DEBS2, and DEBS3, which are housed within the erythromycin biosynthetic gene cluster. Each homodimer contains two clusters of catalytically independent enzymatic domains, each referred to as a module, which catalyzes one round of polyketide chain extension and modification. Modules are named sequentially to indicate the order in which they are utilized during synthesis of 6-deoxyerythronolide B. We report small-angle X-ray scattering (SAXS) analyses of a whole module and a bimodule from DEBS, as well as a set of domains for which high-resolution structures are available. In all cases, the solution state was probed under previously established conditions ensuring that each protein is catalytically active. SAXS data are consistent with atomic-resolution structures of DEBS fragments. Therefore, we used the available high-resolution structures of DEBS domains to model the architectures of the larger protein assemblies using rigid-body refinement. Our data support a model in which the third module of DEBS forms a disc-shaped structure capable of caging the acyl carrier protein domain proximal to each active site. The molecular envelope of DEBS3 is a thin elongated ellipsoid, and the results of rigid-body modeling suggest that modules 5 and 6 stack collinearly along the 2-fold axis of symmetry.
Collapse
Affiliation(s)
- Andrea L Edwards
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, 14 2575 Sand Hill Road, MS69, Menlo Park, CA 94025, USA
| | - Thomas M Weiss
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, 14 2575 Sand Hill Road, MS69, Menlo Park, CA 94025, USA
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
40
|
Khosla C, Herschlag D, Cane DE, Walsh CT. Assembly line polyketide synthases: mechanistic insights and unsolved problems. Biochemistry 2014; 53:2875-83. [PMID: 24779441 PMCID: PMC4020578 DOI: 10.1021/bi500290t] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Two hallmarks of assembly line polyketide synthases have motivated an interest in these unusual multienzyme systems, their stereospecificity and their capacity for directional biosynthesis. In this review, we summarize the state of knowledge regarding the mechanistic origins of these two remarkable features, using the 6-deoxyerythronolide B synthase as a prototype. Of the 10 stereocenters in 6-deoxyerythronolide B, the stereochemistry of nine carbon atoms is directly set by ketoreductase domains, which catalyze epimerization and/or diastereospecific reduction reactions. The 10th stereocenter is established by the sequential action of three enzymatic domains. Thus, the problem has been reduced to a challenge in mainstream enzymology, where fundamental gaps remain in our understanding of the structural basis for this exquisite stereochemical control by relatively well-defined active sites. In contrast, testable mechanistic hypotheses for the phenomenon of vectorial biosynthesis are only just beginning to emerge. Starting from an elegant theoretical framework for understanding coupled vectorial processes in biology [Jencks, W. P. (1980) Adv. Enzymol. Relat. Areas Mol. Biol. 51, 75-106], we present a simple model that can explain assembly line polyketide biosynthesis as a coupled vectorial process. Our model, which highlights the important role of domain-domain interactions, not only is consistent with recent observations but also is amenable to further experimental verification and refinement. Ultimately, a definitive view of the coordinated motions within and between polyketide synthase modules will require a combination of structural, kinetic, spectroscopic, and computational tools and could be one of the most exciting frontiers in 21st Century enzymology.
Collapse
Affiliation(s)
- Chaitan Khosla
- Departments of Chemical Engineering, Chemistry, and Biochemistry, Stanford University , Stanford, California 94305, United States
| | | | | | | |
Collapse
|
41
|
Trapping the dynamic acyl carrier protein in fatty acid biosynthesis. Nature 2013; 505:427-31. [PMID: 24362570 DOI: 10.1038/nature12810] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 10/23/2013] [Indexed: 12/25/2022]
Abstract
Acyl carrier protein (ACP) transports the growing fatty acid chain between enzymatic domains of fatty acid synthase (FAS) during biosynthesis. Because FAS enzymes operate on ACP-bound acyl groups, ACP must stabilize and transport the growing lipid chain. ACPs have a central role in transporting starting materials and intermediates throughout the fatty acid biosynthetic pathway. The transient nature of ACP-enzyme interactions impose major obstacles to obtaining high-resolution structural information about fatty acid biosynthesis, and a new strategy is required to study protein-protein interactions effectively. Here we describe the application of a mechanism-based probe that allows active site-selective covalent crosslinking of AcpP to FabA, the Escherichia coli ACP and fatty acid 3-hydroxyacyl-ACP dehydratase, respectively. We report the 1.9 Å crystal structure of the crosslinked AcpP-FabA complex as a homodimer in which AcpP exhibits two different conformations, representing probable snapshots of ACP in action: the 4'-phosphopantetheine group of AcpP first binds an arginine-rich groove of FabA, then an AcpP helical conformational change locks AcpP and FabA in place. Residues at the interface of AcpP and FabA are identified and validated by solution nuclear magnetic resonance techniques, including chemical shift perturbations and residual dipolar coupling measurements. These not only support our interpretation of the crystal structures but also provide an animated view of ACP in action during fatty acid dehydration. These techniques, in combination with molecular dynamics simulations, show for the first time that FabA extrudes the sequestered acyl chain from the ACP binding pocket before dehydration by repositioning helix III. Extensive sequence conservation among carrier proteins suggests that the mechanistic insights gleaned from our studies may be broadly applicable to fatty acid, polyketide and non-ribosomal biosynthesis. Here the foundation is laid for defining the dynamic action of carrier-protein activity in primary and secondary metabolism, providing insight into pathways that can have major roles in the treatment of cancer, obesity and infectious disease.
Collapse
|
42
|
Haines AS, Dong X, Song Z, Farmer R, Williams C, Hothersall J, Płoskoń E, Wattana-Amorn P, Stephens ER, Yamada E, Gurney R, Takebayashi Y, Masschelein J, Cox RJ, Lavigne R, Willis CL, Simpson TJ, Crosby J, Winn PJ, Thomas CM, Crump MP. A conserved motif flags acyl carrier proteins for β-branching in polyketide synthesis. Nat Chem Biol 2013; 9:685-692. [PMID: 24056399 PMCID: PMC4658705 DOI: 10.1038/nchembio.1342] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/22/2013] [Indexed: 11/14/2022]
Abstract
Type I PKSs often utilise programmed β-branching, via enzymes of an “HMG-CoA synthase (HCS) cassette”, to incorporate various side chains at the second carbon from the terminal carboxylic acid of growing polyketide backbones. We identified a strong sequence motif in Acyl Carrier Proteins (ACPs) where β-branching is known. Substituting ACPs confirmed a correlation of ACP type with β-branching specificity. While these ACPs often occur in tandem, NMR analysis of tandem β-branching ACPs indicated no ACP-ACP synergistic effects and revealed that the conserved sequence motif forms an internal core rather than an exposed patch. Modelling and mutagenesis identified ACP Helix III as a probable anchor point of the ACP-HCS complex whose position is determined by the core. Mutating the core affects ACP functionality while ACP-HCS interface substitutions modulate system specificity. Our method for predicting β-carbon branching expands the potential for engineering novel polyketides and lays a basis for determining specificity rules.
Collapse
Affiliation(s)
- Anthony S Haines
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Xu Dong
- School of Chemistry, Cantock's Close, Clifton, Bristol, BS8 1TS, UK
| | - Zhongshu Song
- School of Chemistry, Cantock's Close, Clifton, Bristol, BS8 1TS, UK
| | - Rohit Farmer
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Joanne Hothersall
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Eliza Płoskoń
- School of Chemistry, Cantock's Close, Clifton, Bristol, BS8 1TS, UK
| | | | - Elton R Stephens
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Erika Yamada
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Rachel Gurney
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Yuiko Takebayashi
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Joleen Masschelein
- Division of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 - box 2462, 3001 Heverlee, Belgium
| | - Russell J Cox
- School of Chemistry, Cantock's Close, Clifton, Bristol, BS8 1TS, UK
| | - Rob Lavigne
- Division of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 - box 2462, 3001 Heverlee, Belgium
| | | | - Thomas J Simpson
- School of Chemistry, Cantock's Close, Clifton, Bristol, BS8 1TS, UK
| | - John Crosby
- School of Chemistry, Cantock's Close, Clifton, Bristol, BS8 1TS, UK
| | - Peter J Winn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Christopher M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Matthew P Crump
- School of Chemistry, Cantock's Close, Clifton, Bristol, BS8 1TS, UK
| |
Collapse
|
43
|
Yadav G, Anand S, Mohanty D. Prediction of inter domain interactions in modular polyketide synthases by docking and correlated mutation analysis. J Biomol Struct Dyn 2013; 31:17-29. [DOI: 10.1080/07391102.2012.691342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
Zheng J, Fage CD, Demeler B, Hoffman DW, Keatinge-Clay AT. The missing linker: a dimerization motif located within polyketide synthase modules. ACS Chem Biol 2013; 8:1263-70. [PMID: 23489133 PMCID: PMC4365927 DOI: 10.1021/cb400047s] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The dimerization of multimodular polyketide synthases is essential for their function. Motifs that supplement the contacts made by dimeric polyketide synthase enzymes have previously been characterized outside the boundaries of modules, at the N- and C-terminal ends of polyketide synthase subunits. Here we describe a heretofore uncharacterized dimerization motif located within modules. The dimeric state of this dimerization element was elucidated through the 2.6 Å resolution crystal structure of a fragment containing a dimerization element and a ketoreductase. The solution structure of a standalone dimerization element was revealed by nuclear magnetic resonance spectroscopy to be consistent with that of the crystal structure, and its dimerization constant was measured through analytical ultracentrifugation to be ∼20 μM. The dimer buries ∼990 Å(2) at its interface, and its C-terminal helices rigidly connect to ketoreductase domains to constrain their locations within a module. These structural restraints permitted the construction of a common type of polyketide synthase module.
Collapse
Affiliation(s)
- Jianting Zheng
- Department of Chemistry & Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX 78712
| | - Christopher D. Fage
- Department of Chemistry & Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX 78712
| | - Borries Demeler
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229
| | - David W. Hoffman
- Department of Chemistry & Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX 78712
| | - Adrian T. Keatinge-Clay
- Department of Chemistry & Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX 78712
| |
Collapse
|
45
|
Xu W, Qiao K, Tang Y. Structural analysis of protein-protein interactions in type I polyketide synthases. Crit Rev Biochem Mol Biol 2012; 48:98-122. [PMID: 23249187 DOI: 10.3109/10409238.2012.745476] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Polyketide synthases (PKSs) are responsible for synthesizing a myriad of natural products with agricultural, medicinal relevance. The PKSs consist of multiple functional domains of which each can catalyze a specified chemical reaction leading to the synthesis of polyketides. Biochemical studies showed that protein-substrate and protein-protein interactions play crucial roles in these complex regio-/stereo-selective biochemical processes. Recent developments on X-ray crystallography and protein NMR techniques have allowed us to understand the biosynthetic mechanism of these enzymes from their structures. These structural studies have facilitated the elucidation of the sequence-function relationship of PKSs and will ultimately contribute to the prediction of product structure. This review will focus on the current knowledge of type I PKS structures and the protein-protein interactions in this system.
Collapse
Affiliation(s)
- Wei Xu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
46
|
Crosby J, Crump MP. The structural role of the carrier protein--active controller or passive carrier. Nat Prod Rep 2012; 29:1111-37. [PMID: 22930263 DOI: 10.1039/c2np20062g] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Common to all FASs, PKSs and NRPSs is a remarkable component, the acyl or peptidyl carrier protein (A/PCP). These take the form of small individual proteins in type II systems or discrete folded domains in the multi-domain type I systems and are characterized by a fold consisting of three major α-helices and between 60-100 amino acids. This protein is central to these biosynthetic systems and it must bind and transport a wide variety of functionalized ligands as well as mediate numerous protein-protein interactions, all of which contribute to efficient enzyme turnover. This review covers the structural and biochemical characterization of carrier proteins, as well as assessing their interactions with different ligands, and other synthase components. Finally, their role as an emerging tool in biotechnology is discussed.
Collapse
Affiliation(s)
- John Crosby
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | | |
Collapse
|
47
|
Zheng J, Gay DC, Demeler B, White MA, Keatinge-Clay AT. Divergence of multimodular polyketide synthases revealed by a didomain structure. Nat Chem Biol 2012; 8:615-21. [PMID: 22634636 PMCID: PMC3477503 DOI: 10.1038/nchembio.964] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 03/30/2012] [Indexed: 01/15/2023]
Abstract
The enoylreductase (ER) is the final common enzyme from modular polyketide synthases (PKSs) to be structurally characterized. The 3.0 Å-resolution structure of the didomain comprising the ketoreductase (KR) and ER from the second module of the spinosyn PKS reveals that ER shares an ∼600-Å(2) interface with KR distinct from that of the related mammalian fatty acid synthase (FAS). In contrast to the ER domains of the mammalian FAS, the ER domains of the second module of the spinosyn PKS do not make contact across the two-fold axis of the synthase. This monomeric organization may have been necessary in the evolution of multimodular PKSs to enable acyl carrier proteins to access each of their cognate enzymes. The isolated ER domain showed activity toward a substrate analog, enabling us to determine the contributions of its active site residues.
Collapse
Affiliation(s)
- Jianting Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Austin
| | - Darren C. Gay
- Department of Chemistry and Biochemistry, The University of Texas at Austin
| | - Borries Demeler
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio
| | - Mark A. White
- Sealy Center for Structural and Molecular Biophysics, UTMB Galveston
| | | |
Collapse
|
48
|
Anand S, Mohanty D. Modeling holo-ACP:DH and holo-ACP:KR complexes of modular polyketide synthases: a docking and molecular dynamics study. BMC STRUCTURAL BIOLOGY 2012; 12:10. [PMID: 22639887 PMCID: PMC3422181 DOI: 10.1186/1472-6807-12-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 05/28/2012] [Indexed: 12/13/2022]
Abstract
Background Modular polyketide synthases are multifunctional megasynthases which biosynthesize a variety of secondary metabolites using various combinations of dehydratase (DH), ketoreductase (KR) and enoyl-reductase (ER) domains. During the catalysis of various reductive steps these domains act on a substrate moiety which is covalently attached to the phosphopantetheine (P-pant) group of the holo-Acyl Carrier Protein (holo-ACP) domain, thus necessitating the formation of holo-ACP:DH and holo-ACP:KR complexes. Even though three dimensional structures are available for DH, KR and ACP domains, no structures are available for DH or KR domains in complex with ACP or substrate moieties. Since Ser of holo-ACP is covalently attached to a large phosphopantetheine group, obtaining complexes involving holo-ACP by standard protein-protein docking has been a difficult task. Results We have modeled the holo-ACP:DH and holo-ACP:KR complexes for identifying specific residues on DH and KR domains which are involved in interaction with ACP, phosphopantetheine and substrate moiety. A novel combination of protein-protein and protein-ligand docking has been used to first model complexes involving apo-ACP and then dock the phosphopantetheine and substrate moieties using covalent connectivity between ACP, phosphopantetheine and substrate moiety as constraints. The holo-ACP:DH and holo-ACP:KR complexes obtained from docking have been further refined by restraint free explicit solvent MD simulations to incorporate effects of ligand and receptor flexibilities. The results from 50 ns MD simulations reveal that substrate enters into a deep tunnel in DH domain while in case of KR domain the substrate binds a shallow surface exposed cavity. Interestingly, in case of DH domain the predicted binding site overlapped with the binding site in the inhibitor bound crystal structure of FabZ, the DH domain from E.Coli FAS. In case of KR domain, the substrate binding site identified by our simulations was in proximity of the known stereo-specificity determining residues. Conclusions We have modeled the holo-ACP:DH and holo-ACP:KR complexes and identified the specific residues on DH and KR domains which are involved in interaction with ACP, phosphopantetheine and substrate moiety. Analysis of the conservation profile of binding pocket residues in homologous sequences of DH and KR domains indicated that, these results can also be extrapolated to reductive domains of other modular PKS clusters.
Collapse
Affiliation(s)
- Swadha Anand
- Bioinformatics Center, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | |
Collapse
|
49
|
Liew CW, Nilsson M, Chen MW, Sun H, Cornvik T, Liang ZX, Lescar J. Crystal structure of the acyltransferase domain of the iterative polyketide synthase in enediyne biosynthesis. J Biol Chem 2012; 287:23203-15. [PMID: 22589546 DOI: 10.1074/jbc.m112.362210] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biosynthesis of the enediyne natural product dynemicin in Micromonospora chersina is initiated by DynE8, a highly reducing iterative type I polyketide synthase that assembles polyketide intermediates from the acetate units derived solely from malonyl-CoA. To understand the substrate specificity and the evolutionary relationship between the acyltransferase (AT) domains of DynE8, fatty acid synthase, and modular polyketide synthases, we overexpressed a 44-kDa fragment of DynE8 (hereafter named AT(DYN10)) encompassing its entire AT domain and the adjacent linker domain. The crystal structure at 1.4 Å resolution unveils a α/β hydrolase and a ferredoxin-like subdomain with the Ser-His catalytic dyad located in the cleft between the two subdomains. The linker domain also adopts a α/β fold abutting the AT catalytic domain. Co-crystallization with malonyl-CoA yielded a malonyl-enzyme covalent complex that most likely represents the acyl-enzyme intermediate. The structure explains the preference for malonyl-CoA with a conserved arginine orienting the carboxylate group of malonate and several nonpolar residues that preclude α-alkyl malonyl-CoA binding. Co-crystallization with acetyl-CoA revealed two noncovalently bound acetates generated by the enzymatic hydrolysis of acetyl-CoA that acts as an inhibitor for DynE8. This suggests that the AT domain can upload the acyl groups from either malonyl-CoA or acetyl-CoA onto the catalytic Ser(651) residue. However, although the malonyl group can be transferred to the acyl carrier protein domain, transfer of the acetyl group to the acyl carrier protein domain is suppressed. Local structural differences may account for the different stability of the acyl-enzyme intermediates.
Collapse
Affiliation(s)
- Chong Wai Liew
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | | | | | | | | | | | | |
Collapse
|
50
|
Reprogramming a module of the 6-deoxyerythronolide B synthase for iterative chain elongation. Proc Natl Acad Sci U S A 2012; 109:4110-5. [PMID: 22371562 DOI: 10.1073/pnas.1118734109] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multimodular polyketide synthases (PKSs) have an assembly line architecture in which a set of protein domains, known as a module, participates in one round of polyketide chain elongation and associated chemical modifications, after which the growing chain is translocated to the next PKS module. The ability to rationally reprogram these assembly lines to enable efficient synthesis of new polyketide antibiotics has been a long-standing goal in natural products biosynthesis. We have identified a ratchet mechanism that can explain the observed unidirectional translocation of the growing polyketide chain along the 6-deoxyerythronolide B synthase. As a test of this model, module 3 of the 6-deoxyerythronolide B synthase has been reengineered to catalyze two successive rounds of chain elongation. Our results suggest that high selectivity has been evolutionarily programmed at three types of protein-protein interfaces that are present repetitively along naturally occurring PKS assembly lines.
Collapse
|