1
|
Kaur U, Kihn KC, Ke H, Kuo W, Gierasch LM, Hebert DN, Wintrode PL, Deredge D, Gershenson A. The conformational landscape of a serpin N-terminal subdomain facilitates folding and in-cell quality control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.537978. [PMID: 37163105 PMCID: PMC10168285 DOI: 10.1101/2023.04.24.537978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Many multi-domain proteins including the serpin family of serine protease inhibitors contain non-sequential domains composed of regions that are far apart in sequence. Because proteins are translated vectorially from N- to C-terminus, such domains pose a particular challenge: how to balance the conformational lability necessary to form productive interactions between early and late translated regions while avoiding aggregation. This balance is mediated by the protein sequence properties and the interactions of the folding protein with the cellular quality control machinery. For serpins, particularly α 1 -antitrypsin (AAT), mutations often lead to polymer accumulation in cells and consequent disease suggesting that the lability/aggregation balance is especially precarious. Therefore, we investigated the properties of progressively longer AAT N-terminal fragments in solution and in cells. The N-terminal subdomain, residues 1-190 (AAT190), is monomeric in solution and efficiently degraded in cells. More β -rich fragments, 1-290 and 1-323, form small oligomers in solution, but are still efficiently degraded, and even the polymerization promoting Siiyama (S53F) mutation did not significantly affect fragment degradation. In vitro, the AAT190 region is among the last regions incorporated into the final structure. Hydrogen-deuterium exchange mass spectrometry and enhanced sampling molecular dynamics simulations show that AAT190 has a broad, dynamic conformational ensemble that helps protect one particularly aggregation prone β -strand from solvent. These AAT190 dynamics result in transient exposure of sequences that are buried in folded, full-length AAT, which may provide important recognition sites for the cellular quality control machinery and facilitate degradation and, under favorable conditions, reduce the likelihood of polymerization.
Collapse
Affiliation(s)
- Upneet Kaur
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003
| | - Kyle C. Kihn
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Haiping Ke
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003
| | - Weiwei Kuo
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003
| | - Lila M. Gierasch
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Daniel N. Hebert
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| | - Patrick L. Wintrode
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Daniel Deredge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Anne Gershenson
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
2
|
Chan YH, Zeldovich KB, Matthews CR. An allosteric pathway explains beneficial fitness in yeast for long-range mutations in an essential TIM barrel enzyme. Protein Sci 2020; 29:1911-1923. [PMID: 32643222 PMCID: PMC7454521 DOI: 10.1002/pro.3911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 11/06/2022]
Abstract
Protein evolution proceeds by a complex response of organismal fitness to mutations that can simultaneously affect protein stability, structure, and enzymatic activity. To probe the relationship between genotype and phenotype, we chose a fundamental paradigm for protein evolution, folding, and design, the (βα)8 TIM barrel fold. Here, we demonstrate the role of long-range allosteric interactions in the adaptation of an essential hyperthermophilic TIM barrel enzyme to mesophilic conditions in a yeast host. Beneficial fitness effects observed with single and double mutations of the canonical βα-hairpin clamps and the α-helical shell distal to the active site revealed an underlying energy network between opposite faces of the cylindrical β-barrel. We experimentally determined the fitness of multiple mutants in the energetic phase plane, contrasting the energy barrier of the chemical reaction and the folding free energy of the protein. For the system studied, the reaction energy barrier was the primary determinant of organism fitness. Our observations of long-range epistatic interactions uncovered an allosteric pathway in an ancient and ubiquitous enzyme that may provide a novel way of designing proteins with a desired activity and stability profile.
Collapse
Affiliation(s)
- Yvonne H Chan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Sanofi Pasteur, Cambridge, Massachusetts, USA
| | - Konstantin B Zeldovich
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Sanofi Pasteur, Cambridge, Massachusetts, USA
| | - Charles R Matthews
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
3
|
βαβ Super-Secondary Motifs: Sequence, Structural Overview, and Pursuit of Potential Autonomously Folding βαβ Sequences from (β/α) 8/TIM Barrels. Methods Mol Biol 2019; 1958:221-236. [PMID: 30945221 DOI: 10.1007/978-1-4939-9161-7_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
βαβ super-secondary structures constitute the basic building blocks of (β/α)8 class of proteins. Despite the success in designing super-secondary structures, till date, there is not a single example of a natural βαβ sequence known to fold in isolation. In this chapter, to address the finding the "needles" in the haystack scenario, we have combined the sequence preferences and structural features of independent βαβ motifs, dictated by natural selection, with rationally derived parameters from a designed βαβ motif adopting stable fold in solution. Guided by this approach, a set of potential βαβ sequences from (β/α)8/TIM barrels are proposed as likely candidates for autonomously folding based on the assessment of their foldability.
Collapse
|
4
|
Almeida VM, Frutuoso MA, Marana SR. Search for independent (β/α)4 subdomains in a (β/α)8 barrel β-glucosidase. PLoS One 2018; 13:e0191282. [PMID: 29338043 PMCID: PMC5770038 DOI: 10.1371/journal.pone.0191282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/02/2018] [Indexed: 01/10/2023] Open
Abstract
Proteins that fold as (β/α)8 barrels are thought to have evolved from half-barrels that underwent duplication and fusion events. The evidence is particularly clear for small barrels, which have almost identical halves. Additionally, computational calculations of the thermodynamic stability of these structures in the presence of denaturants have revealed that (β/α)8 barrels contain two subunits or domains corresponding to half-barrels. Hence, within (β/α)8 barrels, half-barrels are self-contained units. Here, we tested this hypothesis using β-glucosidase from the bacterium Thermotoga maritima (bglTm), which has a (β/α)8 barrel structure. Mutations were introduced to disrupt the noncovalent contacts between its halves and reveal the presence of two domains within bglTm, thus resulting in the creation of mutants T1 (containing W12A and I217A mutations) and T2 (containing W12A, H195A, I217A and F404A mutations). Mutants T1 and T2 were properly folded, as indicated by their fluorescence spectra and enzyme kinetic parameters. T1 and wild-type bglTm were equally stable, as shown by the results of thermal inactivation, differential scanning fluorimetry and guanidine hydrochloride denaturation experiments. However, T2 showed a first-order inactivation at 80°C, a single melting temperature of 82°C and only one transition concentration (c50) in 2.4 M guanidine hydrochloride. Additionally, T1 and T2 exhibited a cooperative denaturation process that followed a two-state model (m-values equal to 1.4 and 1.6 kcal/mol/M, respectively), similar to that of wild-type bglTm (1.2 kcal/mol/M). Hence, T1 and T2 each denatured as a single unit, although they contained different degrees of disruption between their halves. In conclusion, bglTm halves are equivalent in terms of their thermal and chemical stability; thus, their separate contributions to (β/α)8 barrel unfolding cannot be disentangled.
Collapse
Affiliation(s)
- Vitor M. Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maira A. Frutuoso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Sandro R. Marana
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
5
|
Chan YH, Venev SV, Zeldovich KB, Matthews CR. Correlation of fitness landscapes from three orthologous TIM barrels originates from sequence and structure constraints. Nat Commun 2017; 8:14614. [PMID: 28262665 PMCID: PMC5343507 DOI: 10.1038/ncomms14614] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/11/2017] [Indexed: 02/07/2023] Open
Abstract
Sequence divergence of orthologous proteins enables adaptation to environmental stresses and promotes evolution of novel functions. Limits on evolution imposed by constraints on sequence and structure were explored using a model TIM barrel protein, indole-3-glycerol phosphate synthase (IGPS). Fitness effects of point mutations in three phylogenetically divergent IGPS proteins during adaptation to temperature stress were probed by auxotrophic complementation of yeast with prokaryotic, thermophilic IGPS. Analysis of beneficial mutations pointed to an unexpected, long-range allosteric pathway towards the active site of the protein. Significant correlations between the fitness landscapes of distant orthologues implicate both sequence and structure as primary forces in defining the TIM barrel fitness landscape and suggest that fitness landscapes can be translocated in sequence space. Exploration of fitness landscapes in the context of a protein fold provides a strategy for elucidating the sequence-structure-fitness relationships in other common motifs. The TIM barrel fold is an evolutionarily conserved motif found in proteins with a variety of enzymatic functions. Here the authors explore the fitness landscape of the TIM barrel protein IGPS and uncover evolutionary constraints on both sequence and structure, accompanied by long range allosteric interactions.
Collapse
Affiliation(s)
- Yvonne H Chan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| | - Sergey V Venev
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, Massachusetts 01605, USA
| | - Konstantin B Zeldovich
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, Massachusetts 01605, USA
| | - C Robert Matthews
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| |
Collapse
|
6
|
Abstract
Protein structure prediction and protein docking prediction are two related problems in molecular biology. We suggest the use of multiple docking in the process of protein structure prediction. Once reliable structural models are predicted to disjoint fragments of the protein target sequence, a combinatorial assembly may be used to predict their native arrangement. Here, we present CombDock, a combinatorial docking algorithm for the structural units assembly problem. We have tested the algorithm on various examples using both domains and domain substructures as input. Inaccurate models of the structural units were also used, to test the robustness of the algorithm. The algorithm was able to predict a near-native arrangement of the input structural units in almost all of the cases, showing that the combinatorial approach succeeds in overcoming the inexact shape complementarity caused by the inaccuracy of the models.
Collapse
Affiliation(s)
- Yuval Inbar
- School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel,
| | - Haim J. Wolfson
- School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ruth Nussinov
- Sackler Institute of Molecular Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel and Basic Research Program, SAIC-Frederick Inc., Laboratory of Experimental and Computational Biology, NCI - FCRDC, Bldg 469, Rm 151, Frederick, MD 21702, USA
| |
Collapse
|
7
|
Stavros P, Malecki PH, Theodoridou M, Rypniewski W, Vorgias CE, Nounesis G. The stability of the TIM-barrel domain of a psychrophilic chitinase. Biochem Biophys Rep 2015; 3:108-116. [PMID: 29124173 PMCID: PMC5668695 DOI: 10.1016/j.bbrep.2015.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 11/22/2022] Open
Abstract
Chitinase 60 from the psychrophilic bacterium Moritella marina (MmChi60) is a four-domain protein whose structure revealed flexible hinge regions between the domains, yielding conformations in solution that range from fully extended to compact. The catalytic domain is a shallow-grooved TIM-barrel. Heat-induced denaturation experiments of the wild-type and mutants resulting from the deletions of the two-Ig-like domains and the chitin binding domain reveal calorimetric profiles that are consistent with non-collaborative thermal unfolding of the individual domains, a property that must be associated to the “hinge-regions”. The calorimetric measurements of the (β/α)8 catalytic domain reveal that the thermal unfolding is a slow-relaxation transition exhibiting a stable, partially structured intermediate state. Circular dichroism provides evidence that the intermediate exhibits features of a molten globule i.e., loss of tertiary structure while maintaining the secondary structural elements of the native. GdnHCl-induced denaturation studies of the TIM-barrel demonstrate an extraordinarily high resistance to the denaturant. Slow-relaxation kinetics characterize the unfolding with equilibration times exceeding six days, a property that is for the first time observed for a psychrophilic TIM barrel. On the other hand, the thermodynamic stability is ΔG=6.75±1.3 kcal/mol, considerably lower than for structural-insertions-containing barrels. The mutant E153Q used for the crystallographic studies of MmChi60 complexes with NAG ligands has a much lower stability than the wild-type. We use heat-induced and chemical denaturation to study MmChi60. The impact of “hinge” regions upon the DSC calorimetric profiles is explored. CD is used to characterize the thermal unfolding intermediate of the catalytic domain. The thermodynamic stability of the TIM-barrel is measured via chemical denaturation. High-resistance to denaturants is evidenced for the psychrophilic (β/α)8 domain.
Collapse
Affiliation(s)
- Philemon Stavros
- Biomolecular Physics Laboratory, INRASTES, National Centre for Scientific Research “Demokritos”, 153 10 Aghia Paraskevi, Greece
- Physics Department, National and Kapodistrian University of Athens, 157 01 Zografou, Greece
| | - Piotr H. Malecki
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Maria Theodoridou
- Biomolecular Physics Laboratory, INRASTES, National Centre for Scientific Research “Demokritos”, 153 10 Aghia Paraskevi, Greece
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Constantinos E. Vorgias
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01 Zografou, Greece
| | - George Nounesis
- Biomolecular Physics Laboratory, INRASTES, National Centre for Scientific Research “Demokritos”, 153 10 Aghia Paraskevi, Greece
- Corresponding author.
| |
Collapse
|
8
|
Ochoa-Leyva A, Montero-Morán G, Saab-Rincón G, Brieba LG, Soberón X. Alternative splice variants in TIM barrel proteins from human genome correlate with the structural and evolutionary modularity of this versatile protein fold. PLoS One 2013; 8:e70582. [PMID: 23950966 PMCID: PMC3741200 DOI: 10.1371/journal.pone.0070582] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/20/2013] [Indexed: 12/20/2022] Open
Abstract
After the surprisingly low number of genes identified in the human genome, alternative splicing emerged as a major mechanism to generate protein diversity in higher eukaryotes. However, it is still not known if its prevalence along the genome evolution has contributed to the overall functional protein diversity or if it simply reflects splicing noise. The (βα)8 barrel or TIM barrel is one of the most frequent, versatile, and ancient fold encountered among enzymes. Here, we analyze the structural modifications present in TIM barrel proteins from the human genome product of alternative splicing events. We found that 87% of all splicing events involved deletions; most of these events resulted in protein fragments that corresponded to the (βα)2, (βα)4, (βα)5, (βα)6, and (βα)7 subdomains of TIM barrels. Because approximately 7% of all the splicing events involved internal β-strand substitutions, we decided, based on the genomic data, to design β-strand and α-helix substitutions in a well-studied TIM barrel enzyme. The biochemical characterization of one of the chimeric variants suggests that some of the splice variants in the human genome with β-strand substitutions may be evolving novel functions via either the oligomeric state or substrate specificity. We provide results of how the splice variants represent subdomains that correlate with the independently folding and evolving structural units previously reported. This work is the first to observe a link between the structural features of the barrel and a recurrent genetic mechanism. Our results suggest that it is reasonable to expect that a sizeable fraction of splice variants found in the human genome represent structurally viable functional proteins. Our data provide additional support for the hypothesis of the origin of the TIM barrel fold through the assembly of smaller subdomains. We suggest a model of how nature explores new proteins through alternative splicing as a mechanism to diversify the proteins encoded in the human genome.
Collapse
Affiliation(s)
- Adrián Ochoa-Leyva
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- * E-mail: (AOL); (XS)
| | - Gabriela Montero-Morán
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| | - Gloria Saab-Rincón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Luis G. Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| | - Xavier Soberón
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- * E-mail: (AOL); (XS)
| |
Collapse
|
9
|
Gangadhara BN, Laine JM, Kathuria SV, Massi F, Matthews CR. Clusters of branched aliphatic side chains serve as cores of stability in the native state of the HisF TIM barrel protein. J Mol Biol 2013; 425:1065-81. [PMID: 23333740 DOI: 10.1016/j.jmb.2013.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 01/01/2013] [Accepted: 01/03/2013] [Indexed: 01/31/2023]
Abstract
Imidazole-3-glycerol phosphate synthase is a heterodimeric allosteric enzyme that catalyzes consecutive reactions in imidazole biosynthesis through its HisF and HisH subunits. The unusually slow unfolding reaction of the isolated HisF TIM barrel domain from the thermophilic bacteria, Thermotoga maritima, enabled an NMR-based site-specific analysis of the main-chain hydrogen bonds that stabilize its native conformation. Very strong protection against exchange with solvent deuterium in the native state was found in a subset of buried positions in α-helices and pervasively in the underlying β-strands associated with a pair of large clusters of isoleucine, leucine and valine (ILV) side chains located in the α7(βα)8(βα)1-2 and α2(βα)3-6β7 segments of the (βα)8 barrel. The most densely packed region of the large cluster, α3(βα)4-6β7, correlates closely with the core of stability previously observed in computational, protein engineering and NMR dynamics studies, demonstrating a key role for this cluster in determining the thermodynamic and structural properties of the native state of HisF. When considered with the results of previous studies where ILV clusters were found to stabilize the hydrogen-bonded networks in folding intermediates for other TIM barrel proteins, it appears that clusters of branched aliphatic side chains can serve as cores of stability across the entire folding reaction coordinate of one of the most common motifs in biology.
Collapse
Affiliation(s)
- Basavanapura N Gangadhara
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
10
|
Akanuma S, Yamagishi A. Roles for the two N-terminal (β/α) modules in the folding of a (β/α)8-barrel protein as studied by fragmentation analysis. Proteins 2010; 79:221-31. [DOI: 10.1002/prot.22874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Richter M, Bosnali M, Carstensen L, Seitz T, Durchschlag H, Blanquart S, Merkl R, Sterner R. Computational and Experimental Evidence for the Evolution of a (βα)8-Barrel Protein from an Ancestral Quarter-Barrel Stabilised by Disulfide Bonds. J Mol Biol 2010; 398:763-73. [DOI: 10.1016/j.jmb.2010.03.057] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 03/19/2010] [Accepted: 03/26/2010] [Indexed: 11/28/2022]
|
12
|
Betaalpha-hairpin clamps brace betaalphabeta modules and can make substantive contributions to the stability of TIM barrel proteins. PLoS One 2009; 4:e7179. [PMID: 19787060 PMCID: PMC2747017 DOI: 10.1371/journal.pone.0007179] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 08/30/2009] [Indexed: 11/24/2022] Open
Abstract
Non-local hydrogen bonding interactions between main chain amide hydrogen atoms and polar side chain acceptors that bracket consecutive βα or αβ elements of secondary structure in αTS from E. coli, a TIM barrel protein, have previously been found to contribute 4–6 kcal mol−1 to the stability of the native conformation. Experimental analysis of similar βα-hairpin clamps in a homologous pair of TIM barrel proteins of low sequence identity, IGPS from S. solfataricus and E. coli, reveals that this dramatic enhancement of stability is not unique to αTS. A survey of 71 TIM barrel proteins demonstrates a 4-fold symmetry for the placement of βα-hairpin clamps, bracing the fundamental βαβ building block and defining its register in the (βα)8 motif. The preferred sequences and locations of βα-hairpin clamps will enhance structure prediction algorithms and provide a strategy for engineering stability in TIM barrel proteins.
Collapse
|
13
|
Chen Y, Li S, Chen T, Hua H, Lin Z. Random dissection to select for protein split sites and its application in protein fragment complementation. Protein Sci 2009; 18:399-409. [PMID: 19165722 PMCID: PMC2708047 DOI: 10.1002/pro.42] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 10/23/2008] [Accepted: 11/25/2008] [Indexed: 11/11/2022]
Abstract
To identify protein split sites quickly, a selection procedure by using chloramphenicol acetyl transferase (CAT) as reporter was introduced to search for folded protein fragments from libraries generated by random digestion and reassembly of the target gene, which yielded an abundant amount of DNA fragments with controllable lengths. Experimental results of tryptophan synthase alpha subunit (TSalpha) and TEM-1 beta-lactamase agreed well with what the literature has reported. The solubility of these fragments correlated roughly with the minimum inhibitory concentrations of the CAT fusions. The application of this dissection protocol to protein fragment complementation assay (PCA) was evaluated using aminoglycoside-3'-phosphotransferase I (APH(3')-I) as a model protein. Three nearly bisectional sites and a number of possible split points were identified, and guided by this result, four novel pairs of fragments were tested for complementation. Three out of four pairs partially restored the APH activity with the help of leucine zippers, and a truncated but active APH(3')-I (Delta1-25) was also found. Finally, the weakly active APH(3')-I-(1-253)NZ/CZ (254-271) containing a short 18 residue tag was further improved by error-prone PCR, and a best mutant was obtained showing a fourfold improvement after just one round of evolution. These results demonstrate that protein random dissection based on the CAT selection can provide an efficient search for protein breakage points and guide the design of fragments for protein complementation assay. Furthermore, more active fragment pairs can be achieved with the classical directed evolution approach.
Collapse
Affiliation(s)
| | | | | | | | - Zhanglin Lin
- Department of Chemical Engineering, Tsinghua University1 Tsinghua Garden Road, Beijing 100084, China
| |
Collapse
|
14
|
Experimental Evidence for the Existence of a Stable Half-Barrel Subdomain in the (β/α)8-Barrel Fold. J Mol Biol 2008; 382:458-66. [DOI: 10.1016/j.jmb.2008.07.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 07/14/2008] [Accepted: 07/16/2008] [Indexed: 11/16/2022]
|
15
|
Rao MK, Chapman TR, Finke JM. Crystallographic B-Factors Highlight Energetic Frustration in Aldolase Folding. J Phys Chem B 2008; 112:10417-31. [DOI: 10.1021/jp7117295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maithreyi K. Rao
- Department of Chemistry Oakland University Rochester, Michigan 48309-4477
| | - Tracy R. Chapman
- Department of Chemistry Oakland University Rochester, Michigan 48309-4477
| | - John M. Finke
- Department of Chemistry Oakland University Rochester, Michigan 48309-4477
| |
Collapse
|
16
|
Peimbert M, Domínguez-Ramírez L, Fernández-Velasco DA. Hydrophobic Repacking of the Dimer Interface of Triosephosphate Isomerase by in Silico Design and Directed Evolution. Biochemistry 2008; 47:5556-64. [DOI: 10.1021/bi702502k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mariana Peimbert
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, 04510 México, DF, Mexico
| | - Lenin Domínguez-Ramírez
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, 04510 México, DF, Mexico
| | - D. Alejandro Fernández-Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, 04510 México, DF, Mexico
| |
Collapse
|
17
|
Reyes-López CA, González-Mondragón E, Benítez-Cardoza CG, Chánez-Cárdenas ME, Cabrera N, Pérez-Montfort R, Hernández-Arana A. The conserved salt bridge linking two C-terminal β/α units in homodimeric triosephosphate isomerase determines the folding rate of the monomer. Proteins 2008; 72:972-9. [DOI: 10.1002/prot.21994] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Vadrevu R, Wu Y, Matthews CR. NMR analysis of partially folded states and persistent structure in the alpha subunit of tryptophan synthase: implications for the equilibrium folding mechanism of a 29-kDa TIM barrel protein. J Mol Biol 2007; 377:294-306. [PMID: 18234216 DOI: 10.1016/j.jmb.2007.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/26/2007] [Accepted: 11/05/2007] [Indexed: 11/19/2022]
Abstract
Structural insights into the equilibrium folding mechanism of the alpha subunit of tryptophan synthase (alpha TS) from Escherichia coli, a (beta alpha)(8) TIM barrel protein, were obtained with a pair of complementary nuclear magnetic resonance (NMR) spectroscopic techniques. The secondary structures of rare high-energy partially folded states were probed by native-state hydrogen-exchange NMR analysis of main-chain amide hydrogens. 2D heteronuclear single quantum coherence NMR analysis of several (15)N-labeled nonpolar amino acids was used to probe the side chains involved in stabilizing a highly denatured intermediate that is devoid of secondary structure. The dynamic broadening of a subset of isoleucine and leucine side chains and the absence of protection against exchange showed that the highest energy folded state on the free-energy landscape is stabilized by a hydrophobic cluster lacking stable secondary structure. The core of this cluster, centered near the N-terminus of alpha TS, serves as a nucleus for the stabilization of what appears to be nonnative secondary structure in a marginally stable intermediate. The progressive decrease in protection against exchange from this nucleus toward both termini and from the N-termini to the C-termini of several beta-strands is best described by an ensemble of weakly coupled conformers. Comparison with previous data strongly suggests that this ensemble corresponds to a marginally stable off-pathway intermediate that arises in the first few milliseconds of folding and persists under equilibrium conditions. A second, more stable intermediate, which has an intact beta-barrel and a frayed alpha-helical shell, coexists with this marginally stable species. The conversion of the more stable intermediate to the native state of alpha TS entails the formation of a stable helical shell and completes the acquisition of the tertiary structure.
Collapse
Affiliation(s)
- Ramakrishna Vadrevu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
19
|
Abstract
Kinetic simulations of the folding and unfolding of triosephosphate isomerase (TIM) from yeast were conducted using a single monomer gammaTIM polypeptide chain that folds as a monomer and two gammaTIM chains that fold to the native dimer structure. The basic protein model used was a minimalist Gō model using the native structure to determine attractive energies in the protein chain. For each simulation type--monomer unfolding, monomer refolding, dimer unfolding, and dimer refolding--thirty simulations were conducted, successfully capturing each reaction in full. Analysis of the simulations demonstrates four main conclusions. First, all four simulation types have a similar "folding order", i.e., they have similar structures in intermediate stages of folding between the unfolded and folded state. Second, despite this similarity, different intermediate stages are more or less populated in the four different simulations, with 1), no intermediates populated in monomer unfolding; 2), two intermediates populated with beta(2)-beta(4) and beta(1)-beta(5) regions folded in monomer refolding; 3), two intermediates populated with beta(2)-beta(3) and beta(2)-beta(4) regions folded in dimer unfolding; and 4), two intermediates populated with beta(1)-beta(5) and beta(1)-beta(5) + beta(6) + beta(7) + beta(8) regions folded in dimer refolding. Third, simulations demonstrate that dimer binding and unbinding can occur early in the folding process before complete monomer-chain folding. Fourth, excellent agreement is found between the simulations and MPAX (misincorporation proton alkyl exchange) experiments. In total, this agreement demonstrates that the computational Gō model is accurate for gammaTIM and that the energy landscape of gammaTIM appears funneled to the native state.
Collapse
Affiliation(s)
- Brijesh Patel
- Department of Chemistry, Oakland University, Rochester, Michigan, USA
| | | |
Collapse
|
20
|
Forsyth WR, Bilsel O, Gu Z, Matthews CR. Topology and Sequence in the Folding of a TIM Barrel Protein: Global Analysis Highlights Partitioning between Transient Off-pathway and Stable On-pathway Folding Intermediates in the Complex Folding Mechanism of a (βα)8 Barrel of Unknown Function from B. subtilis. J Mol Biol 2007; 372:236-53. [PMID: 17619021 DOI: 10.1016/j.jmb.2007.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 06/08/2007] [Accepted: 06/08/2007] [Indexed: 10/23/2022]
Abstract
The relative contributions of chain topology and amino acid sequence in directing the folding of a (betaalpha)(8) TIM barrel protein of unknown function encoded by the Bacillus subtilis iolI gene (IOLI) were assessed by reversible urea denaturation and a combination of circular dichroism, fluorescence and time-resolved fluorescence anisotropy spectroscopy. The equilibrium reaction for IOLI involves, in addition to the native and unfolded species, a stable intermediate with significant secondary structure and stability and self-associated forms of both the native and intermediate states. Global kinetic analysis revealed that the unfolded state partitions between an off-pathway refolding intermediate and the on-pathway equilibrium intermediate early in folding. Comparisons with the folding mechanisms of two other TIM barrel proteins, indole-3-glycerol phosphate synthase from the thermophile Sulfolobus solfataricus (sIGPS) and the alpha subunit of Escherichia coli tryptophan synthase (alphaTS), reveal striking similarities that argue for a dominant role of the topology in both early and late events in folding. Sequence-specific effects are apparent in the magnitudes of the relaxation times and relative stabilities, in the presence of additional monomeric folding intermediates for alphaTS and sIGPS and in rate-limiting proline isomerization reactions for alphaTS.
Collapse
Affiliation(s)
- William R Forsyth
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | | | | | | |
Collapse
|
21
|
Seitz T, Bocola M, Claren J, Sterner R. Stabilisation of a (betaalpha)8-barrel protein designed from identical half barrels. J Mol Biol 2007; 372:114-29. [PMID: 17631894 DOI: 10.1016/j.jmb.2007.06.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/05/2007] [Accepted: 06/13/2007] [Indexed: 11/26/2022]
Abstract
It has been suggested that the common (betaalpha)(8)-barrel enzyme fold has evolved by the duplication and fusion of identical (betaalpha)(4)-half barrels, followed by the optimisation of their interface. In our attempts to reconstruct these events in vitro we have previously linked in tandem two copies of the C-terminal half barrel HisF-C of imidazole glycerol phosphate synthase from Thermotoga maritima and subsequently reconstituted in the fusion construct HisF-CC a salt bridge cluster present in wild-type HisF. The resulting recombinant protein HisF-C*C, which was produced in an insoluble form and unfolded with low cooperativity at moderate urea concentrations has now been stabilised and solubilised by a combination of random mutagenesis and selection in vivo. For this purpose, Escherichia coli cells were transformed with a plasmid-based gene library encoding HisF-C*C variants fused to chloramphenicol acetyltransferase (CAT). Stable and soluble variants were identified by the survival of host cells on solid medium containing high concentrations of the antibiotic. The selected HisF-C*C proteins, which were characterised in vitro in the absence of CAT, contained eight different amino acid substitutions. One of the exchanges (Y143C) stabilised HisF-C*C by the formation of an intermolecular disulfide bond. Three of the substitutions (G245R, V248M, L250Q) were located in the long loop connecting the two HisF-C copies, whose subsequent truncation from 13 to 5 residues yielded the stabilised variant HisF-C*C Delta. From the remaining substitutions, Y143H and V234M were most beneficial, and molecular dynamics simulations suggest that they strengthen the interactions between the half barrels by establishing a hydrogen-bonding network and an extensive hydrophobic cluster, respectively. By combining the loop deletion of HisF-C*C Delta with the Y143H and V234M substitutions, the variant HisF-C**C was generated. Recombinant HisF-C**C is produced in soluble form, forms a pure monomer with its tryptophan residues shielded from solvent and unfolds with similar cooperativity as HisF. Our results show that, starting from two identical and fused half barrels, few amino acid exchanges are sufficient to generate a highly stable and compact (betaalpha)(8)-barrel protein with wild-type like structural properties.
Collapse
Affiliation(s)
- Tobias Seitz
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | | | | | | |
Collapse
|
22
|
Gu Z, Zitzewitz JA, Matthews CR. Mapping the structure of folding cores in TIM barrel proteins by hydrogen exchange mass spectrometry: the roles of motif and sequence for the indole-3-glycerol phosphate synthase from Sulfolobus solfataricus. J Mol Biol 2007; 368:582-94. [PMID: 17359995 PMCID: PMC2040069 DOI: 10.1016/j.jmb.2007.02.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 02/07/2007] [Accepted: 02/08/2007] [Indexed: 11/22/2022]
Abstract
To test the roles of motif and amino acid sequence in the folding mechanisms of TIM barrel proteins, hydrogen-deuterium exchange was used to explore the structure of the stable folding intermediates for the of indole-3-glycerol phosphate synthase from Sulfolobus solfataricus (sIGPS). Previous studies of the urea denaturation of sIGPS revealed the presence of an intermediate that is highly populated at approximately 4.5 M urea and contains approximately 50% of the secondary structure of the native (N) state. Kinetic studies showed that this apparent equilibrium intermediate is actually comprised of two thermodynamically distinct species, I(a) and I(b). To probe the location of the secondary structure in this pair of stable on-pathway intermediates, the equilibrium unfolding process of sIGPS was monitored by hydrogen-deuterium exchange mass spectrometry. The intact protein and pepsin-digested fragments were studied at various concentrations of urea by electrospray and matrix-assisted laser desorption ionization time-of-flight mass spectrometry, respectively. Intact sIGPS strongly protects at least 54 amide protons from hydrogen-deuterium exchange in the intermediate states, demonstrating the presence of stable folded cores. When the protection patterns and the exchange mechanisms for the peptides are considered with the proposed folding mechanism, the results can be interpreted to define the structural boundaries of I(a) and I(b). Comparison of these results with previous hydrogen-deuterium exchange studies on another TIM barrel protein of low sequence identify, alpha-tryptophan synthase (alphaTS), indicates that the thermodynamic states corresponding to the folding intermediates are better conserved than their structures. Although the TIM barrel motif appears to define the basic features of the folding free energy surface, the structures of the partially folded states that appear during the folding reaction depend on the amino acid sequence. Markedly, the good correlation between the hydrogen-deuterium exchange patterns of sIGPS and alphaTS with the locations of hydrophobic clusters defined by isoleucine, leucine, and valine residues suggests that branch aliphatic side-chains play a critical role in defining the structures of the equilibrium intermediates.
Collapse
Affiliation(s)
- Zhenyu Gu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
23
|
Akanuma S, Miyagawa H, Kitamura K, Yamagishi A. A detailed unfolding pathway of a (beta/alpha)8-barrel protein as studied by molecular dynamics simulations. Proteins 2006; 58:538-46. [PMID: 15614829 DOI: 10.1002/prot.20349] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The (beta/alpha)(8)-barrel is the most common protein fold. Similar structural properties for folding intermediates of (beta/alpha)(8)-barrel proteins involved in tryptophan biosynthesis have been reported in a number of experimental studies; these intermediates have the last two beta-strands and three alpha-helices partially unfolded, with other regions of the polypeptide chain native-like in conformation. To investigate the detailed folding/unfolding pathways of these (beta/alpha)(8)-barrel proteins, temperature-induced unfolding simulations of N-(5'-phosphoribosyl)anthranilate isomerase from Escherichia coli were carried out using a special-purpose parallel computer system. Unfolding simulations at five different temperatures showed a sequential unfolding pathway comprised of several events. Early events in unfolding involved disruption of the last two strands and three helices, producing an intermediate ensemble similar to those detected in experimental studies. Then, denaturation of the first two betaalpha units and separation of the sixth strand from the fifth took place independently. The remaining central betaalphabetaalphabeta module persisted the longest during all simulations, suggesting an important role for this module as the incipient folding scaffold. Our simulations also predicted the presence of a nucleation site, onto which several hydrophobic residues condensed forming the foundation for the central betaalphabetaalphabeta module.
Collapse
Affiliation(s)
- Satoshi Akanuma
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| | | | | | | |
Collapse
|
24
|
Pyrpassopoulos S, Vlassi M, Tsortos A, Papanikolau Y, Petratos K, Vorgias CE, Nounesis G. Equilibrium heat-induced denaturation of chitinase 40 from Streptomyces thermoviolaceus. Proteins 2006; 64:513-23. [PMID: 16685709 DOI: 10.1002/prot.21003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
High-precision differential scanning calorimetry (DSC) and circular dichroism (CD) have been employed to study the thermal unfolding of chitinase 40 (Chi40) from Streptomyces thermoviolaceus. Chi40 belongs to family 18 of glycosyl hydrolase superfamily bearing a catalytic domain with a "TIM barrel"-like fold, which exhibits deviations from the (beta/alpha)8 fold. The thermal unfolding is reversible at pH = 8.0 and 9.0. The denatured state is characterized by extensive structural changes with respect to the native. The process is characterized by slow relaxation kinetics. Even slower refolding rates are recorded upon cooling. It is shown that the denaturation calorimetric data obtained at slow heating rate (0.17 K/min) are in excellent agreement with equilibrium data obtained by extrapolation of the experimental results to zero scanning rate. Analysis of the DSC results reveals that the experimental data can be successfully fitted using either a non-two-state sequential model involving one equilibrium intermediate, or an independent transitions model involving the unfolding of two Chi40 energetic domains to intermediate states. The stability of the native state with respect to the final denatured state is estimated, deltaG = 24.0 kcal/mol at 25 degrees C. The thermal results are in agreement with previous findings from chemical denaturation studies of a wide variety of (beta/alpha)8 barrel proteins, that their unfolding is a non-two-state process, always involving at least one unfolding intermediate.
Collapse
|
25
|
Garrido F, Gasset M, Sanz-Aparicio J, Alfonso C, Pajares M. Rat liver betaine-homocysteine S-methyltransferase equilibrium unfolding: insights into intermediate structure through tryptophan substitutions. Biochem J 2006; 391:589-99. [PMID: 15943585 PMCID: PMC1276960 DOI: 10.1042/bj20050505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Equilibrium folding of rat liver BHMT (betaine-homocysteine methyltransferase), a TIM (triosephosphate isomerase)-barrel tetrameric protein, has been studied using urea as denaturant. A combination of activity measurements, tryptophan fluorescence, CD and sedimentation-velocity studies suggested a multiphasic process including two intermediates, a tetramer (I4) and a monomer (J). Analysis of denaturation curves for single- and six-tryptophan mutants indicated that the main changes leading to the tetrameric intermediate are related to alterations in the helix alpha4 of the barrel, as well as in the dimerization arm. Further dissociation to intermediate J included changes in the loop connecting the C-terminal alpha-helix of contact between dimers, disruption of helix alpha4, and initial alterations in helix alpha7 of the barrel, as well as in the dimerization arm. Evolution of the monomeric intermediate continued through additional perturbations in helix alpha7 of the barrel and the C-terminal loop. Our data highlight the essential role of the C-terminal helix in dimer-dimer binding through its contribution to the increased stability shown by BHMT as compared with other TIM barrel proteins. The results are discussed in the light of the high sequence conservation shown by betaine-homocysteine methyltransferases and the knowledge available for other TIM-barrel proteins.
Collapse
Affiliation(s)
- Francisco Garrido
- *Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - María Gasset
- †Instituto de Química-Física ‘Rocasolano’ (CSIC), Serrano 119, 28006 Madrid, Spain
| | | | - Carlos Alfonso
- ‡Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María A. Pajares
- *Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- To whom correspondence should be addressed (email )
| |
Collapse
|
26
|
Akanuma S, Yamagishi A. Identification and Characterization of Key Substructures Involved in the Early Folding Events of a (β/α)8-barrel Protein as Studied by Experimental and Computational Methods. J Mol Biol 2005; 353:1161-70. [PMID: 16216267 DOI: 10.1016/j.jmb.2005.08.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 07/30/2005] [Accepted: 08/29/2005] [Indexed: 10/25/2022]
Abstract
A number of studies have examined the structural properties of late folding intermediates of (beta/alpha)8-barrel proteins involved in tryptophan biosynthesis, whereas there is little information available about the early folding events of these proteins. To identify the contiguous polypeptide segments important to the folding of the (beta/alpha)8-barrel protein Escherichia coli N-(5'-phosphoribosyl)anthranilate isomerase, we structurally characterized fragments and circularly permuted forms of the protein. We also simulated thermal unfolding of the protein using molecular dynamics. Our fragmentation experiments demonstrate that the isolated (beta/alpha)(1-4)beta5 fragment is almost as stable as the full-length protein. The far and near-UV CD spectra of this fragment are indicative of native-like secondary and tertiary structures. Structural analysis of the circularly permutated proteins shows that if the protein is cleaved within the two N-terminal betaalpha modules, the amount of secondary structure is unaffected, whereas, when cleaved within the central (beta/alpha)(3-4)beta5 segment, the protein simply cannot fold. An ensemble of the denatured structures produced by thermal unfolding simulations contains a persistent local structure comprised of beta3, beta4 and beta5. The presence of this three-stranded beta-barrel suggests that it may be an important early-stage folding intermediate. Interactions found in (beta/alpha)(3-4)beta5 may be essential for the early events of ePRAI folding if they provide a nucleation site that directs folding.
Collapse
Affiliation(s)
- Satoshi Akanuma
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | |
Collapse
|
27
|
Wu Y, Vadrevu R, Yang X, Matthews CR. Specific structure appears at the N terminus in the sub-millisecond folding intermediate of the alpha subunit of tryptophan synthase, a TIM barrel protein. J Mol Biol 2005; 351:445-52. [PMID: 16023136 DOI: 10.1016/j.jmb.2005.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 06/02/2005] [Accepted: 06/03/2005] [Indexed: 11/20/2022]
Abstract
Competing views of the products of sub-millisecond folding reactions observed in many globular proteins have been ascribed either to the formation of discrete, partially folded states or to the random collapse of the unfolded chain under native-favoring conditions. To test the validity of these alternative interpretations for the stopped-flow burst-phase reaction in the (betaalpha)8, TIM barrel motif, a series of alanine replacements were made at five different leucine or isoleucine residues in the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli. This protein has been proposed to fold, in the sub-millisecond time range, to an off-pathway intermediate with significant stability and approximately 50% of the far-UV circular dichroism (CD) signal of the native conformation. Individual alanine replacements at any of three isoleucine or leucine residues in either alpha1, beta2 or beta3 completely eliminate the off-pathway species. These variants, within 5 ms, access an intermediate whose properties closely resemble those of an on-pathway equilibrium intermediate that is highly populated at moderate urea concentrations in wild-type alphaTS. By contrast, alanine replacements for leucine residues in either beta4 or beta6 destabilize but preserve the off-pathway, burst-phase species. When considered with complementary thermodynamic and kinetic data, this mutational analysis demonstrates that the sub-millisecond appearance of CD signal for alphaTS reflects the acquisition of secondary structure in a distinct thermodynamic state, not the random collapse of an unfolded chain. The contrasting results for replacements in the contiguous alpha1/beta2/beta3 domain and the C-terminal beta4 and beta6 strands imply a heterogeneous structure for the burst-phase species. The alpha1/beta2/beta3 domain appears to be tightly packed, and the C terminus appears to behave as a molten-globule-like structure whose folding is tightly coupled to that of the alpha1/beta2/beta3 domain.
Collapse
Affiliation(s)
- Ying Wu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | | | |
Collapse
|
28
|
Patrick WM, Blackburn JM. In vitro selection and characterization of a stable subdomain of phosphoribosylanthranilate isomerase. FEBS J 2005; 272:3684-97. [PMID: 16008567 DOI: 10.1111/j.1742-4658.2005.04794.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The (beta(alpha))8-barrel is the most common enzyme fold and it is capable of catalyzing an enormous diversity of reactions. It follows that this scaffold should be an ideal starting point for engineering novel enzymes by directed evolution. However, experiments to date have utilized in vivo screens or selections and the compatibility of (beta(alpha))8-barrels with in vitro selection methods remains largely untested. We have investigated plasmid display as a suitable in vitro format by engineering a variant of phosphoribosylanthranilate isomerase (PRAI) that carried the FLAG epitope in active-site-forming loop 6. Trial enrichments for binding of mAb M2 (a mAb to FLAG) demonstrated that FLAG-PRAI could be identified from a 10(6)-fold excess of a FLAG-negative competitor in three rounds of in vitro selection. These results suggest PRAI as a useful scaffold for epitope and peptide grafting experiments. Further, we constructed a FLAG-PRAI loop library of approximately 10(7) clones, in which the epitope residues most critical for binding mAb M2 were randomized. Four rounds of selection for antibody binding identified and enriched for a variant in which a single nucleotide insertion produced a truncated (beta(alpha))8-barrel consisting of (beta(alpha))1-5beta6. Biophysical characterization of this clone, trPRAI, demonstrated that it was selected because of a 21-fold increase in mAb M2 affinity compared with full-length FLAG-PRAI. Remarkably, this truncated barrel was found to be soluble, structured, thermostable and monomeric, implying that it represents a genuine subdomain of PRAI and providing further evidence that such subdomains have played an important role in the evolution of the (beta(alpha))8-barrel fold.
Collapse
|
29
|
Finke JM, Onuchic JN. Equilibrium and kinetic folding pathways of a TIM barrel with a funneled energy landscape. Biophys J 2005; 89:488-505. [PMID: 15833999 PMCID: PMC1366549 DOI: 10.1529/biophysj.105.059147] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of native contact topology in the folding of a TIM barrel model based on the alpha-subunit of tryptophan synthase (alphaTS) from Salmonella typhimurium (Protein Data Bank structure 1BKS) was studied using both equilibrium and kinetic simulations. Equilibrium simulations of alphaTS reveal the population of two intermediate ensembles, I1 and I2, during unfolding/refolding at the folding temperature, Tf = 335 K. Equilibrium intermediate I1 demonstrates discrete structure in regions alpha0-beta6 whereas intermediate I2 is a loose ensemble of states with N-terminal structure varying from at least beta1-beta3 (denoted I2A) to alpha0-beta4 at most (denoted I2B). The structures of I1 and I2 match well with the two intermediate states detected in equilibrium folding experiments of Escherichia coli alphaTS. Kinetic folding simulations of alphaTS reveal the sequential population of four intermediate ensembles, I120Q, I200Q, I300Q, and I360Q, during refolding. Kinetic intermediates I120Q, I200Q, and I300Q are highly similar to equilibrium alphaTS intermediates I2A, I2B, and I1, respectively, consistent with kinetic experiments on alphaTS from E. coli. A small population (approximately 10%) of kinetic trajectories are trapped in the I120Q intermediate ensemble and require a slow and complete unfolding step to properly refold. Both the on-pathway and off-pathway I120Q intermediates show structure in beta1-beta3, which is also strikingly consistent with kinetic folding experiments of alphaTS. In the off-pathway intermediate I(120Q), helix alpha2 is wrapped in a nonnative chiral arrangement around strand beta3, sterically preventing the subsequent folding step between beta3 and beta4. These results demonstrate the success of combining kinetic and equilibrium simulations of minimalist protein models to explore TIM barrel folding and the folding of other large proteins.
Collapse
Affiliation(s)
- John M Finke
- The Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, California 92093-0374, USA
| | | |
Collapse
|
30
|
Wintrode PL, Rojsajjakul T, Vadrevu R, Matthews CR, Smith DL. An Obligatory Intermediate Controls the Folding of the α-Subunit of Tryptophan Synthase, a TIM Barrel Protein. J Mol Biol 2005; 347:911-9. [PMID: 15784252 DOI: 10.1016/j.jmb.2005.01.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Revised: 01/18/2005] [Accepted: 01/27/2005] [Indexed: 10/25/2022]
Abstract
The proposed kinetic folding mechanism of the alpha-subunit of tryptophan synthase (alphaTS), a TIM barrel protein, displays multiple unfolded and intermediate forms which fold through four parallel pathways to reach the native state. To obtain insight into the secondary structure that stabilizes a set of late, highly populated kinetic intermediates, the refolding of urea-denatured alphaTS from Escherichia coli was monitored by pulse-quench hydrogen exchange mass spectrometry. Following dilution from 8 M urea, the protein was pulse-labeled with deuterium, quenched with acid and mass analyzed by electrospray ionization mass spectrometry (ESI-MS). Hydrogen bonds that form prior to the pulse of deuterium offer protection against exchange and, therefore, retain protons at the relevant amide bonds. Consistent with the proposed refolding model, an intermediate builds up rapidly and decays slowly over the first 100 seconds of folding. ESI-MS analysis of the peptic fragments derived from alphaTS mass-labeled and quenched after two seconds of refolding indicates that the pattern of protection of the backbone amide hydrogens in this transient intermediate is very similar to that observed previously for the equilibrium intermediate of alphaTS highly populated at 3 M urea. The protection observed in a contiguous set of beta-strands and alpha-helices in the N terminus implies a significant role for this sub-domain in directing the folding of this TIM barrel protein.
Collapse
Affiliation(s)
- Patrick L Wintrode
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
31
|
Kohn JE, Millett IS, Jacob J, Zagrovic B, Dillon TM, Cingel N, Dothager RS, Seifert S, Thiyagarajan P, Sosnick TR, Hasan MZ, Pande VS, Ruczinski I, Doniach S, Plaxco KW. Random-coil behavior and the dimensions of chemically unfolded proteins. Proc Natl Acad Sci U S A 2004; 101:12491-6. [PMID: 15314214 PMCID: PMC515087 DOI: 10.1073/pnas.0403643101] [Citation(s) in RCA: 551] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spectroscopic studies have identified a number of proteins that appear to retain significant residual structure under even strongly denaturing conditions. Intrinsic viscosity, hydrodynamic radii, and small-angle x-ray scattering studies, in contrast, indicate that the dimensions of most chemically denatured proteins scale with polypeptide length by means of the power-law relationship expected for random-coil behavior. Here we further explore this discrepancy by expanding the length range of characterized denatured-state radii of gyration (R(G)) and by reexamining proteins that reportedly do not fit the expected dimensional scaling. We find that only 2 of 28 crosslink-free, prosthetic-group-free, chemically denatured polypeptides deviate significantly from a power-law relationship with polymer length. The R(G) of the remaining 26 polypeptides, which range from 16 to 549 residues, are well fitted (r(2) = 0.988) by a power-law relationship with a best-fit exponent, 0.598 +/- 0.028, coinciding closely with the 0.588 predicted for an excluded volume random coil. Therefore, it appears that the mean dimensions of the large majority of chemically denatured proteins are effectively indistinguishable from the mean dimensions of a random-coil ensemble.
Collapse
Affiliation(s)
- Jonathan E Kohn
- Interdepartmental Program in Biomolecular Science and Engineering, University of California-Santa Barbara, Santa Barbara, CA 93106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Rojsajjakul T, Wintrode P, Vadrevu R, Robert Matthews C, Smith DL. Multi-state Unfolding of the Alpha Subunit of Tryptophan Synthase, a TIM Barrel Protein: Insights into the Secondary Structure of the Stable Equilibrium Intermediates by Hydrogen Exchange Mass Spectrometry. J Mol Biol 2004; 341:241-53. [PMID: 15312776 DOI: 10.1016/j.jmb.2004.05.062] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 05/19/2004] [Accepted: 05/19/2004] [Indexed: 11/29/2022]
Abstract
The urea-induced unfolding of the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli, an eight-stranded (beta/alpha)(8) TIM barrel protein, has been shown to involve two stable equilibrium intermediates, I1 and I2, well populated at approximately 3 M and 5 M urea, respectively. The characterization of the I1 intermediate by circular dichroism (CD) spectroscopy has shown that I1 retains a significant fraction of the native ellipticity; the far-UV CD signal for the I2 species closely resembles that of the fully unfolded form. To obtain detailed insight into the disruption of secondary structure in the urea-induced unfolding process, a hydrogen exchange-mass spectrometry study was performed on alphaTS. The full-length protein was destabilized in increasing concentration of urea, the amide hydrogen atoms were pulse-labeled with deuterium, the labeled samples were quenched in acid and the products were analyzed by electrospray ionization mass spectrometry. Consistent with the CD results, the I1 intermediate protects up to approximately 129 amide hydrogen atoms against exchange while the I2 intermediate offers no protection. Electrospray ionization mass spectrometry analysis of the peptic fragments derived from alphaTS labeled at 3 M urea indicates that most of the region between residues 12-130, which constitutes the first four beta strands and three alpha helices, (beta/alpha)(1-3)beta(4), is structured. The (beta/alpha)(1-3)beta(4) module appears to represent the minimum sub-core of stability of the I1 intermediate. A 4+2+2 folding model is proposed as a likely alternative to the earlier 6+2 folding mechanism for alphaTS.
Collapse
|
33
|
Shukla A, Guptasarma P. Folding of β/α-unit scrambled forms of S. cerevisiae triosephosphate isomerase: Evidence for autonomy of substructure formation and plasticity of hydrophobic and hydrogen bonding interactions in core of (β/α)8-barrel. Proteins 2004; 55:548-57. [PMID: 15103619 DOI: 10.1002/prot.20066] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The (beta/alpha)(8)-barrel domain consists of eight topologically equivalent supersecondary structural motifs known as beta/alpha-units. Each unit consists of a single beta-strand, an alpha-helix, and two loops. Evidence collected in recent years indicates that the (beta/alpha)(8)-barrel motif may not be a single, autonomously-folding domain, as was previously assumed. Segments of some (beta/alpha)(8)-barrels appear to fold autonomously. However, the extent to which this is true of various (beta/alpha)(8)-barrel domains remains to be explored. In this study, we have scrambled (reshuffled) the native order of beta/alpha-units (1-2-3-4-5-6-7-8) comprising the polypeptide chain of a model (beta/alpha)(8)-barrel from S. cerevisiae, triosephosphate isomerase (TIM). Total scrambling was effected in order to examine whether folding can still occur to yield beta/alpha-structures in spite of a global 'destruction' of native hydrophobic and hydrogen bonding interactions among beta/alpha-units, while still allowing the occurrence of native interactions within individual units. Our results demonstrate that scrambled full-barrel forms (2-4-6-8-1-3-5-7 and 1-3-5-7-2-4-6-8), as well as half-barrel (2-4-6-8) and quarter-barrel (1-3) forms of TIM fold into beta/alpha-structures that sustain tertiary and quaternary structural interactions. In particular, one variant (2-4-6-8-1-3-5-7) was found to fold and form a stable dimer with native-like structural content and other characteristics. Our results demonstrate that (beta/alpha)(8)-barrels can tolerate profound alterations of both strand-strand interactions responsible for the creation of the beta-barrel and the geometry of presentation of nonpolar sidechains into the hydrophobic core of the beta-barrel by individual beta-strands. These findings lend support to our recent proposal1 that a hierarchy of interactions probably regulates structure formation and stability in (beta/alpha)(8)-barrels, where folding proceeds successively through three stages: (i) the tentative formation of individual beta/alpha-units which associate through 'near-neighbor' diffusion-collision interactions into (ii) curved assemblies of multiple beta/alpha-units through sequence-independent hydrogen bonding of strands of neighboring units, leading finally to (iii) the association of curved (quarter/half-barrel) assemblies around a common hydrophobic core through packing interactions that remain plastic and amenable to change.
Collapse
Affiliation(s)
- Anshuman Shukla
- Institute of Microbial Technology, Sector 39-A, Chandigarh, India
| | | |
Collapse
|
34
|
Pan H, Raza AS, Smith DL. Equilibrium and Kinetic Folding of Rabbit Muscle Triosephosphate Isomerase by Hydrogen Exchange Mass Spectrometry. J Mol Biol 2004; 336:1251-63. [PMID: 15037083 DOI: 10.1016/j.jmb.2003.12.076] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Revised: 12/21/2003] [Accepted: 12/22/2003] [Indexed: 11/26/2022]
Abstract
Unfolding and refolding of rabbit muscle triosephosphate isomerase (TIM), a model for (betaalpha)8-barrel proteins, has been studied by amide hydrogen exchange/mass spectrometry. Unfolding was studied by destabilizing the protein in guanidine hydrochloride (GdHCl) or urea, pulse-labeling with 2H2O and analyzing the intact protein by HPLC electrospray ionization mass spectrometry. Bimodal isotope patterns were found in the mass spectra of the labeled protein, indicating two-state unfolding behavior. Refolding experiments were performed by diluting solutions of TIM unfolded in GdHCl or urea and pulse-labeling with 2H2O at different times. Mass spectra of the intact protein labeled after one to two minutes had three envelopes of isotope peaks, indicating population of an intermediate. Kinetic modeling indicates that the stability of the folding intermediate in water is only 1.5 kcal/mol. Failure to detect the intermediate in the unfolding experiments was attributed to its low stability and the high concentrations of denaturant required for unfolding experiments. The folding status of each segment of the polypeptide backbone was determined from the deuterium levels found in peptic fragments of the labeled protein. Analysis of these spectra showed that the C-terminal half folds to form the intermediate, which then forms native TIM with folding of the N-terminal half. These results show that TIM folding fits the (4+4) model for folding of (betaalpha)8-barrel proteins. Results of a double-jump experiment indicate that proline isomerization does not contribute to the rate-limiting step in the folding of TIM.
Collapse
Affiliation(s)
- Hai Pan
- Department of Chemistry, Nebraska Center for Mass Spectrometry, University of Nebraska-Lincoln, 29 Hamilton Hall, Lincoln, NE 68588-0304, USA
| | | | | |
Collapse
|
35
|
Hiraga K, Yamagishi A, Oshima T. Mapping of unit boundaries of a protein: exhaustive search for permissive sites for duplication by complementation analysis of random fragment libraries of tryptophan synthase alpha subunit. J Mol Biol 2004; 335:1093-104. [PMID: 14698302 DOI: 10.1016/j.jmb.2003.11.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
To identify peptide units that make up a single-domain protein, we searched for possible combinations of N and C-fragments that exhibit functional complementation, and attempted an exhaustive evaluation of peptide unit boundaries. The tryptophan synthase alpha subunit was used as a model enzyme, which has a single TIM (beta8/alpha8) barrel domain. Libraries comprising randomly digested N and C-fragments were constructed, and clones expressing enzymatic activity were selected by the ability to confer growth of the Escherichia coli trpA mutant on a medium lacking tryptophan. More than 50 clones were obtained, and two cleavable positions were found on the loops after extra-helix 2' and helix 5. Half of the clones harbored N and C-fragments having an overlap between two fragments. The remaining clones harbored one fragment made by the fusion of N and C-fragments with insertional sequence duplication. Mapping the frequency of occurrence of fragment overlap and insertional duplication showed significant peaks at two loops, which coincide with the cleavable sites. These results suggest that the boundaries of unit fragments are located at these positions, and that bisection, fragment overlap and insertion are all possible at the unit boundaries.
Collapse
Affiliation(s)
- Kaori Hiraga
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | |
Collapse
|
36
|
Millett IS, Doniach S, Plaxco KW. Toward a taxonomy of the denatured state: small angle scattering studies of unfolded proteins. ADVANCES IN PROTEIN CHEMISTRY 2004; 62:241-62. [PMID: 12418105 DOI: 10.1016/s0065-3233(02)62009-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ian S Millett
- Department of Applied Physics, Stanford University, Stanford, California 92343, USA
| | | | | |
Collapse
|
37
|
Soberón X, Fuentes-Gallego P, Saab-Rincón G. In vivo fragment complementation of a (β/α)8barrel protein: generation of variability by recombination. FEBS Lett 2004; 560:167-72. [PMID: 14988017 DOI: 10.1016/s0014-5793(04)00098-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 01/08/2004] [Accepted: 01/15/2004] [Indexed: 11/25/2022]
Abstract
The high representation of the TIM barrel as a scaffold for enzymatic proteins makes it an interesting model for protein engineering. Based on previous reports of folding mechanisms of TIM barrels that suggest an independent folding unit formed by six (beta/alpha) subunits, we interrupted the gene of phosphoribosylanthranilate isomerase (PRAI) from Escherichia coli at three different positions to yield fragments with different combinations of (beta/alpha) subunits. When these constructions were expressed as polycistrons in a TrpF-E. coli strain, complementation of the function only occurred with fragments beta1-alpha4 and beta5-alpha8, demonstrating that (beta/alpha)(4) subunits are stable enough to survive in vivo conditions and to assemble to yield a functional enzyme. The expression of these fragments in a separated plasmid/phagemid system to complement the function gave a slower complementation in the TrpF-E. coli strain; this was overcome by introducing extra secondary elements to the structure that reinforce their interaction.
Collapse
Affiliation(s)
- Xavier Soberón
- Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62271, Mexico
| | | | | |
Collapse
|
38
|
Abstract
The (beta/alpha)(8) barrel is the most commonly occurring fold among enzymes. A key step towards rationally engineering (beta/alpha)(8) barrel proteins is to understand their underlying structural organization and folding energetics. Using misincorporation proton-alkyl exchange (MPAX), a new tool for solution structural studies of large proteins, we have performed a native-state exchange analysis of the prototypical (beta/alpha)(8) barrel triosephosphate isomerase. Three cooperatively unfolding subdomains within the structure are identified, as well as two partially unfolded forms of the protein. The C-terminal domain coincides with domains reported to exist in four other (beta/alpha)(8) barrels, but the two N-terminal domains have not been observed previously. These partially unfolded forms may represent sequential intermediates on the folding pathway of triosephosphate isomerase. The methods reported here should be applicable to a variety of other biological problems involving protein conformational changes.
Collapse
Affiliation(s)
- Joshua A Silverman
- Department of Biochemistry, Stanford University, 279 Campus Drive West, Stanford, CA 94305, USA
| | | |
Collapse
|
39
|
Wallace LA, Matthews CR. Sequential vs. parallel protein-folding mechanisms: experimental tests for complex folding reactions. Biophys Chem 2002; 101-102:113-31. [PMID: 12487994 DOI: 10.1016/s0301-4622(02)00155-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The recent emphasis on rough energy landscapes for protein folding reactions by theoreticians, and the many observations of complex folding kinetics by experimentalists provide a rationale for a brief literature survey of various empirical approaches for validating the underlying mechanisms. The determination of the folding mechanism is a key step in defining the energy surface on which the folding reactions occurs and in interpreting the effects of amino acid replacements on this reaction. Case studies that illustrate methods for differentiating between sequential and parallel channel folding mechanisms are presented. The ultimate goal of such efforts is to understand how the one-dimensional information contained in the amino acid sequence is rapidly and efficiently translated into three-dimensional structure.
Collapse
Affiliation(s)
- Louise A Wallace
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | | |
Collapse
|
40
|
Forsyth WR, Matthews CR. Folding mechanism of indole-3-glycerol phosphate synthase from Sulfolobus solfataricus: a test of the conservation of folding mechanisms hypothesis in (beta(alpha))(8) barrels. J Mol Biol 2002; 320:1119-33. [PMID: 12126630 DOI: 10.1016/s0022-2836(02)00557-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
As a test of the hypothesis that folding mechanisms are better conserved than sequences in TIM barrels, the equilibrium and kinetic folding mechanisms of indole-3-glycerol phosphate synthase (sIGPS) from the thermoacidophilic archaebacterium Sulfolobus solfataricus were compared to the well-characterized models of the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli. A multifaceted approach combining urea denaturation and far-UV circular dichroism, tyrosine fluorescence total intensity, and tyrosine fluorescence anisotropy was employed. Despite a sequence identity of only 13%, a stable intermediate (I) in sIGPS was found to be similar to a stable intermediate in alphaTS in terms of its thermodynamic properties and secondary structure. Kinetic experiments revealed that the fastest detectable folding event for sIGPS involves a burst-phase (<5ms) reaction that leads directly to the stable intermediate. The slower of two subsequent phases reflects the formation/disruption of an off-pathway dimeric form of I. The faster phase reflects the conversion of I to the native state and is limited by folding under marginally stable conditions and by isomerization or rearrangement under strongly folding conditions. By contrast, alphaTS is thought to fold via an off-pathway burst-phase intermediate whose unfolding controls access to a set of four on-pathway intermediates that comprise the stable equilibrium intermediate. At least three proline isomerization reactions are known to limit their interconversions and lead to a parallel channel mechanism. The simple sequential mechanism deduced for sIGPS reflects the dominance of the on-pathway burst-phase intermediate and the absence of prolyl residues that partition the stable intermediate into kinetically distinguishable species. Comparison of the results for sIGPS and alphaTS demonstrates that the thermodynamic properties and the final steps of the folding reaction are better conserved than the early events. The initial events in folding appear to be more sensitive to the sequence differences between the two TIM barrel proteins.
Collapse
Affiliation(s)
- William R Forsyth
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
41
|
Forcellino F, Derreumaux P. Computer simulations aimed at structure prediction of supersecondary motifs in proteins. Proteins 2001; 45:159-66. [PMID: 11562945 DOI: 10.1002/prot.1135] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
It is well established that protein structures are more conserved than protein sequences. One-third of all known protein structures can be classified into ten protein folds, which themselves are composed mainly of alpha-helical hairpin, beta hairpin, and betaalphabeta supersecondary structural elements. In this study, we explore the ability of a recent Monte Carlo-based procedure to generate the 3D structures of eight polypeptides that correspond to units of supersecondary structure and three-stranded antiparallel beta sheet. Starting from extended or misfolded compact conformations, all Monte Carlo simulations show significant success in predicting the native topology using a simplified chain representation and an energy model optimized on other structures. Preliminary results on model peptides from nucleotide binding proteins suggest that this simple protein folding model can help clarify the relation between sequence and topology.
Collapse
Affiliation(s)
- F Forcellino
- Information Génétique et Structurale, UMR 1889 CNRS, Marseille, France
| | | |
Collapse
|
42
|
Tsai CJ, Nussinov R. The building block folding model and the kinetics of protein folding. PROTEIN ENGINEERING 2001; 14:723-33. [PMID: 11739890 DOI: 10.1093/protein/14.10.723] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Here we show that qualitatively, the building blocks folding model accounts for three-state versus the two-state protein folding. Additionally, it is consistent with the faster versus slower folding rates of the two-state proteins. Specifically, we illustrate that the building blocks size, their mode of associations in the native structure, the number of ways they can combinatorially assemble, their population times and the way they are split in the iterative, step-by-step structural dissection which yields the anatomy trees, explain a broad range of folding rates. We further show that proteins with similar general topologies may have different folding pathways, and hence different folding rates. On the other hand, the effect of mutations resembles that of changes in conditions, shifting the population times and hence the energy landscapes. Hence, together with the secondary structure type and the extent of local versus non-local interactions, a coherent, consistent rationale for folding kinetics can be outlined, in agreement with experimental results. Given the native structure of a protein, these guidelines enable a qualitative prediction of the folding kinetics. We further describe these in the context of the protein folding energy landscape. Quantitatively, in principle, the diffusion-collision model for the building block association can be used. However, the folding rates of the building blocks and traps in their formation and association, need to be considered.
Collapse
Affiliation(s)
- C J Tsai
- Intramural Research Support Program-SAIC Laboratory of Experimental and Computational Biology, NCI-Frederick, National Institutes of Health, Bldg 469, Rm 151, Frederick, MD 21702, USA
| | | |
Collapse
|
43
|
Zhu H, Celinski SA, Scholtz JM, Hu JC. An engineered leucine zipper a position mutant with an unusual three-state unfolding pathway. Protein Sci 2001; 10:24-33. [PMID: 11266591 PMCID: PMC2249852 DOI: 10.1110/ps.30901] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The leucine zipper is a dimeric coiled-coil structural motif consisting of four to six heptad repeats, designated (abcdefg)(n). In the GCN4 leucine zipper, a position 16 in the third heptad is occupied by an Asn residue whereas the other a positions are Val residues. Recently, we have constructed variants of the GCN4 leucine zipper in which the a position Val residues were replaced by Ile. The folding and unfolding of the wild-type GCN4 leucine zipper and the Val to Ile variant both adhere to a simple two-state mechanism. In this study, another variant of the GCN4 leucine zipper was constructed by moving the single Asn residue from a position 16 to a position 9. This switch causes the thermal unfolding of the GCN4 leucine zipper to become three state. The unfolding pathway of this variant was determined by thermal denaturation, limited proteinase K digestion, and sedimentation equilibrium analysis. Our data are consistent with a model in which the variant first unfolds from its N terminus and changes the oligomerization specificity from a native dimer to a partially unfolded intermediate containing a mixture of dimers and trimers and then completely unfolds to unstructured monomers.
Collapse
Affiliation(s)
- H Zhu
- Department of Biochemistry and Biophysics, Center for Advanced Biomolecular Research, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
44
|
Tsai CJ, Maizel JV, Nussinov R. Anatomy of protein structures: visualizing how a one-dimensional protein chain folds into a three-dimensional shape. Proc Natl Acad Sci U S A 2000; 97:12038-43. [PMID: 11050234 PMCID: PMC17290 DOI: 10.1073/pnas.97.22.12038] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2000] [Indexed: 11/18/2022] Open
Abstract
Here, we depict the anatomy of protein structures in terms of the protein folding process. Via an iterative, top-down dissecting procedure, tertiary structures are spliced down to reveal their anatomy: first, to produce domains (defined by visual three-dimensional inspection criteria); then, hydrophobic folding units (HFU); and, at the end of a multilevel process, a set of building blocks. The resulting anatomy tree organization not only clearly depicts the organization of a one-dimensional polypeptide chain in three-dimensional space but also straightforwardly describes the most likely folding pathway(s). Comparison of the tree with the formation of the hydrophobic folding units through combinatorial assembly of the building blocks illustrates how the chain folds in a sequential or a complex folding pathway. Further, the tree points to the kinetics of the folding, whether the chain is a fast or a slow folder, and the probability of misfolding. Our ability to successfully dissect the protein into an anatomy tree illustrates that protein folding is a hierarchical process and further validates a building blocks protein folding model.
Collapse
Affiliation(s)
- C J Tsai
- Intramural Research Support Program-Science Applications International Corporation, Frederick, MD 21702, USA.
| | | | | |
Collapse
|
45
|
Moran LB, Schneider JP, Kentsis A, Reddy GA, Sosnick TR. Transition state heterogeneity in GCN4 coiled coil folding studied by using multisite mutations and crosslinking. Proc Natl Acad Sci U S A 1999; 96:10699-704. [PMID: 10485889 PMCID: PMC17946 DOI: 10.1073/pnas.96.19.10699] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have investigated the folding behavior of dimeric and covalently crosslinked versions of the 33-residue alpha-helical GCN4-p1 coiled coil derived from the leucine zipper region of the transcriptional activator GCN4. The effects of multisite substitutions indicate that folding occurs along multiple routes with nucleation sites located throughout the protein. The similarity in activation energies of the different routes together with an analysis of intrinsic helical propensities indicate that minimal helix is present before a productive collision of the two chains. However, approximately one-third to one-half of the total helical structure is formed in the postcollision transition state ensemble. For the crosslinked, monomeric version, folding occurs along a single robust pathway. Here, the region nearest the crosslink, with the least helical propensity, is structured in the transition state whereas the region farthest from the tether, with the most propensity, is completely unstructured. Hence, the existence of transition state heterogeneity and the selection of folding routes critically depend on chain topology.
Collapse
Affiliation(s)
- L B Moran
- Department of Biochemistry and Molecular Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|