1
|
Pellegrino S, Tonali N, Erba E, Kaffy J, Taverna M, Contini A, Taylor M, Allsop D, Gelmi ML, Ongeri S. β-Hairpin mimics containing a piperidine-pyrrolidine scaffold modulate the β-amyloid aggregation process preserving the monomer species. Chem Sci 2016; 8:1295-1302. [PMID: 28451272 PMCID: PMC5359901 DOI: 10.1039/c6sc03176e] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/05/2016] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease is a neurodegenerative disorder linked to oligomerization and fibrillization of amyloid β peptides, with Aβ1-42 being the most aggregative and neurotoxic one. We report herein the synthesis and conformational analysis of Aβ1-42-amyloid related β-hairpin peptidomimetics, built on a piperidine-pyrrolidine semi rigid β-turn inducer and bearing two small recognition peptide sequences, designed on oligomeric and fibril structures of Aβ1-42. According to these peptide sequences, a stable β-hairpin or a dynamic equilibrium between two possible architectures was observed. These original constructs are able to greatly delay the kinetics of Aβ1-42 aggregation process as demonstrated by thioflavin-T fluorescence, and transmission electron microscopy. Capillary electrophoresis indicates their ability to preserve the monomer species, inhibiting the formation of toxic oligomers. Furthermore, compounds protect against toxic effects of Aβ on neuroblastoma cells even at substoichiometric concentrations. This study is the first example of acyclic small β-hairpin mimics possessing such a highly efficient anti-aggregation activity. The protective effect is more pronounced than that observed with molecules which have undergone clinical trials. The structural elements made in this study provide valuable insights in the understanding of the aggregation process and insights to explore the design of novel acyclic β-hairpin targeting other types of amyloid-forming proteins.
Collapse
Affiliation(s)
- S Pellegrino
- DISFARM-Sez. Chimica Generale e Organica "A. Marchesini" , Universitá degli Studi di Milano , via Venezian 21 , 20133 Milano , Italy .
| | - N Tonali
- Molécules Fluorées et Chimie Médicinale , BioCIS , Univ. Paris-Sud , CNRS , Université Paris Saclay , 5 rue Jean-Baptiste Clément , 92296 Châtenay-Malabry Cedex , France .
| | - E Erba
- DISFARM-Sez. Chimica Generale e Organica "A. Marchesini" , Universitá degli Studi di Milano , via Venezian 21 , 20133 Milano , Italy .
| | - J Kaffy
- Molécules Fluorées et Chimie Médicinale , BioCIS , Univ. Paris-Sud , CNRS , Université Paris Saclay , 5 rue Jean-Baptiste Clément , 92296 Châtenay-Malabry Cedex , France .
| | - M Taverna
- Protéines et Nanotechnologies en Sciences Séparatives , Institut Galien Paris-Sud , Univ. Paris-Sud , CNRS , Université Paris Saclay , 5 rue Jean-Baptiste Clément , 92296 Châtenay-Malabry Cedex , France
| | - A Contini
- DISFARM-Sez. Chimica Generale e Organica "A. Marchesini" , Universitá degli Studi di Milano , via Venezian 21 , 20133 Milano , Italy .
| | - M Taylor
- Lancaster University , Division of Biomedical and Life Sciences , Faculty of Health and Medicine , Lancaster LA1 4YQ , UK
| | - D Allsop
- Lancaster University , Division of Biomedical and Life Sciences , Faculty of Health and Medicine , Lancaster LA1 4YQ , UK
| | - M L Gelmi
- DISFARM-Sez. Chimica Generale e Organica "A. Marchesini" , Universitá degli Studi di Milano , via Venezian 21 , 20133 Milano , Italy .
| | - S Ongeri
- Molécules Fluorées et Chimie Médicinale , BioCIS , Univ. Paris-Sud , CNRS , Université Paris Saclay , 5 rue Jean-Baptiste Clément , 92296 Châtenay-Malabry Cedex , France .
| |
Collapse
|
2
|
Shibata M, Koeda S, Noji T, Kawakami K, Ido Y, Amano Y, Umezawa N, Higuchi T, Dewa T, Itoh S, Kamiya N, Mizuno T. Design of New Extraction Surfactants for Membrane Proteins from Peptide Gemini Surfactants. Bioconjug Chem 2016; 27:2469-2479. [PMID: 27571354 DOI: 10.1021/acs.bioconjchem.6b00417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The development of additional extraction surfactants for membrane proteins is necessary for membrane protein research, since optimal combinations for the successful extraction of target membrane proteins from biological membranes that minimize protein denaturation are hard to predict. In particular, those that have a unique basal molecular framework are quite attractive and highly desired in this research field. In this study, we successfully constructed a new extraction surfactant for membrane proteins, NPDGC12KK, from the peptide-gemini-surfactant (PG-surfactant) molecular framework. The PG-surfactant is a U-shaped lipopeptide scaffold, consisting of a short linker peptide (-X-) between two long alkyl-chain-modified Cys residues and a peripheral peptide (Y-) at the N-terminal side of long alkyl-chain-modified Cys residues. Using photosystem I (PSI) and photosystem II (PSII) derived from Thermosynecoccus vulcanus as representative membrane proteins, we evaluated whether NPDGC12KK could solubilize membrane proteins while maintaining structure and functions. Neither the membrane integral domain nor the cytoplasmic domain of PSI and PSII suffered any damage upon the use of NPDGC12KK based on detailed photophysical measurements. Using thylakoid membranes of T. vulcanus as a representative biological membrane sample, we performed experiments to extract membrane proteins, such as PSI and PSII. Based on the extraction efficiency and maintenance of protein supramolecular structure established using clear native-PAGE analyses, we proved that NPDGC12KK functions as a novel class of peptide-containing extraction surfactants for membrane proteins.
Collapse
Affiliation(s)
- Masahide Shibata
- Graduate School of Engineering, Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Shuhei Koeda
- Graduate School of Engineering, Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Tomoyasu Noji
- Osaka City University , The OCU Advanced Research Institute for Natural Science & Technology (OCARINA), 3-3-138 Sugimoto-cho, Sumiyoshi, Osaka 558-8585, Japan
| | - Keisuke Kawakami
- Osaka City University , The OCU Advanced Research Institute for Natural Science & Technology (OCARINA), 3-3-138 Sugimoto-cho, Sumiyoshi, Osaka 558-8585, Japan
| | - Yuya Ido
- Graduate School of Engineering, Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yuichi Amano
- Graduate School of Pharmaceutical Sciences, Nagoya City University , 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Naoki Umezawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University , 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Tsunehiko Higuchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University , 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Takehisa Dewa
- Graduate School of Engineering, Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Shigeru Itoh
- Graduate School of Science, Nagoya University , Furo-cho, Chikusa-ku Nagoya, Aichi 464-8602, Japan
| | - Nobuo Kamiya
- Osaka City University , The OCU Advanced Research Institute for Natural Science & Technology (OCARINA), 3-3-138 Sugimoto-cho, Sumiyoshi, Osaka 558-8585, Japan
| | - Toshihisa Mizuno
- Graduate School of Engineering, Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
3
|
Xu Z, Zhang S, Weber JK, Luan B, Zhou R, Li J. Sequential protein unfolding through a carbon nanotube pore. NANOSCALE 2016; 8:12143-12151. [PMID: 26899409 DOI: 10.1039/c6nr00410e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An assortment of biological processes, like protein degradation and the transport of proteins across membranes, depend on protein unfolding events mediated by nanopore interfaces. In this work, we exploit fully atomistic simulations of an artificial, CNT-based nanopore to investigate the nature of ubiquitin unfolding. With one end of the protein subjected to an external force, we observe non-canonical unfolding behaviour as ubiquitin is pulled through the pore opening. Secondary structural elements are sequentially detached from the protein and threaded into the nanotube, interestingly, the remaining part maintains native-like characteristics. The constraints of the nanopore interface thus facilitate the formation of stable "unfoldon" motifs above the nanotube aperture that can exist in the absence of specific native contacts with the other secondary structure. Destruction of these unfoldons gives rise to distinct force peaks in our simulations, providing us with a sensitive probe for studying the kinetics of serial unfolding events. Our detailed analysis of nanopore-mediated protein unfolding events not only provides insight into how related processes might proceed in the cell, but also serves to deepen our understanding of structural arrangements which form the basis for protein conformational stability.
Collapse
Affiliation(s)
- Zhonghe Xu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Shuang Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China. and Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Jeffrey K Weber
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Binquan Luan
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Ruhong Zhou
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA and Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Jingyuan Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Abstract
Since the first report in 1993 (JACS 115, 5887-5888) of a peptide able to form a monomeric β-hairpin structure in aqueous solution, the design of peptides forming either β-hairpins (two-stranded antiparallel β-sheets) or three-stranded antiparallel β-sheets has become a field of growing interest and activity. These studies have yielded great insights into the principles governing the stability and folding of β-hairpins and antiparallel β-sheets. This chapter provides an overview of the reported β-hairpin/β-sheet peptides focussed on the applied design criteria, reviews briefly the factors contributing to β-hairpin/β-sheet stability, and describes a protocol for the de novo design of β-sheet-forming peptides based on them. Guidelines to select appropriate turn and strand residues and to avoid self-association are provided. The methods employed to check the success of new designed peptides are also summarized. Since NMR is the best technique to that end, NOEs and chemical shifts characteristic of β-hairpins and three-stranded antiparallel β-sheets are given.
Collapse
Affiliation(s)
- M Angeles Jiménez
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Química Física Rocasolano (IQFR), Serrano 119, 28006, Madrid, Spain,
| |
Collapse
|
5
|
Tsai M, Yuan J, Yamaki M, Lin C, Lin SH. Molecular Dynamics Insight into the Diverse Thermodynamic Behavior of a Beta‐Hairpin Peptide. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201300173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Min‐Yeh Tsai
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30010, ROC
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617, ROC
| | - Jian‐Min Yuan
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Masahiro Yamaki
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30010, ROC
| | - Chih‐Kai Lin
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30010, ROC
| | - Sheng Hsien Lin
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30010, ROC
| |
Collapse
|
6
|
Hairpin conformation of an 11-mer peptide. Bioorg Med Chem 2011; 19:3497-501. [PMID: 21543228 DOI: 10.1016/j.bmc.2011.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/07/2011] [Accepted: 04/11/2011] [Indexed: 11/23/2022]
|
7
|
Shao Q, Gao YQ. Temperature Dependence of Hydrogen-Bond Stability in β-Hairpin Structures. J Chem Theory Comput 2010. [DOI: 10.1021/ct100436r] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qiang Shao
- College of Chemistry and Molecular Engineering, National Laboratory of Molecular Sciences, Peking University, Beijing, China
| | - Yi Qin Gao
- College of Chemistry and Molecular Engineering, National Laboratory of Molecular Sciences, Peking University, Beijing, China
| |
Collapse
|
8
|
Maestro B, Santiveri CM, Jiménez MA, Sanz JM. Structural autonomy of a β-hairpin peptide derived from the pneumococcal choline-binding protein LytA. Protein Eng Des Sel 2010; 24:113-22. [DOI: 10.1093/protein/gzq087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Pasikowski P, Cydzik M, Kluczyk A, Stefanowicz P, Szewczuk Z. Ubiquitin fragments: their known biological activities and putative roles. Biomol Concepts 2010; 1:67-83. [PMID: 25961987 DOI: 10.1515/bmc.2010.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ubiquitin (Ub) is involved in many key processes of cell biology. Identification of compounds that could interfere in the ubiquitination process is of importance. It could be expected that peptides derived from the Ub-binding regions might be able to interact with Ub receptors themselves and modify an ability of the Ub receptors interactions. This review summarizes current knowledge about known Ub-derived peptides and discusses putative activity of unexplored Ub fragments. Among identified biologically active Ub-derived peptides, its decapeptide fragment of the LEDGRTLSDY sequence was found to exhibit strong immunosuppressive effects on the cellular and humoral immune responses, comparable to that of cyclosporine. Some of the Ub fragments possess strong antibacterial and antifungal potency. In the search for new peptides that could interfere in the interaction of Ub with other proteins, we investigated the pentapeptide Ub sequences present in non-ubiquitin proteins. Based on examination of the Swiss-Prot database, we postulated that sequences of some Ub fragments often exist in other protein molecules. However, some of those motives are represented more frequently than others and could be involved in regulation of cellular processes related to Ub.
Collapse
|
10
|
Huang JR, Grzesiek S. Ensemble calculations of unstructured proteins constrained by RDC and PRE data: a case study of urea-denatured ubiquitin. J Am Chem Soc 2010; 132:694-705. [PMID: 20000836 DOI: 10.1021/ja907974m] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The detailed, quantitative characterization of unfolded proteins is a largely unresolved task due to the enormous experimental and theoretical difficulties in describing the highly dimensional space of their conformational ensembles. Recently, residual dipolar coupling (RDC) and paramagnetic relaxation enhancement (PRE) data have provided large numbers of experimental parameters on unfolded states. To obtain a minimal model of the unfolded state according to such data we have developed new modules for the use of steric alignment RDCs and PREs as constraints in ensemble structure calculations by the program XPLOR-NIH. As an example, ensemble calculations were carried out on urea-denatured ubiquitin using a total of 419 previously obtained RDCs and 253 newly determined PREs from eight cysteine mutants coupled to MTSL. The results show that only a small number of about 10 conformers is necessary to fully reproduce the experimental RDCs, PREs and average radius of gyration. C(alpha) contacts determined on a large set (400) of 10-conformer ensembles show significant (10-20%) populations of conformations that are similar to ubiquitin's A-state, i.e. corresponding to an intact native first beta-hairpin and alpha-helix as well as non-native alpha-helical conformations in the C-terminal half. Thus, methanol/acid (A-state) and urea denaturation lead to similar low energy states of the protein ensemble, presumably due to the weakening of the hydrophobic core. Similar contacts are obtained in calculations using solely RDCs or PREs. The sampling statistics of the C(alpha) contacts in the ensembles follow a simple binomial distribution. It follows that the present RDC, PRE, and computational methods allow the statistically significant detection of subconformations in the unfolded ensemble at population levels of a few percent.
Collapse
Affiliation(s)
- Jie-rong Huang
- Division of Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | | |
Collapse
|
11
|
Mishra P, Volety S, Rao CM, Prabha CR. Glutamate64 to Glycine Substitution in G1 -bulge of Ubiquitin Impairs Function and Stabilizes Structure of the Protein. J Biochem 2009; 146:563-9. [DOI: 10.1093/jb/mvp106] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Batyanovskii AV, Vlasov PK. Short protein segments with prevalent conformation. Biophysics (Nagoya-shi) 2009. [DOI: 10.1134/s0006350908040040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Chen RPY, Liang FC, Lee CT, Zerella R, Chan SI. Contributions of a Surface Hydrophobic Cluster to the Folding and Structural Stability of Ubiquitin. J CHIN CHEM SOC-TAIP 2008. [DOI: 10.1002/jccs.200800116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Determination of the Transition State Ensemble for the Folding of Ubiquitin from a Combination of Φ and Ψ Analyses. J Mol Biol 2008; 377:575-88. [DOI: 10.1016/j.jmb.2008.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 12/06/2007] [Accepted: 01/04/2008] [Indexed: 11/21/2022]
|
15
|
Urbič T, Urbič T, Avbelj F, Dill KA. Molecular Simulations Find Stable Structures in Fragments of Protein G. Acta Chim Slov 2008; 2008:385-395. [PMID: 20448839 PMCID: PMC2864544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023] Open
Abstract
We perform all-atom computer simulations on nearly one hundred 6-, 8-, 10-, and 12-mer peptide fragments of protein G, and look for stable states. We simulated by replica-exchange molecular dynamics using Amber7 with the parm96 force-field and a GB/SA (generalized-Born/solvent accessible) implicit solvent model. We find that useful diagnostics for identifying stable converged structures are the conformational entropy and free energy of each state. A large gap in the ground-state free-energy, and a low entropy indicate convergence to a single preferred peptide conformation. We find that a non-negligible fraction of such structures have some native-like character. Such physics-based modeling may be useful for identifying early nuclei in folding kinetics and for assisting in protein-structure prediction methods that utilize the assembly of peptide fragments.
Collapse
Affiliation(s)
- Tjaša Urbič
- National Institute of Chemistry Slovenia, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
16
|
Riemen AJ, Waters ML. Stabilization of the N-terminal β-hairpin of ubiquitin by a terminal hydrophobic cluster. Biopolymers 2007; 90:394-8. [PMID: 17803200 DOI: 10.1002/bip.20840] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Study of model beta-hairpin peptides allows for better understanding of the factors involved in the formation of beta-sheet secondary structure in proteins. It is known that turn sequence, sidechain-sidechain interactions, interstrand hydrogen bonding, and beta-sheet propensity of residues are all important for beta-hairpin stability in aqueous solution. However, interactions of the sidechains of the terminal residues of hairpins are thought to contribute little to overall hairpin stability since these residues are typically frayed. Here, the authors report a stabilizing hydrophobic cluster of residues at the termini of the naturally occurring excised N-terminal beta-hairpin of Ubiquitin that folds autonomously in aqueous solution. Our data show that deletion of Met1 and Val17 from this hairpin destabilized the folded state in both aqueous solution and in aqueous-methanol solutions. These results suggest that interactions of terminal residues which are usually frayed can nonetheless contribute significantly to overall stability of beta-hairpin.
Collapse
Affiliation(s)
- Alex J Riemen
- Department of Chemistry, CB 3290, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
17
|
Chung HS, Ganim Z, Jones KC, Tokmakoff A. Transient 2D IR spectroscopy of ubiquitin unfolding dynamics. Proc Natl Acad Sci U S A 2007; 104:14237-42. [PMID: 17551015 PMCID: PMC1964855 DOI: 10.1073/pnas.0700959104] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Indexed: 11/18/2022] Open
Abstract
Transient two-dimensional infrared (2D IR) spectroscopy is used as a probe of protein unfolding dynamics in a direct comparison of fast unfolding experiments with molecular dynamics simulations. In the experiments, the unfolding of ubiquitin is initiated by a laser temperature jump, and protein structural evolution from nanoseconds to milliseconds is probed using amide I 2D IR spectroscopy. The temperature jump prepares a subensemble near the unfolding transition state, leading to quasi-barrierless unfolding (the "burst phase") before the millisecond activated unfolding kinetics. The burst phase unfolding of ubiquitin is characterized by a loss of the coupling between vibrations of the beta-sheet, a process that manifests itself in the 2D IR spectrum as a frequency blue-shift and intensity decrease of the diagonal and cross-peaks of the sheet's two IR active modes. As the sheet unfolds, increased fluctuations and solvent exposure of the beta-sheet amide groups are also characterized by increases in homogeneous linewidth. Experimental spectra are compared with 2D IR spectra calculated from the time-evolving structures in a molecular dynamics simulation of ubiquitin unfolding. Unfolding is described as a sequential unfolding of strands in ubiquitin's beta-sheet, using two collective coordinates of the sheet: (i) the native interstrand contacts between adjacent beta-strands I and II and (ii) the remaining beta-strand contacts within the sheet. The methods used illustrate the general principles by which 2D IR spectroscopy can be used for detailed dynamical comparisons of experiment and simulation.
Collapse
Affiliation(s)
- Hoi Sung Chung
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ziad Ganim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Kevin C. Jones
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Andrei Tokmakoff
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
18
|
Ostuni A, Bochicchio B, Armentano MF, Bisaccia F, Tamburro AM. Molecular and supramolecular structural studies on human tropoelastin sequences. Biophys J 2007; 93:3640-51. [PMID: 17693470 PMCID: PMC2072060 DOI: 10.1529/biophysj.107.110809] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the unusual properties of elastin is its ability to coacervate, which has been proposed to play an important role in the alignment of monomeric elastin for cross-linking into the polymeric elastin matrix. The temperature at which this transition takes place depends on several factors including protein concentration, ionic strength, and pH. Previously, polypeptide sequences encoded by different exons of the human tropoelastin gene have been analyzed for their ability to coacervate and to self-assemble. Few of them were indeed able to coacervate and only one, that encoded by exon 30 (EX30), gave amyloid fibers. In this article, we report on two chemically synthesized peptides-a decapeptide and an octadecapeptide-whose sequences are contained in the longer EX30 peptide and on a polypeptide (EX1-7) of 125 amino-acid residues corresponding to the sequence coded by the exons 1-7 and on a polypeptide (EX2-7) of 99 amino-acid residues encoded by exons 2-7 of human tropoelastin obtained by recombinant DNA techniques. Molecular and supramolecular structural characterization of these peptides showed that a minimum sequence of approximately 20 amino acids is needed to form amyloid fibers in the exon 30-derived peptides. The N-terminal region of mature tropoelastin (EX2-7) gives rise to a coacervate and forms elastinlike fibers, whereas the polypeptide sequence containing the signal peptide (EX1-7) forms mainly amyloid fibers. Circular dichroism spectra show that beta-structure is ubiquitous in all the sequences studied, suggesting that the presence of a beta-structure is a necessary, although not sufficient, requirement for the appearance of amyloid fibers.
Collapse
Affiliation(s)
- Angela Ostuni
- Department of Chemistry, University of Basilicata, Potenza, Italy
| | | | | | | | | |
Collapse
|
19
|
Shi Z, Chen K, Liu Z, Sosnick TR, Kallenbach NR. PII structure in the model peptides for unfolded proteins: studies on ubiquitin fragments and several alanine-rich peptides containing QQQ, SSS, FFF, and VVV. Proteins 2007; 63:312-21. [PMID: 16362932 DOI: 10.1002/prot.20788] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A great deal of attention has been paid lately to the structures in unfolded proteins due to the recent discovery of many biologically functional but natively unfolded proteins and the far-reaching implications of order in unfolded states for protein folding. Recently, studies on oligo-Ala, oligo-Lys, oligo-Asp, and oligo-Glu, as well as oligo-Pro, have indicated that the left-handed polyproline II (PII) is the major local structure in these short peptides. Here, we show by NMR and CD studies that ubiquitin fragments, model unfolded peptides composed of nonrepeating amino acids, and four alanine-rich peptides containing QQQ, SSS, FFF, and VVV sequences are all present in aqueous solution predominantly in the extended PII or beta conformation. The results from this and related studies indicate that PII might be a major backbone conformation in unfolded proteins. The presence of defined local backbone structure in unfolded proteins is inconsistent with predictions from random coil models.
Collapse
Affiliation(s)
- Zhengshuang Shi
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | | | | | |
Collapse
|
20
|
Dulin F, Callebaut I, Colloc'h N, Mornon JP. Sequence-based modeling of Aβ42 soluble oligomers. Biopolymers 2007; 85:422-37. [PMID: 17211889 DOI: 10.1002/bip.20675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abeta fibrils, which are central to the pathology of Alzheimer's disease, form a cross-beta-structure that contains likely parallel beta-sheets with a salt bridge between residues Asp23 and Lys28. Recent studies suggest that soluble oligomers of amyloid peptides have neurotoxic effects in cell cultures, raising the interest in studying the structures of these intermediate forms. Here, we present three models of possible soluble Abeta forms based on the sequences similarities, assumed to support local structural similarities, of the Abeta peptide with fragments of three proteins (adhesin, Semliki Forest virus capsid protein, and transthyretin). These three models share a similar structure in the C-terminal region composed of two beta-strands connected by a loop, which contain the Asp23-Lys28 salt bridge. This segment is also structurally well conserved in Abeta fibril forms. Differences between the three monomeric models occur in the N-terminal region and in the C-terminal tail. These three models might sample some of the most stable conformers of the soluble Abeta peptide within oligomeric assemblies, which were modeled here in the form of dimers, trimers, tetramers, and hexamers. The consistency of these models is discussed with respect to available experimental and theoretical data.
Collapse
Affiliation(s)
- Fabienne Dulin
- Département de Biologie Structurale, IMPMC, CNRS UMR7590, Universités Pierre et Marie Curie-Paris 6 et Denis Diderot-Paris 7, F-75005 France
| | | | | | | |
Collapse
|
21
|
Gräter F, Grubmüller H. Fluctuations of primary ubiquitin folding intermediates in a force clamp. J Struct Biol 2006; 157:557-69. [PMID: 17306561 DOI: 10.1016/j.jsb.2006.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 10/19/2006] [Accepted: 11/01/2006] [Indexed: 10/23/2022]
Abstract
Folding experiments of single ubiquitin molecules under force clamp using an atomic force microscope revealed a dynamic long-lived intermediate with nanometer scale end-to-end distance fluctuations along an unexpectedly complex folding pathway. To examine the nature of this intermediate at the atomic level as well as the driving forces that give rise to the observed fluctuations, we performed molecular dynamics refolding simulations of unfolded ubiquitin under constant force. After an initial fast collapse, we find a highly dynamic, broad ensemble of conformations with partial and continuously changing secondary structure and side chain interactions. This ensemble resembles a molten-globule-like state, similar in nature to the previously described non-native state of ubiquitin in solution, but stretched by the external force. The scale of the end-to-end distance fluctuations derived from the simulations compares well with experiment. Transient formation of unspecific and metastable hydrophobic clusters along the chain are found to give rise to the observed end-to-end distance fluctuations. These distinct collapses, interpreted as folding attempts, imply an upper limit for the folding attempt frequency of approximately 10 ns. Our results suggest possible relations between force-induced unfolding and temperature or chemically induced denaturation.
Collapse
Affiliation(s)
- Frauke Gräter
- Theoretical and Computational Biophysics Department, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | |
Collapse
|
22
|
Campbell-Valois FX, Michnick SW. The transition state of the ras binding domain of Raf is structurally polarized based on Phi-values but is energetically diffuse. J Mol Biol 2006; 365:1559-77. [PMID: 17137592 DOI: 10.1016/j.jmb.2006.10.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 09/05/2006] [Accepted: 10/24/2006] [Indexed: 11/24/2022]
Abstract
The ras binding domain (RBD) of the Ser/Thr kinase c-Raf/Raf-1 spans 78 residues and adopts a structure characteristic of the beta-grasp ubiquitin-like topology. Recently, the primary sequence of Raf RBD has been nearly exhaustively mutated experimentally by insertion of stretches of degenerate codons, which revealed sequence conservation and hydrophobic core organization similar to that found in an alignment of beta-grasp ubiquitin-like proteins. These results now allow us to examine the relationship between sequence conservation and the folding process, particularly viewed through the analysis of transition state (TS) structure. Specifically, we present herein a protein engineering study combining classic truncation (Ala/Gly) and atypical mutants to predict folding TS ensemble properties. Based on classical Phi-value analysis, Raf RBD TS structure is particularly polarized around the N-terminal beta-hairpin. However, all residues constituting the inner layer of the hydrophobic core are involved in TS stabilization, although they are clearly found in a less native-like environment. The TS structure can also be probed by a direct measure of its destabilization upon mutation, DeltaDeltaG(U-++). Viewed through this analysis, Raf RBD TS is a more diffuse structure, in which all residues of the hydrophobic core including beta-strands 1, 2, 3 and 5 and the major alpha-helix play similar roles in TS stabilization. In addition, Phi-values and DeltaDeltaG(U-++) reveal striking similarities in the TS of Raf RBD and ubiquitin, a structural analogue displaying insignificant sequence identity (<12%). However, ubiquitin TS appears more denatured-like and polarized around the N-terminal beta-hairpin. We suggest that analysis of Phi-values should also consider the direct impact of mutations on differences in free energy between the unfolded and TS (DeltaDeltaG(U-++)) to ensure that the description of TS properties is accurate. Finally, the impact of these findings on the modeling of protein folding is discussed.
Collapse
Affiliation(s)
- F-X Campbell-Valois
- Département de Biochimie, Université de Montréal, C.P. 6128, Succ. centre-ville, Montréal, Québec, Canada H3C 3J7
| | | |
Collapse
|
23
|
Abstract
The authors studied the temperature-induced unfolding of ubiquitin by all-atom Monte Carlo simulations. The unfolding behavior is compared with that seen in previous simulations of the mechanical unfolding of this protein, based on the same model. In mechanical unfolding, secondary-structure elements were found to break in a quite well-defined order. In thermal unfolding, the authors saw somewhat larger event-to-event fluctuations, but the unfolding pathway was still far from random. Two long-lived secondary-structure elements could be identified in the simulations. These two elements have been found experimentally to be the thermally most stable ones. Interestingly, one of these long-lived elements, the first beta-hairpin, was found to break early in the mechanical unfolding simulations. Their combined simulation results thus enable the authors to predict in detail important differences between the thermal and mechanical unfolding behaviors of ubiquitin.
Collapse
Affiliation(s)
- Anders Irbäck
- Complex Systems Division, Department of Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden.
| | | |
Collapse
|
24
|
Campbell-Valois FX, Tarassov K, Michnick SW. Massive sequence perturbation of the Raf ras binding domain reveals relationships between sequence conservation, secondary structure propensity, hydrophobic core organization and stability. J Mol Biol 2006; 362:151-71. [PMID: 16916524 DOI: 10.1016/j.jmb.2006.06.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 05/23/2006] [Accepted: 06/21/2006] [Indexed: 11/25/2022]
Abstract
The contributions of specific residues to the delicate balance between function, stability and folding rates could be determined, in part by [corrected] comparing the sequences of structures having identical folds, but insignificant sequence homology. Recently, we have devised an experimental strategy to thoroughly explore residue substitutions consistent with a specific class of structure. Using this approach, the amino acids tolerated at virtually all residues of the c-Raf/Raf1 ras binding domain (Raf RBD), an exemplar of the common beta-grasp ubiquitin-like topology, were obtained and used to define the sequence determinants of this fold. Herein, we present analyses suggesting that more subtle sequence selection pressure, including propensity for secondary structure, the hydrophobic core organization and charge distribution are imposed on the Raf RBD sequence. Secondly, using the Gibbs free energies (DeltaG(F-U)) obtained for 51 mutants of Raf RBD, we demonstrate a strong correlation between amino acid conservation and the destabilization induced by truncating mutants. In addition, four mutants are shown to significantly stabilize Raf RBD native structure. Two of these mutations, including the well-studied R89L, are known to severely compromise binding affinity for ras. Another stabilized mutant consisted of a deletion of amino acid residues E104-K106. This deletion naturally occurs in the homologues a-Raf and b-Raf and could indicate functional divergence. Finally, the combination of mutations affecting five of 78 residues of Raf RBD results in stabilization of the structure by approximately 12 kJ mol(-1) (DeltaG(F-U) is -22 and -34 kJ mol(-1) for wt and mutant, respectively). The sequence perturbation approach combined with sequence/structure analysis of the ubiquitin-like fold provide a basis for the identification of sequence-specific requirements for function, stability and folding rate of the Raf RBD and structural analogues, highlighting the utility of conservation profiles as predictive tools of structural organization.
Collapse
Affiliation(s)
- F-X Campbell-Valois
- Département de Biochimie, Université de Montréal, C.P. 6128, Succ. centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | |
Collapse
|
25
|
Sosnick TR, Krantz BA, Dothager RS, Baxa M. Characterizing the Protein Folding Transition State Using ψ Analysis. Chem Rev 2006; 106:1862-76. [PMID: 16683758 DOI: 10.1021/cr040431q] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tobin R Sosnick
- Department of Biochemistry, Institute for Biophysical Dynamics, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA.
| | | | | | | |
Collapse
|
26
|
Abstract
For the past twenty years, the small, 76-residue protein ubiquitin has been used as a model system to study protein structure, stability, folding and dynamics. In this time, ubiquitin has become a paradigm for both the experimental and computational folding communities. The folding energy landscape is now uniquely characterised with a plethora of information available on not only the native and denatured states, but partially structured states, alternatively folded states and locally unfolded states, in addition to the transition state ensemble. This Perspective focuses on the experimental characterisation of ubiquitin using a comprehensive range of biophysical techniques.
Collapse
Affiliation(s)
- Sophie E Jackson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK CB2 1EW.
| |
Collapse
|
27
|
Ho BK, Dill KA. Folding very short peptides using molecular dynamics. PLoS Comput Biol 2006; 2:e27. [PMID: 16617376 PMCID: PMC1435986 DOI: 10.1371/journal.pcbi.0020027] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 02/20/2005] [Indexed: 11/29/2022] Open
Abstract
Peptides often have conformational preferences. We simulated 133 peptide 8-mer fragments from six different proteins, sampled by replica-exchange molecular dynamics using Amber7 with a GB/SA (generalized-Born/solvent-accessible electrostatic approximation to water) implicit solvent. We found that 85 of the peptides have no preferred structure, while 48 of them converge to a preferred structure. In 85% of the converged cases (41 peptides), the structures found by the simulations bear some resemblance to their native structures, based on a coarse-grained backbone description. In particular, all seven of the β hairpins in the native structures contain a fragment in the turn that is highly structured. In the eight cases where the bioinformatics-based I-sites library picks out native-like structures, the present simulations are largely in agreement. Such physics-based modeling may be useful for identifying early nuclei in folding kinetics and for assisting in protein-structure prediction methods that utilize the assembly of peptide fragments. To carry out specific biochemical reactions, proteins must adopt precise three-dimensional conformations. During the folding of a protein, the protein picks out the right conformation out of billions of other conformations. It is not yet possible to do this computationally. Picking out the native conformation using physics-based atomically detailed models, sampled by molecular dynamics, is presently beyond the reach of computer methods. How can we speed up computational protein-structure prediction? One idea is that proteins start folding at specific parts of a chain that kink up early in the folding process. If we can identify these kinks, we should be able to speed up protein-structure prediction. Previous studies have identified likely kinks through bioinformatic analysis of existing protein structures. The goal of the authors here is to identify these putative folding initiation sites with a physical model instead. In this study, Ho and Dill show that, by chopping a protein chain into peptide pieces, then simulating the pieces in molecular dynamics, they can identify those peptide fragments that have conformational biases. These peptides identify the kinks in the protein chain.
Collapse
Affiliation(s)
- Bosco K Ho
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA.
| | | |
Collapse
|
28
|
Kumar A, Srivastava S, Mishra RK, Mittal R, Hosur RV. Local structural preferences and dynamics restrictions in the urea-denatured state of SUMO-1: NMR characterization. Biophys J 2006; 90:2498-509. [PMID: 16415059 PMCID: PMC1403170 DOI: 10.1529/biophysj.105.071746] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2005] [Accepted: 12/29/2005] [Indexed: 12/31/2022] Open
Abstract
We have investigated by multidimensional NMR the structural and dynamic characteristics of the urea-denatured state of activated SUMO-1, a 97-residue protein belonging to the growing family of ubiquitin-like proteins involved in post-translational modifications. Complete backbone amide and 15N resonance assignments were obtained in the denatured state by using HNN and HN(C)N experiments. These enabled other proton assignments from TOCSY-HSQC spectra. Secondary Halpha chemical shifts and 1H-1H NOE indicate that the protein chain in the denatured state has structural preferences in the broad beta-domain for many residues. Several of these are seen to populate the (phi,psi) space belonging to polyproline II structure. Although there is no evidence for any persistent structures, many contiguous stretches of three or more residues exhibit structural propensities suggesting possibilities of short-range transient structure formation. The hetero-nuclear 1H-15N NOEs are extremely weak for most residues, except for a few at the C-terminal, and the 15N relaxation rates show sequence-wise variation. Some of the regions of slow motions coincide with those of structural preferences and these are interspersed by highly flexible residues. The implications of these observations for the early folding events starting from the urea-denatured state of activated SUMO-1 have been discussed.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | | | | | | |
Collapse
|
29
|
Bofill R, Searle MS. Engineering Stabilising β-Sheet Interactions into a Conformationally Flexible Region of the Folding Transition State of Ubiquitin. J Mol Biol 2005; 353:373-84. [PMID: 16169558 DOI: 10.1016/j.jmb.2005.08.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 08/18/2005] [Accepted: 08/19/2005] [Indexed: 11/30/2022]
Abstract
Protein engineering studies suggest that the transition state for the folding of ubiquitin is highly polarised towards the N-terminal part of the sequence and involves a nucleus of residues within the beta-hairpin (residues 1-17) and main alpha-helix (residues 23-34). In contrast, the observation of small phi-values for residues in the C-terminal portion of the sequence (residues 35-76), coupled with a folding topology that results in a much higher contact order, suggests that fast folding of ubiquitin is dependent upon configurational flexibility in the C-terminal part of the polypeptide chain to ensure passage down a relatively smooth folding funnel to the native state. We show that the introduction of a small mini-hairpin motif as an extension of the native 43-50 hairpin stabilises local interactions in the C-terminal part of the sequence, resulting largely in a deceleration of the unfolding kinetics without perturbing the apparent two-state folding mechanism. However, a single-point Leu-->Phe substitution within the engineered hairpin sequence leads to the premature collapse of the denatured ensemble through the stabilisation of non-native interactions and the population of a compact intermediate. Non-linear effects in the kinetic data at low concentrations of denaturant suggest that the collapsed state, which is further stabilised in the presence of cosmotropic salts, may subsequently fold directly to the native state through a "triangular" reaction scheme involving internal rearrangement rather than unfolding and refolding.
Collapse
Affiliation(s)
- Roger Bofill
- Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | | |
Collapse
|
30
|
Simpson ER, Meldrum JK, Bofill R, Crespo MD, Holmes E, Searle MS. Engineering Enhanced Protein Stability through β-Turn Optimization: Insights for the Design of Stable Peptide β-Hairpin Systems. Angew Chem Int Ed Engl 2005; 44:4939-44. [PMID: 15999372 DOI: 10.1002/anie.200500577] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Emma R Simpson
- Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | | | | |
Collapse
|
31
|
Simpson ER, Meldrum JK, Bofill R, Crespo MD, Holmes E, Searle MS. Engineering Enhanced Protein Stability through β-Turn Optimization: Insights for the Design of Stable Peptide β-Hairpin Systems. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200500577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
Abstract
The small alpha/beta protein ubiquitin has been used as a model system for experimental and computational studies on protein folding for many years. Here, we present a comprehensive phi-value analysis and characterize the structure and energetics of the transition state ensemble (TSE). Twenty-seven non-disruptive mutations are made throughout the structure and a range of phi-values from zero to one are observed. The values cluster such that medium and high values and found only in the N-terminal region of the protein, whilst the C-terminal region has consistently low phi-values. In the TSE, the main alpha-helix appears to be fully formed (two phi-values which specifically probe helical structure are one) and the helix is stabilized by packing against the first beta-turn, which is partially structured. In striking comparison, the phi-values in the C-terminal region are all very low, suggesting that this region of the protein is largely unstructured in the TSE. Data are consistent with a nucleation-condensation mechanism in which there is a highly polarized folding nucleus comprising the first beta-hairpin and the alpha-helix. Data presented from the protein engineering study and phi-value analysis are compared with results from other experimental studies and also computational studies.
Collapse
Affiliation(s)
- Heather M Went
- Chemistry Department, Centre for Protein Engineering, Lensfield Road, Cambridge CB2 1EW, UK
| | | |
Collapse
|
33
|
Bofill R, Simpson ER, Platt GW, Crespo MD, Searle MS. Extending the folding nucleus of ubiquitin with an independently folding beta-hairpin finger: hurdles to rapid folding arising from the stabilisation of local interactions. J Mol Biol 2005; 349:205-21. [PMID: 15876378 DOI: 10.1016/j.jmb.2005.03.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 03/17/2005] [Accepted: 03/18/2005] [Indexed: 11/24/2022]
Abstract
The N-terminal beta-hairpin sequence of ubiquitin has been implicated as a folding nucleation site. To extend and stabilise the ubiquitin folding nucleus, we have inserted an autonomously folding 14-residue peptide sequence beta4 which in isolation forms a highly populated beta-hairpin (>70%) stabilised by local interactions. NMR structural analysis of the ubiquitin mutant (Ubeta4) shows that the hairpin finger is fully structured and stabilises ubiquitin by approximately 8kJmol(-1). Protein engineering and kinetic (phi(F)-value) analysis of a series of Ubeta4 mutants shows that the hairpin extension of Ubeta4 is also significantly populated in the transition state (phi(F)-values >0.7) and has the effect of templating the formation of native contacts in the folding nucleus of ubiquitin. However, at low denaturant concentrations the chevron plot of Ubeta4 shows a small deviation from linearity (roll-over effect), indicative of the population of a compact collapsed state, which appears to arise from over-stabilisation of local interactions. Destabilising mutations within the native hairpin sequence and within the engineered hairpin extension, but not elsewhere, eliminate this non-linearity and restore apparent two-state behaviour. The pitfall to stabilising local interactions is to present hurdles to the rapid and efficient folding of small proteins down a smooth folding funnel by trapping partially folded or misfolded states that must unfold or rearrange before refolding.
Collapse
Affiliation(s)
- Roger Bofill
- Centre for Biomolecular Sciences, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | |
Collapse
|
34
|
Huang F, Hudgins RR, Nau WM. Primary and secondary structure dependence of peptide flexibility assessed by fluorescence-based measurement of end-to-end collision rates. J Am Chem Soc 2005; 126:16665-75. [PMID: 15600373 DOI: 10.1021/ja0466053] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The intrachain fluorescence quenching of the fluorophore 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) is measured in short peptide fragments, namely the two strands and the turn of the N-terminal beta-hairpin of ubiquitin. The investigated peptides adopt a random-coil conformation in aqueous solution according to CD and NMR experiments. The combination of quenchers with different quenching efficiencies, namely tryptophan and tyrosine, allows the extrapolation of the rate constants for end-to-end collision rates as well as the dissociation of the end-to-end encounter complex. The measured activation energies for fluorescence quenching demonstrate that the end-to-end collision process in peptides is partially controlled by internal friction within the backbone, while measurements in solvents of different viscosities (H2O, D2O, and 7.0 M guanidinium chloride) suggest that solvent friction is an additional important factor in determining the collision rate. The extrapolated end-to-end collision rates, which are only slightly larger than the experimental rates for the DBO/Trp probe/quencher system, provide a measure of the conformational flexibility of the peptide backbone. The chain flexibility is found to be strongly dependent on the type of secondary structure that the peptides represent. The collision rates for peptides derived from the beta-strand motifs (ca. 1 x 10(7) s(-1)) are ca. 4 times slower than that derived from the beta-turn. The results provide further support for the hypothesis that chain flexibility is an important factor in the preorganization of protein fragments during protein folding. Mutations to the beta-turn peptide show that subtle sequence changes strongly affect the flexibility of peptides as well. The protonation and charge status of the peptides, however, are shown to have no significant effect on the flexibility of the investigated peptides. The meaning and definition of end-to-end collision rates in the context of protein folding are critically discussed.
Collapse
Affiliation(s)
- Fang Huang
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
35
|
Chen RPY, Huang JJT, Chen HL, Jan H, Velusamy M, Lee CT, Fann W, Larsen RW, Chan SI. Measuring the refolding of beta-sheets with different turn sequences on a nanosecond time scale. Proc Natl Acad Sci U S A 2004; 101:7305-10. [PMID: 15123838 PMCID: PMC409914 DOI: 10.1073/pnas.0304922101] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Whether turns play an active or passive role in protein folding remains a controversial issue at this juncture. Here we use a photolabile cage strategy in combination with laser-flash photolysis and photoacoustic calorimetry to study the effects of different turns on the kinetics of beta-hairpin refolding on a nanosecond time scale. This strategy opens up a temporal window to allow the observation of early kinetic events in the protein refolding process at ambient temperature and pH without interference from any denaturants. Our results provide direct evidence demonstrating that even a one-residue difference in the turn region can change the refolding kinetics of a peptide. This observation suggests an active role for turn formation in directing protein folding.
Collapse
Affiliation(s)
- Rita P-Y Chen
- Institutes of Chemistry and Atomic and Molecular Sciences, Academia Sinica, Taipei 115, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
beta-Hairpin peptides (two anti-parallel strands linked by a reverse beta-turn) have emerged as the simplest systems for probing weak interactions in beta-sheet folding. We describe a model 16-residue hairpin system (peptide beta1: KKYTVSINGKKITVSI) designed around the anti-parallel beta-sheet DNA binding motif of the Met repressor dimer in which two beta-strand sequences are linked through an Asn-Gly type I' beta-turn. The peptide is significantly folded in aqueous solution and has a well-defined conformation as evident from an abundance of NOE data. We review a number of analogues of beta1 designed to estimate the energetic contribution of electrostatic (ion pairing) interactions to hairpin stability, to examine effects of cooperativity and preorganization in determining the energetics of weak interactions, and examine the effects on stability and conformation of incorporation of a three-histidine motif on one face of the hairpin capable of zinc complexation.
Collapse
Affiliation(s)
- Mark S Searle
- School of Chemistry, Centre for Biomolecular Sciences University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| |
Collapse
|
37
|
Sharman GJ, Griffiths-Jones SR, Jourdan M, Searle MS. Effects of amino acid phi,psi propensities and secondary structure interactions in modulating H alpha chemical shifts in peptide and protein beta-sheet. J Am Chem Soc 2001; 123:12318-24. [PMID: 11734033 DOI: 10.1021/ja0116369] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
H alpha chemical shifts are often used as indicators of secondary structure formation in protein structural analysis and peptide folding studies. On the basis of NMR analysis of model beta-sheet and alpha-helical peptides, together with a statistical analysis of protein structures for which NMR data are available, we show that although the gross pattern of H alpha chemical shifts reflects backbone torsion angles, longer range effects from distant amino acids are the dominant factor determining experimental chemical shifts in beta-sheets of peptides and proteins. These show context-dependent variations that aid structural assignment and highlight anomalous shifts that may be of structural significance and provide insights into beta-sheet stability.
Collapse
Affiliation(s)
- G J Sharman
- AstraZeneca, Silk Road Business Park, Macclesfield, Cheshire SK10 2NA, UK
| | | | | | | |
Collapse
|
38
|
Bolton D, Evans PA, Stott K, Broadhurst RW. Structure and properties of a dimeric N-terminal fragment of human ubiquitin. J Mol Biol 2001; 314:773-87. [PMID: 11733996 DOI: 10.1006/jmbi.2001.5181] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous peptide dissection and kinetic experiments have indicated that in vitro folding of ubiquitin may proceed via transient species in which native-like structure has been acquired in the first 45 residues. A peptide fragment, UQ(1-51), encompassing residues 1 to 51 of ubiquitin was produced in order to test whether this portion has propensity for independent self-assembly. Surprisingly, the construct formed a folded symmetrical dimer that was stabilised by 0.8 M sodium sulphate at 298 K (the S state). The solution structure of the UQ(1-51) dimer was determined by multinuclear NMR spectroscopy. Each subunit of UQ(1-51) consists of an N-terminal beta-hairpin followed by an alpha-helix and a final beta-strand, with orientations similar to intact ubiquitin. The dimer is formed by the third beta-strand of one subunit interleaving between the hairpin and third strand of the other to give a six-stranded beta-sheet, with the two alpha-helices sitting on top. The helix-helix and strand portions of the dimer interface also mimic related features in the structure of ubiquitin. The structural specificity of the UQ(1-51) peptide is tuneable: as the concentration of sodium sulphate is decreased, near-native alternative conformations are populated in slow chemical exchange. Magnetization transfer experiments were performed to characterize the various species present in 0.35 M sodium sulphate, namely the S state and two minor forms. Chemical shift differences suggest that one minor form is very similar to the S state, while the other experiences a significant conformational change in the third strand. A segmental rearrangement of the third strand in one subunit of the S state would render the dimer asymmetric, accounting for most of our results. Similar small-scale transitions in proteins are often invoked to explain solvent exchange at backbone amide proton sites that have an intermediate level of protection.
Collapse
Affiliation(s)
- D Bolton
- Cambridge Centre for Molecular Recognition Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| | | | | | | |
Collapse
|
39
|
Chen PY, Gopalacushina BG, Yang CC, Chan SI, Evans PA. The role of a beta-bulge in the folding of the beta-hairpin structure in ubiquitin. Protein Sci 2001; 10:2063-74. [PMID: 11567097 PMCID: PMC2374220 DOI: 10.1110/ps.07101] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2001] [Revised: 07/06/2001] [Accepted: 07/12/2001] [Indexed: 10/16/2022]
Abstract
It is known that the peptide corresponding to the N-terminal beta-hairpin of ubiquitin, U(1-17), can populate the monomeric beta-hairpin conformation in aqueous solution. In this study, we show that the Gly-10 that forms the bulge of the beta-turn in this hairpin is very important to the stability of the hairpin. The deletion of this residue to desG10(1-16) unfolds the structure of the peptide in water. Even under denaturing conditions, this bulge appears to be important in maintaining the residual structure of ubiquitin, which involves tertiary interactions within the sequence 1 to 34 in the denatured state. We surmise that this residual structure functions as one of the nucleation centers in the folding process and is important in stabilizing the transition state. In accordance with this idea, deleting Gly-10 slows down the refolding and unfolding rate by about one half.
Collapse
Affiliation(s)
- P Y Chen
- Cambridge Center for Molecular Recognition and Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | | | | | | | | |
Collapse
|
40
|
Chen PY, Lin CK, Lee CT, Jan H, Chan SI. Effects of turn residues in directing the formation of the beta-sheet and in the stability of the beta-sheet. Protein Sci 2001; 10:1794-800. [PMID: 11514670 PMCID: PMC2253197 DOI: 10.1110/ps.49001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The designed peptide (denoted 20-mer, sequence VFITS(D)PGKTYTEV(D)PGOKILQ) has been shown to form a three-strand antiparallel beta-sheet. It is generally believed that the (D)Pro-Gly segment has the propensity to adopt a type II' beta-turn, thereby promoting the formation of this beta-sheet. Here, we replaced (D)Pro-Gly with Asp-Gly, which should favor a type I' turn, to examine the influence of different type of turns on the stability of the beta-sheet. Contrary to our expectation, the mutant peptide, denoted P6D, forms a five-residue type I turn plus a beta-bulge between the first two strands due to a one amino-acid frameshift in the hydrogen bonding network and side-chain inversion of the first beta-strand. In contrast, the same kind of substitution at (D)Pro-14 in the double mutant, denoted P6DP14D, does not yield the same effect. These observations suggest that the SDGK sequence disfavors the type I' conformation while the VDGO sequence favors a type I' turn, and that the frameshift in the first strand provides a way for the peptide to accommodate a disfavored turn sequence by protruding a bulge in the formation of the beta-hairpin. Thus, different types of turns can affect the stability of a beta-structure.
Collapse
Affiliation(s)
- P Y Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
41
|
Santiveri CM, Rico M, Jiménez MA. 13C(alpha) and 13C(beta) chemical shifts as a tool to delineate beta-hairpin structures in peptides. JOURNAL OF BIOMOLECULAR NMR 2001; 19:331-345. [PMID: 11370779 DOI: 10.1023/a:1011224625129] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Unravelling the factors that contribute to the formation and the stability of beta-sheet structure in peptides is a subject of great current interest. A beta-hairpin, the smallest beta-sheet motif, consists of two antiparallel hydrogen-bonded beta-strands linked by a loop region. We have performed a statistical analysis on protein beta-hairpins showing that the most abundant types of beta-hairpins, 2:2, 3:5 and 4:4, have characteristic patterns of 13C(alpha) and 13C(beta) conformational shifts, as expected on the basis of their phi and psi angles. This fact strongly supports the potential value of 13C(alpha) and 13C(beta) conformational shifts as a means to identify beta-hairpin motifs in peptides. Their usefulness was confirmed by analysing the patterns of 13C(alpha) and 13C(beta) conformational shifts in 13 short peptides, 10-15 residues long, that adopt beta-hairpin structures in aqueous solution. Furthermore, we have investigated their potential as a method to quantify beta-hairpin populations in peptides.
Collapse
Affiliation(s)
- C M Santiveri
- Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | |
Collapse
|
42
|
Zerella R, Chen PY, Evans PA, Raine A, Williams DH. Structural characterization of a mutant peptide derived from ubiquitin: implications for protein folding. Protein Sci 2000; 9:2142-50. [PMID: 11152124 PMCID: PMC2144502 DOI: 10.1110/ps.9.11.2142] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The formation of the N-terminal beta-hairpin of ubiquitin is thought to be an early event in the folding of this small protein. Previously, we have shown that a peptide corresponding to residues 1-17 of ubiquitin folds autonomously and is likely to have a native-like hairpin register. To investigate the causes of the stability of this fold, we have made mutations in the amino acids at the apex of the turn. We find that in a peptide where Thr9 is replaced by Asp, U(1-17)T9D, the native conformation is stabilized with respect to the wild-type sequence, so much so that we are able to characterize the structure of the mutant peptide fully by NMR spectroscopy. The data indicate that U(1-17)T9D peptide does indeed form a hairpin with a native-like register and a type I turn with a G1 beta-bulge, as in the full-length protein. The reason for the greater stability of the U(1-17)T9D mutant remains uncertain, but there are nuclear Overhauser effects between the side chains of Asp9 and Lys 11, which may indicate that a charge-charge interaction between these residues is responsible.
Collapse
Affiliation(s)
- R Zerella
- Cambridge Centre for Molecular Recognition and University Chemical Laboratory, United Kingdom
| | | | | | | | | |
Collapse
|
43
|
Galzitskaya OV, Higo J, Kuroda M, Nakamura H. β-hairpin folds by molecular dynamics simulations. Chem Phys Lett 2000. [DOI: 10.1016/s0009-2614(00)00828-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Jourdan M, Griffiths-Jones SR, Searle MS. Folding of a beta-hairpin peptide derived from the N-terminus of ubiquitin. Conformational preferences of beta-turn residues dictate non-native beta-strand interactions. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3539-48. [PMID: 10848970 DOI: 10.1046/j.1432-1327.2000.01381.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of the non-native beta-turn sequence (NPDG) in nucleating the folding of a beta-hairpin peptide derived from the N-terminus of ubiquitin, has been examined by NMR and CD spectroscopy. The NPDG sequence, while representing a common two-residue type I turn sequence in proteins, folds to give a G1-bulged type I turn in the context of a beta-hairpin peptide, to the exclusion of other possible conformations. The turn conformation results in misalignment of the two beta strands and a beta hairpin with non-native side chain interactions. A truncated 12-residue analogue of the hairpin, in which the majority of residues in the N-terminal beta strand have been deleted, shows some weak propensity to fold into a G-bulged type I turn conformation in the absence of interstrand stabilizing interactions. The NPDG turn sequence pays some of the entropic cost in initiating folding allowing interstrand interactions, which in this case arise from the non-native pairing of residue side chains, to stabilize a significant population of the folded state. Examination of the relative abundance of the Pro-Asp type I turn, with G in the +B1 position, vs. the type I G-bulged turn PXG, in a database of high resolution structures, reveals 48 instances of PXG bulged turns for which X = Asp is by far the most common residue with 20 occurrences. Strikingly, there are no examples of a type I PD turn with G at the +B1 position, in good agreement with our experimental observations that the PDG G-bulged turn is populated preferentially in solution.
Collapse
Affiliation(s)
- M Jourdan
- Department of Chemistry, University of Nottingham, UK
| | | | | |
Collapse
|
45
|
Demarest SJ, Raleigh DP. Solution structure of a peptide model of a region important for the folding of alpha-lactalbumin provides evidence for the formation of nonnative structure in the denatured state. Proteins 2000; 38:189-96. [PMID: 10656265 DOI: 10.1002/(sici)1097-0134(20000201)38:2<189::aid-prot7>3.0.co;2-f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Elucidating the properties of the denatured state of proteins under conditions relevant for their folding is a key factor in understanding the folding process. We show that a peptide corresponding to residues 111-120 of human alpha-lactalbumin has a pronounced propensity to adopt nonnative structure in aqueous solution. Two-dimensional NMR provides evidence for a structured, nonnative conformation in fast exchange with a random coil ensemble. A total of 78 Rotating Frame Overhauser Effects (ROEs) were used to calculate the conformation of the structured population. A nonnative cluster of hydrophobic residues involving the side chains of K114, W118, Ll119, and A120 is observed, which helps to stabilize a turn-like conformation in the vicinity of residues 115-118. The structure in 30% (vol/vol) TFE was also calculated. Interestingly, the addition of TFE did not simply amplify the population of the structured conformer observed in H2O, but instead induced a new conformation. The implications for the folding of the intact protein are discussed. We also discuss the implications of this study for the relevance of the use of mixed TFE/H2O solvent systems to study isolated peptides.
Collapse
Affiliation(s)
- S J Demarest
- Department of Chemistry, State University of New York at Stony Brook, 11794-3400, USA
| | | |
Collapse
|