1
|
Feng C, Post CB. Protein-Sequence-Based Search of Nonreceptor ITAM-Like Regions to Identify Cytosolic Syk-Recruiting Proteins. J Phys Chem B 2024; 128:9724-9733. [PMID: 39320068 PMCID: PMC12042798 DOI: 10.1021/acs.jpcb.4c05185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The recruitment of the protein spleen tyrosine kinase (Syk) to membrane-bound immune receptors is an essential step in initiating an immune response mediated through the activated receptors. Syk recognizes intracellular phosphorylated regions of membrane receptors known as immunoreceptor tyrosine-based activation motifs (ITAMs) defined by a sequence with two tyrosine (Y) amino acids separated by a certain spacing of six to eight residues: YXX(I/L)X6-8YXX(I/L). Syk with doubly phosphorylated ITAM is high-affinity and negatively regulated when Syk itself becomes phosphorylated. While the role of Syk in immune signaling is well characterized, recent information affords new functionality to Syk related to cytoplasmic processes, including the clearance of stress granules and P-bodies, both formed by liquid-liquid phase separation. Little to nothing is known about the molecular interactions involving Syk in these cytoplasmic processes. Given the essential role of receptor ITAMs in recruiting and localizing Syk for immune signaling, we explore here the possibility of a similar localization mechanism occurring for cytoplasmic processes by searching sequences of proteins related to Syk cytoplasmic function for regions that resemble receptor ITAMs. Protein sequence databases were generated from a Syk-dependent phosphoproteome and from genes related to P-bodies. A search of these databases for ITAM-like sequences yielded 102 unique hits, and 33 of these were synthesized and tested experimentally for binding to Syk tandem SH2 domains. The equilibrium dissociation constants were 0.1-50 μM for 28 peptides, and binding was negatively regulated by phosphorylation for many peptides. These results identify cytoplasmic proteins with potential for regulating the localization of Syk in a phosphorylation-dependent manner to nonmembrane cellular regions.
Collapse
Affiliation(s)
- Chao Feng
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carol Beth Post
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Biological Sciences, Markey Center for Structural Biology, and Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Stiegler AL, Vish KJ, Boggon TJ. Tandem engagement of phosphotyrosines by the dual SH2 domains of p120RasGAP. Structure 2022; 30:1603-1614.e5. [PMID: 36417908 PMCID: PMC9722645 DOI: 10.1016/j.str.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/22/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
p120RasGAP is a multidomain GTPase-activating protein for Ras. The presence of two Src homology 2 domains in an SH2-SH3-SH2 module raises the possibility that p120RasGAP simultaneously binds dual phosphotyrosine residues in target proteins. One known binding partner with two proximal phosphotyrosines is p190RhoGAP, a GTPase-activating protein for Rho GTPases. Here, we present the crystal structure of the p120RasGAP SH2-SH3-SH2 module bound to a doubly tyrosine-phosphorylated p190RhoGAP peptide, revealing simultaneous phosphotyrosine recognition by the SH2 domains. The compact arrangement places the SH2 domains in close proximity resembling an SH2 domain tandem and exposed SH3 domain. Affinity measurements support synergistic binding, while solution scattering reveals that dual phosphotyrosine binding induces compaction of this region. Our studies reflect a binding mode that limits conformational flexibility within the SH2-SH3-SH2 cassette and relies on the spacing and sequence surrounding the two phosphotyrosines, potentially representing a selectivity mechanism for downstream signaling events.
Collapse
Affiliation(s)
- Amy L Stiegler
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Kimberly J Vish
- Department of Pharmacology, Yale University, New Haven, CT, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University, New Haven, CT, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Yale Cancer Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
An allosteric hot spot in the tandem-SH2 domain of ZAP-70 regulates T-cell signaling. Biochem J 2020; 477:1287-1308. [PMID: 32203568 DOI: 10.1042/bcj20190879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 12/28/2022]
Abstract
T-cell receptor (TCR) signaling is initiated by recruiting ZAP-70 to the cytosolic part of TCR. ZAP-70, a non-receptor tyrosine kinase, is composed of an N-terminal tandem SH2 (tSH2) domain connected to the C-terminal kinase domain. The ZAP-70 is recruited to the membrane through binding of tSH2 domain and the doubly phosphorylated ITAM motifs of CD3 chains in the TCR complex. Our results show that the tSH2 domain undergoes a biphasic structural transition while binding to the doubly phosphorylated ITAM-ζ1 peptide. The C-terminal SH2 domain binds first to the phosphotyrosine residue of ITAM peptide to form an encounter complex leading to subsequent binding of second phosphotyrosine residue to the N-SH2 domain. We decipher a network of noncovalent interactions that allosterically couple the two SH2 domains during binding to doubly phosphorylated ITAMs. Mutation in the allosteric network residues, for example, W165C, uncouples the formation of encounter complex to the subsequent ITAM binding thus explaining the altered recruitment of ZAP-70 to the plasma membrane causing autoimmune arthritis in mice. The proposed mechanism of allosteric coupling is unique to ZAP-70, which is fundamentally different from Syk, a close homolog of ZAP-70 expressed in B-cells.
Collapse
|
4
|
Defining How Oncogenic and Developmental Mutations of PIK3R1 Alter the Regulation of Class IA Phosphoinositide 3-Kinases. Structure 2019; 28:145-156.e5. [PMID: 31831213 DOI: 10.1016/j.str.2019.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/27/2019] [Accepted: 11/15/2019] [Indexed: 11/21/2022]
Abstract
The class I phosphoinositide 3-kinases (PI3Ks) are key signaling enzymes composed of a heterodimer of a p110 catalytic subunit and a p85 regulatory subunit, with PI3K mutations being causative of multiple human diseases including cancer, primary immunodeficiencies, and developmental disorders. Mutations in the p85α regulatory subunit encoded by PIK3R1 can both activate PI3K through oncogenic truncations in the iSH2 domain, or inhibit PI3K through developmental disorder mutations in the cSH2 domain. Using a combined biochemical and hydrogen deuterium exchange mass spectrometry approach we have defined the molecular basis for how these mutations alter the activity of p110α/p110δ catalytic subunits. We find that the oncogenic Q572∗ truncation of PIK3R1 disrupts all p85-inhibitory inputs, with p110α being hyper-activated compared with p110δ. In addition, we find that the R649W mutation in the cSH2 of PIK3R1 decreases sensitivity to activation by receptor tyrosine kinases. This work reveals unique insight into isoform-specific regulation of p110s by p85α.
Collapse
|
5
|
Lauenstein JU, Udgata A, Bartram A, De Sutter D, Fisher DI, Halabi S, Eyckerman S, Gay NJ. Phosphorylation of the multifunctional signal transducer B-cell adaptor protein (BCAP) promotes recruitment of multiple SH2/SH3 proteins including GRB2. J Biol Chem 2019; 294:19852-19861. [PMID: 31527084 PMCID: PMC6937578 DOI: 10.1074/jbc.ra119.009931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/10/2019] [Indexed: 12/21/2022] Open
Abstract
B-cell adaptor protein (BCAP) is a multimodular, multifunctional signal transducer that regulates signal transduction pathways in leukocytes, including macrophages, B-cells, and T-cells. In particular, BCAP suppresses inflammatory signaling by Toll-like receptors (TLRs). However, how BCAP itself is regulated and what its interaction partners are is unclear. Here, using human immune cell lines, including THP-1 cells, we characterized the complex phosphorylation patterns of BCAP and used a novel protein complex trapping strategy, called virotrap, to identify its interaction partners. This analysis identified known interactions of BCAP with phosphoinositide 3-kinase (PI3K) p85 subunit and NCK adaptor protein (NCK), together with previously unknown interactions of BCAP with Src homology 2 (SH2) and SH3 domain-containing adaptor proteins, notably growth factor receptor-bound protein 2 (GRB2) and CRK-like proto-oncogene, adaptor protein (CRKL). We show that the SH3 domain of GRB2 can bind to BCAP independently of BCAP phosphorylation status, suggesting that the SH2 domains mediate interactions with activated receptor tyrosine kinase complexes including the CD19 subunit of the B-cell receptor. Our results also suggested that the PI3K p85 subunit binds to BCAP via SH3 domains forming an inactive complex that is then activated by sequential binding with the SH2 domains. Taken together, our results indicate that BCAP is a complex hub that processes signals from multiple pathways in diverse cell types of the immune system.
Collapse
Affiliation(s)
- Johannes U Lauenstein
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Atul Udgata
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Alex Bartram
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Delphine De Sutter
- Department of Biomolecular Medicine, Ghent University, VIB Center for Medical Biotechnology, VIB, A. Baertsoenkaai 3, Ghent B-9000, Belgium
| | - David I Fisher
- Discovery Sciences, Discovery Biology, IMED Biotech Unit, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Samer Halabi
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Sven Eyckerman
- Department of Biomolecular Medicine, Ghent University, VIB Center for Medical Biotechnology, VIB, A. Baertsoenkaai 3, Ghent B-9000, Belgium
| | - Nicholas J Gay
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
6
|
Marczynke M, Gröger K, Seitz O. Selective Binders of the Tandem Src Homology 2 Domains in Syk and Zap70 Protein Kinases by DNA-Programmed Spatial Screening. Bioconjug Chem 2017; 28:2384-2392. [PMID: 28767218 DOI: 10.1021/acs.bioconjchem.7b00382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Members of the Syk family of tyrosine kinases arrange Src homology 2 (SH2) domains in tandem to allow the firm binding of immunoreceptor tyrosine-based interaction motifs (ITAMs). While the advantages provided by the bivalency enhanced interactions are evident, the impact on binding specificity is less-clear. For example, the spleen tyrosine kinase (Syk) and the ζ-chain-associated protein kinase (ZAP-70) recognize the consensus sequence pYXXI/L(X)6-8 pYXXI/L with near-identical nanomolar affinity. The nondiscriminatory recognition, on the one hand, poses a specificity challenge for the design of subtype selective protein binders and, on the other hand, raises the question as to how differential activation of Syk and ZAP-70 is ensured when both kinases are co-expressed. Herein, we identified the criteria for the design of binders that specifically address either the Syk or the Zap-70 tSH2 domain. Our approach is based on DNA-programmed spatial screening. Tyrosine-phosphorylated peptides containing the pYXXI/L motif were attached to oligonucleotides and aligned in tandem on a DNA template by means of nucleic acid hybridization. The distance between the pYXXI/L motifs and the orientation of strands were varied. The exploration exposed remarkably different recognition characteristics. While Syk tSH2 has a rather broad substrate scope, ZAP-70 tSH2 required a proximal arrangement of the phosphotyrosine ligands in defined strand orientation. The spatial screen led to the design of mutually selective, DNA-free binders, which discriminate Zap-70 and Syk tSH2 by 1 order of magnitude in affinity.
Collapse
Affiliation(s)
- Michaela Marczynke
- Institut für Chemie, Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2, D-12489 Berlin, Germany
| | - Katharina Gröger
- Institut für Chemie, Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2, D-12489 Berlin, Germany
| | - Oliver Seitz
- Institut für Chemie, Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2, D-12489 Berlin, Germany
| |
Collapse
|
7
|
Katz ZB, Novotná L, Blount A, Lillemeier BF. A cycle of Zap70 kinase activation and release from the TCR amplifies and disperses antigenic stimuli. Nat Immunol 2017; 18:86-95. [PMID: 27869819 PMCID: PMC5490839 DOI: 10.1038/ni.3631] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/28/2016] [Indexed: 12/14/2022]
Abstract
Cell-surface-receptor pathways amplify weak, rare and local stimuli to induce cellular responses. This task is accomplished despite signaling components that segregate into nanometer-scale membrane domains. Here we describe a 'catch-and-release' mechanism that amplified and dispersed stimuli by releasing activated kinases from receptors lacking intrinsic catalytic activity. Specifically, we discovered a cycle of recruitment, activation and release for Zap70 kinases at phosphorylated T cell antigen receptors (TCRs). This turned the TCR into a 'catalytic unit' that amplified antigenic stimuli. Zap70 released from the TCR remained at the membrane, translocated, and phosphorylated spatially distinct substrates. The mechanisms described here are based on widely used protein domains and post-translational modifications; therefore, many membrane-associated pathways might employ similar mechanisms for signal amplification and dispersion.
Collapse
Affiliation(s)
- Zachary B Katz
- Nomis Center for Immunobiology and Microbial Pathogenesis &Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Lucie Novotná
- Nomis Center for Immunobiology and Microbial Pathogenesis &Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Amy Blount
- Nomis Center for Immunobiology and Microbial Pathogenesis &Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Björn F Lillemeier
- Nomis Center for Immunobiology and Microbial Pathogenesis &Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
8
|
Inaba S, Numoto N, Ogawa S, Morii H, Ikura T, Abe R, Ito N, Oda M. Crystal Structures and Thermodynamic Analysis Reveal Distinct Mechanisms of CD28 Phosphopeptide Binding to the Src Homology 2 (SH2) Domains of Three Adaptor Proteins. J Biol Chem 2016; 292:1052-1060. [PMID: 27927989 DOI: 10.1074/jbc.m116.755173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/02/2016] [Indexed: 11/06/2022] Open
Abstract
Full activation of T cells and differentiation into effector T cells are essential for many immune responses and require co-stimulatory signaling via the CD28 receptor. Extracellular ligand binding to CD28 recruits protein-tyrosine kinases to its cytoplasmic tail, which contains a YMNM motif. Following phosphorylation of the tyrosine, the proteins growth factor receptor-bound protein 2 (Grb2), Grb2-related adaptor downstream of Shc (Gads), and p85 subunit of phosphoinositide 3-kinase may bind to pYMNM (where pY is phosphotyrosine) via their Src homology 2 (SH2) domains, leading to downstream signaling to distinct immune pathways. These three adaptor proteins bind to the same site on CD28 with variable affinity, and all are important for CD28-mediated co-stimulatory function. However, the mechanism of how these proteins recognize and compete for CD28 is unclear. To visualize their interactions with CD28, we have determined the crystal structures of Gads SH2 and two p85 SH2 domains in complex with a CD28-derived phosphopeptide. The high resolution structures obtained revealed that, whereas the CD28 phosphopeptide bound to Gads SH2 is in a bent conformation similar to that when bound to Grb2 SH2, it adopts a more extended conformation when bound to the N- and C-terminal SH2 domains of p85. These differences observed in the peptide-protein interactions correlated well with the affinity and other thermodynamic parameters for each interaction determined by isothermal titration calorimetry. The detailed insight into these interactions reported here may inform the development of compounds that specifically inhibit the association of CD28 with these adaptor proteins to suppress excessive T cell responses, such as in allergies and autoimmune diseases.
Collapse
Affiliation(s)
- Satomi Inaba
- From the Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Nobutaka Numoto
- the Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Shuhei Ogawa
- the Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan, and
| | - Hisayuki Morii
- the Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-0074, Japan
| | - Teikichi Ikura
- the Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Ryo Abe
- the Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan, and
| | - Nobutoshi Ito
- the Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan,
| | - Masayuki Oda
- From the Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan,
| |
Collapse
|
9
|
Prinz F, Puetter V, Holton SJ, Andres D, Stegmann CM, Kwiatkowski D, Prechtl S, Petersen K, Beckmann G, Kreft B, Mumberg D, Fernández-Montalván A. Functional and Structural Characterization of Bub3·BubR1 Interactions Required for Spindle Assembly Checkpoint Signaling in Human Cells. J Biol Chem 2016; 291:11252-67. [PMID: 27030009 DOI: 10.1074/jbc.m115.702142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Indexed: 02/02/2023] Open
Abstract
The spindle assembly checkpoint (SAC) is an essential safeguarding mechanism devised to ensure equal chromosome distribution in daughter cells upon mitosis. The proteins Bub3 and BubR1 are key components of the mitotic checkpoint complex, an essential part of the molecular machinery on which the SAC relies. In the present work we have performed a detailed functional and biochemical characterization of the interaction between human Bub3 and BubR1 in cells and in vitro Our results demonstrate that genetic knockdown of Bub3 abrogates the SAC, promotes apoptosis, and inhibits the proliferation of human cancer cells. We also show that the integrity of the human mitotic checkpoint complex depends on the specific recognition between BubR1 and Bub3, for which the BubR1 Gle2 binding sequence motif is essential. This 1:1 binding event is high affinity, enthalpy-driven and with slow dissociation kinetics. The affinity, kinetics, and thermodynamic parameters of the interaction are differentially modulated by small regions in the N and C termini of the Gle2 binding domain sequence, suggesting the existence of "hotspots" for this protein-protein interaction. Furthermore, we show that specific disruption of endogenous BubR1·Bub3 complexes in human cancer cells phenocopies the effects observed in gene targeting experiments. Our work enhances the current understanding of key members of the SAC and paves the road for the pursuit of novel targeted cancer therapies based on SAC inhibition.
Collapse
Affiliation(s)
- Florian Prinz
- TRG Oncology, Bayer Pharma AG, Global Drug Discovery, 13353 Berlin, Germany
| | | | | | | | | | | | | | - Kirstin Petersen
- TRG Oncology, Bayer Pharma AG, Global Drug Discovery, 13353 Berlin, Germany
| | | | - Bertolt Kreft
- TRG Oncology, Bayer Pharma AG, Global Drug Discovery, 13353 Berlin, Germany
| | - Dominik Mumberg
- TRG Oncology, Bayer Pharma AG, Global Drug Discovery, 13353 Berlin, Germany
| | | |
Collapse
|
10
|
Kuropka B, Witte A, Sticht J, Waldt N, Majkut P, Hackenberger CPR, Schraven B, Krause E, Kliche S, Freund C. Analysis of Phosphorylation-dependent Protein Interactions of Adhesion and Degranulation Promoting Adaptor Protein (ADAP) Reveals Novel Interaction Partners Required for Chemokine-directed T cell Migration. Mol Cell Proteomics 2015; 14:2961-72. [PMID: 26246585 DOI: 10.1074/mcp.m115.048249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Indexed: 11/06/2022] Open
Abstract
Stimulation of T cells leads to distinct changes of their adhesive and migratory properties. Signal propagation from activated receptors to integrins depends on scaffolding proteins such as the adhesion and degranulation promoting adaptor protein (ADAP)(1). Here we have comprehensively investigated the phosphotyrosine interactome of ADAP in T cells and define known and novel interaction partners of functional relevance. While most phosphosites reside in unstructured regions of the protein, thereby defining classical SH2 domain interaction sites for master regulators of T cell signaling such as SLP76, Fyn-kinase, and NCK, other binding events depend on structural context. Interaction proteomics using different ADAP constructs comprising most of the known phosphotyrosine motifs as well as the structured domains confirm that a distinct set of proteins is attracted by pY571 of ADAP, including the ζ-chain-associated protein kinase of 70 kDa (ZAP70). The interaction of ADAP and ZAP70 is inducible upon stimulation either of the T cell receptor (TCR) or by chemokine. NMR spectroscopy reveals that the N-terminal SH2 domains within a ZAP70-tandem-SH2 construct is the major site of interaction with phosphorylated ADAP-hSH3(N) and microscale thermophoresis (MST) indicates an intermediate binding affinity (Kd = 2.3 μm). Interestingly, although T cell receptor dependent events such as T cell/antigen presenting cell (APC) conjugate formation and adhesion are not affected by mutation of Y571, migration of T cells along a chemokine gradient is compromised. Thus, although most phospho-sites in ADAP are linked to T cell receptor related functions we have identified a unique phosphotyrosine that is solely required for chemokine induced T cell behavior.
Collapse
Affiliation(s)
- Benno Kuropka
- From the ‡Freie Universität Berlin, Institut für Chemie und Biochemie, Protein Biochemistry group, Thielallee 63, 14195 Berlin, Germany; §Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Amelie Witte
- ¶Otto-von-Guericke-University, Institute of Molecular and Clinical Immunology, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Jana Sticht
- From the ‡Freie Universität Berlin, Institut für Chemie und Biochemie, Protein Biochemistry group, Thielallee 63, 14195 Berlin, Germany
| | - Natalie Waldt
- ¶Otto-von-Guericke-University, Institute of Molecular and Clinical Immunology, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Paul Majkut
- §Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; ‖RiNA GmbH, Volmerstrasse 9, 12489 Berlin, Germany
| | | | - Burkhart Schraven
- ¶Otto-von-Guericke-University, Institute of Molecular and Clinical Immunology, Leipziger Strasse 44, 39120 Magdeburg, Germany; **Helmholtz Center for Infection Research (HZI), Department of Immune Control, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Eberhard Krause
- §Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany;
| | - Stefanie Kliche
- ¶Otto-von-Guericke-University, Institute of Molecular and Clinical Immunology, Leipziger Strasse 44, 39120 Magdeburg, Germany;
| | - Christian Freund
- From the ‡Freie Universität Berlin, Institut für Chemie und Biochemie, Protein Biochemistry group, Thielallee 63, 14195 Berlin, Germany;
| |
Collapse
|
11
|
Höfener M, Heinzlmeir S, Kuster B, Sewald N. Probing SH2-domains using Inhibitor Affinity Purification (IAP). Proteome Sci 2014; 12:41. [PMID: 25067910 PMCID: PMC4110944 DOI: 10.1186/1477-5956-12-41] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/09/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Many human diseases are correlated with the dysregulation of signal transduction processes. One of the most important protein interaction domains in the context of signal transduction is the Src homology 2 (SH2) domain that binds phosphotyrosine residues. Hence, appropriate methods for the investigation of SH2 proteins are indispensable in diagnostics and medicinal chemistry. Therefore, an affinity resin for the enrichment of all SH2 proteins in one experiment would be desirable. However, current methods are unable to address all SH2 proteins simultaneously with a single compound or a small array of compounds. RESULTS In order to overcome these limitations for the investigation of this particular protein family in future experiments, a dipeptide-derived probe has been designed, synthesized and evaluated. This probe successfully enriched 22 SH2 proteins from mixed cell lysates which contained 50 SH2 proteins. Further characterization of the SH2 binding properties of the probe using depletion and competition experiments indicated its ability to enrich complexes consisting of SH2 domain bearing regulatory PI3K subunits and catalytic phosphoinositide 3-kinase (PI3K) subunits that have no SH2 domain. CONCLUSION The results make this probe a promising starting point for the development of a mixed affinity resin with complete SH2 protein coverage. Moreover, the additional findings render it a valuable tool for the evaluation of PI3K complex interrupting inhibitors.
Collapse
Affiliation(s)
- Michael Höfener
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Stephanie Heinzlmeir
- Chair for Proteomics and Bioanalytics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising, Germany
- German Cancer Consortium (DKTK), Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bernhard Kuster
- Chair for Proteomics and Bioanalytics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising, Germany
- Center for Integrated Protein Science Munich, Freising, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
12
|
Modeling the effect of APC truncation on destruction complex function in colorectal cancer cells. PLoS Comput Biol 2013; 9:e1003217. [PMID: 24086117 PMCID: PMC3784502 DOI: 10.1371/journal.pcbi.1003217] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 07/10/2013] [Indexed: 01/02/2023] Open
Abstract
In colorectal cancer cells, APC, a tumor suppressor protein, is commonly expressed in truncated form. Truncation of APC is believed to disrupt degradation of β—catenin, which is regulated by a multiprotein complex called the destruction complex. The destruction complex comprises APC, Axin, β—catenin, serine/threonine kinases, and other proteins. The kinases and , which are recruited by Axin, mediate phosphorylation of β—catenin, which initiates its ubiquitination and proteosomal degradation. The mechanism of regulation of β—catenin degradation by the destruction complex and the role of truncation of APC in colorectal cancer are not entirely understood. Through formulation and analysis of a rule-based computational model, we investigated the regulation of β—catenin phosphorylation and degradation by APC and the effect of APC truncation on function of the destruction complex. The model integrates available mechanistic knowledge about site-specific interactions and phosphorylation of destruction complex components and is consistent with an array of published data. We find that the phosphorylated truncated form of APC can outcompete Axin for binding to β—catenin, provided that Axin is limiting, and thereby sequester β—catenin away from Axin and the Axin-recruited kinases and . Full-length APC also competes with Axin for binding to β—catenin; however, full-length APC is able, through its SAMP repeats, which bind Axin and which are missing in truncated oncogenic forms of APC, to bring β—catenin into indirect association with Axin and Axin-recruited kinases. Because our model indicates that the positive effects of truncated APC on β—catenin levels depend on phosphorylation of APC, at the first 20-amino acid repeat, and because phosphorylation of this site is mediated by , we suggest that is a potential target for therapeutic intervention in colorectal cancer. Specific inhibition of is predicted to limit binding of β—catenin to truncated APC and thereby to reverse the effect of APC truncation. We asked the question, how can the effects of APC truncation, a very common mutation in colorectal cancer, be understood and reversed? We addressed this question by formulating a computational model for destruction complex function that incorporates site-specific details about protein-protein interactions and protein phosphorylation and examined the differences in predicted behaviors when APC is full length, as in normal cells, and truncated, as in colorectal cancer cells. Our model offers an explanation for how and why destruction complex function is altered by APC truncation. The model indicates that phosphorylation of the first 20-amino acid repeat in APC (which is usually the only 20-amino acid repeat that remains in truncated forms of APC) together with the absence of SAMP repeats (missing entirely because of truncation) allows truncated APC to act as a diversion sink. In other words, phosphorylated APC can outcompete Axin for binding to , provided Axin is limiting, and thereby prevent from associating with Axin and the Axin-associated kinases and , which initiate phosphorylation-dependent degradation of . Thus, the model identifies inhibition of APC phosphorylation, which is mediated by , as a potential means by which the oncogenic effect of APC truncation could be reversed.
Collapse
|
13
|
Dbouk HA, Vadas O, Shymanets A, Burke JE, Salamon RS, Khalil BD, Barrett MO, Waldo GL, Surve C, Hsueh C, Perisic O, Harteneck C, Shepherd PR, Harden TK, Smrcka AV, Taussig R, Bresnick AR, Nürnberg B, Williams RL, Backer JM. G protein-coupled receptor-mediated activation of p110β by Gβγ is required for cellular transformation and invasiveness. Sci Signal 2012; 5:ra89. [PMID: 23211529 DOI: 10.1126/scisignal.2003264] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Synergistic activation by heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) and receptor tyrosine kinases distinguishes p110β from other class IA phosphoinositide 3-kinases (PI3Ks). Activation of p110β is specifically implicated in various physiological and pathophysiological processes, such as the growth of tumors deficient in phosphatase and tensin homolog deleted from chromosome 10 (PTEN). To determine the specific contribution of GPCR signaling to p110β-dependent functions, we identified the site in p110β that binds to the Gβγ subunit of G proteins. Mutation of this site eliminated Gβγ-dependent activation of PI3Kβ (a dimer of p110β and the p85 regulatory subunit) in vitro and in cells, without affecting basal activity or phosphotyrosine peptide-mediated activation. Disrupting the p110β-Gβγ interaction by mutation or with a cell-permeable peptide inhibitor blocked the transforming capacity of PI3Kβ in fibroblasts and reduced the proliferation, chemotaxis, and invasiveness of PTEN-null tumor cells in culture. Our data suggest that specifically targeting GPCR signaling to PI3Kβ could provide a therapeutic approach for tumors that depend on p110β for growth and metastasis.
Collapse
Affiliation(s)
- Hashem A Dbouk
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Backer JM. The regulation of class IA PI 3-kinases by inter-subunit interactions. Curr Top Microbiol Immunol 2011; 346:87-114. [PMID: 20544340 DOI: 10.1007/82_2010_52] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phosphoinositide 3-kinases (PI 3-kinases) are activated by growth factor and hormone receptors, and regulate cell growth, survival, motility, and responses to changes in nutritional conditions (Engelman et al. 2006). PI 3-kinases have been classified according to their subunit composition and their substrate specificity for phosphoinositides (Vanhaesebroeck et al. 2001). The class IA PI 3-kinase is a heterodimer consisting of one regulatory subunit (p85α, p85β, p55α, p50α, or p55γ) and one 110-kDa catalytic subunit (p110α, β or δ). The Class IB PI 3-kinase is also a dimer, composed of one regulatory subunit (p101 or p87) and one catalytic subunit (p110γ) (Wymann et al. 2003). Class I enzymes will utilize PI, PI[4]P, or PI[4,5]P2 as substrates in vitro, but are thought to primarily produce PI[3,4,5]P3 in cells.The crystal structure of the Class IB PI 3-kinase catalytic subunit p110γ was solved in 1999 (Walker et al. 1999), and crystal or NMR structures of the Class IA p110α catalytic subunit and all of the individual domains of the Class IA p85α regulatory subunit have been solved (Booker et al. 1992; Günther et al. 1996; Hoedemaeker et al. 1999; Huang et al. 2007; Koyama et al. 1993; Miled et al. 2007; Musacchio et al. 1996; Nolte et al. 1996; Siegal et al. 1998). However, a structure of an intact PI 3-kinase enzyme has remained elusive. In spite of this, studies over the past 10 years have lead to important insights into how the enzyme is regulated under physiological conditions. This chapter will specifically discuss the regulation of Class IA PI 3-kinase enzymatic activity, focusing on regulatory interactions between the p85 and p110 subunits and the modulation of these interactions by physiological activators and oncogenic mutations. The complex web of signaling downstream from Class IA PI 3-kinases will be discussed in other chapters in this volume.
Collapse
Affiliation(s)
- Jonathan M Backer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
15
|
Ladbury JE, Arold ST. Energetics of Src homology domain interactions in receptor tyrosine kinase-mediated signaling. Methods Enzymol 2011; 488:147-83. [PMID: 21195228 DOI: 10.1016/b978-0-12-381268-1.00007-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intracellular signaling from receptor tyrosine kinases (RTK) on extracellular stimulation is fundamental to all cellular processes. The protein-protein interactions which form the basis of this signaling are mediated through a limited number of polypeptide domains. For signal transduction without corruption, based on a model where signaling pathways are considered as linear bimolecular relays, these interactions have to be highly specific. This is particularly the case when one considers that any cell may have copies of similar binding domains found in numerous proteins. In this work, an overview of the thermodynamics of binding of two of the most common of these domains (SH2 and SH3 domains) is given. This, coupled with insight from high-resolution structural detail, provides a comprehensive survey of how recognition of cognate binding sites for these domains occurs. Based on the data presented, we conclude that specificity offered by these interactions of SH2 and SH3 domains is limited and not sufficient to enforce mutual exclusivity in RTK-mediated signaling. This may explain the current lack of success in pharmaceutical intervention to inhibit the interactions of these domains when they are responsible for aberrant signaling and the resulting disease states such as cancer.
Collapse
Affiliation(s)
- John E Ladbury
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
16
|
Yu C, Sonnen AFP, George R, Dessailly BH, Stagg LJ, Evans EJ, Orengo CA, Stuart DI, Ladbury JE, Ikemizu S, Gilbert RJC, Davis SJ. Rigid-body ligand recognition drives cytotoxic T-lymphocyte antigen 4 (CTLA-4) receptor triggering. J Biol Chem 2010; 286:6685-96. [PMID: 21156796 PMCID: PMC3057841 DOI: 10.1074/jbc.m110.182394] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inhibitory T-cell surface-expressed receptor, cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), which belongs to the class of cell surface proteins phosphorylated by extrinsic tyrosine kinases that also includes antigen receptors, binds the related ligands, B7-1 and B7-2, expressed on antigen-presenting cells. Conformational changes are commonly invoked to explain ligand-induced "triggering" of this class of receptors. Crystal structures of ligand-bound CTLA-4 have been reported, but not the apo form, precluding analysis of the structural changes accompanying ligand binding. The 1.8-Å resolution structure of an apo human CTLA-4 homodimer emphasizes the shared evolutionary history of the CTLA-4/CD28 subgroup of the immunoglobulin superfamily and the antigen receptors. The ligand-bound and unbound forms of both CTLA-4 and B7-1 are remarkably similar, in marked contrast to B7-2, whose binding to CTLA-4 has elements of induced fit. Isothermal titration calorimetry reveals that ligand binding by CTLA-4 is enthalpically driven and accompanied by unfavorable entropic changes. The similarity of the thermodynamic parameters determined for the interactions of CTLA-4 with B7-1 and B7-2 suggests that the binding is not highly specific, but the conformational changes observed for B7-2 binding suggest some level of selectivity. The new structure establishes that rigid-body ligand interactions are capable of triggering CTLA-4 phosphorylation by extrinsic kinase(s).
Collapse
Affiliation(s)
- Chao Yu
- Nuffield Department of Clinical Medicine and MRC Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Regulation of Class IA PI 3-kinases: C2 domain-iSH2 domain contacts inhibit p85/p110alpha and are disrupted in oncogenic p85 mutants. Proc Natl Acad Sci U S A 2009; 106:20258-63. [PMID: 19915146 DOI: 10.1073/pnas.0902369106] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We previously proposed a model of Class IA PI3K regulation in which p85 inhibition of p110alpha requires (i) an inhibitory contact between the p85 nSH2 domain and the p110alpha helical domain, and (ii) a contact between the p85 nSH2 and iSH2 domains that orients the nSH2 so as to inhibit p110alpha. We proposed that oncogenic truncations of p85 fail to inhibit p110 due to a loss of the iSH2-nSH2 contact. However, we now find that within the context of a minimal regulatory fragment of p85 (the nSH2-iSH2 fragment, termed p85ni), the nSH2 domain rotates much more freely (tau(c) approximately 12.7 ns) than it could if it were interacting rigidly with the iSH2 domain. These data are not compatible with our previous model. We therefore tested an alternative model in which oncogenic p85 truncations destabilize an interface between the p110alpha C2 domain (residue N345) and the p85 iSH2 domain (residues D560 and N564). p85ni-D560K/N564K shows reduced inhibition of p110alpha, similar to the truncated p85ni-572(STOP). Conversely, wild-type p85ni poorly inhibits p110alphaN345K. Strikingly, the p110alphaN345K mutant is inhibited to the same extent by the wild-type or truncated p85ni, suggesting that mutation of p110alpha-N345 is not additive with the p85ni-572(STOP) mutation. Similarly, the D560K/N564K mutation is not additive with the p85ni-572(STOP) mutant for downstream signaling or cellular transformation. Thus, our data suggests that mutations at the C2-iSH2 domain contact and truncations of the iSH2 domain, which are found in human tumors, both act by disrupting the C2-iSH2 domain interface.
Collapse
|
18
|
Acuto O, Di Bartolo V, Michel F. Tailoring T-cell receptor signals by proximal negative feedback mechanisms. Nat Rev Immunol 2009; 8:699-712. [PMID: 18728635 DOI: 10.1038/nri2397] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The T-cell receptor (TCR) signalling machinery is central in determining the response of a T cell (establishing immunity or tolerance) following exposure to antigen. This process is made difficult by the narrow margin of self and non-self discrimination, and by the complexity of the genetic programmes that are induced for each outcome. Recent studies have identified novel negative feedback mechanisms that are rapidly induced by TCR engagement and that have key roles in the regulation of signal triggering and propagation. In vitro and in vivo data suggest that they are important in determining ligand discrimination by the TCR and in regulating signal output in response to antigen.
Collapse
Affiliation(s)
- Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | | | | |
Collapse
|
19
|
Barua D, Faeder JR, Haugh JM. Computational models of tandem SRC homology 2 domain interactions and application to phosphoinositide 3-kinase. J Biol Chem 2008; 283:7338-45. [PMID: 18204097 DOI: 10.1074/jbc.m708359200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Intracellular signal transduction proteins typically utilize multiple interaction domains for proper targeting, and thus a broad diversity of distinct signaling complexes may be assembled. Considering the coordination of only two such domains, as in tandem Src homology 2 (SH2) domain constructs, gives rise to a kinetic scheme that is not adequately described by simple models used routinely to interpret in vitro binding measurements. To analyze the interactions between tandem SH2 domains and bisphosphorylated peptides, we formulated detailed kinetic models and applied them to the phosphoinositide 3-kinase p85 regulatory subunit/platelet-derived growth factor beta-receptor system. Data for this system from different in vitro assay platforms, including surface plasmon resonance, competition binding, and isothermal titration calorimetry, were reconciled to estimate the magnitude of the cooperativity characterizing the sequential binding of the high and low affinity SH2 domains (C-SH2 and N-SH2, respectively). Compared with values based on an effective volume approximation, the estimated cooperativity is 3 orders of magnitude lower, indicative of significant structural constraints. Homodimerization of full-length p85 was found to be an alternative mechanism for high avidity binding to phosphorylated platelet-derived growth factor receptors, which would render the N-SH2 domain dispensable for receptor binding.
Collapse
Affiliation(s)
- Dipak Barua
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | |
Collapse
|
20
|
Abstract
Class IA PI3Ks (phosphoinositide 3-kinases) regulate a wide range of cellular responses through the production of PI(3,4,5)P(3) (phosphatidylinositol 3,4,5-trisphosphate) in cellular membranes. They are activated by receptor tyrosine kinases, by Ras and Rho family GTPases, and in some cases by G(betagamma) subunits from trimeric G-proteins. Crystallographic studies on the related class IB PI3Kgamma, and biochemical and structural studies on the class IA PI3Ks, have led to new insights into how these critical enzymes are regulated in normal cells and how mutations can lead to their constitutive activation in transformed cells. The present paper will discuss recent studies on the regulation of class I (p85/p110) PI3Ks, with a focus on the role of SH2 domains (Src homology 2 domains) in the p85 regulatory subunit in modulating PI3K activity.
Collapse
Affiliation(s)
- H Wu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
21
|
Klosi E, Saro D, Spaller MR. Bivalent peptides as PDZ domain ligands. Bioorg Med Chem Lett 2007; 17:6147-50. [PMID: 17890086 PMCID: PMC2169291 DOI: 10.1016/j.bmcl.2007.09.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 09/06/2007] [Accepted: 09/07/2007] [Indexed: 11/28/2022]
Abstract
A series of multivalent peptides, with the ability to simultaneously bind two separate PDZ domain proteins, has been designed, synthesized, and tested by isothermal titration calorimetry (ITC). The monomer sequences, linked with succinate, varied in length from five to nine residues. The thermodynamic binding parameters, in conjunction with results from mass spectrometry, indicate that a ternary complex is formed in which each peptide arm binds two equivalents of the third PDZ domain (PDZ3) of the neuronal protein PSD-95.
Collapse
Affiliation(s)
- Edvin Klosi
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|
22
|
Ladbury JE. Measurement of the formation of complexes in tyrosine kinase-mediated signal transduction. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2006; 63:26-31. [PMID: 17164523 PMCID: PMC2483503 DOI: 10.1107/s0907444906046373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 11/03/2006] [Indexed: 11/30/2022]
Abstract
The use of isothermal titration calorimetry (ITC) provides a full thermodynamic characterization of an interaction in one experiment. The determination of the affinity is an important value; however, the additional layer of information provided by the change in enthalpy and entropy can help in understanding the biology. This is demonstrated with respect to tyrosine kinase-mediated signal transduction. Isothermal titration calorimetry (ITC) provides highly complementary data to high-resolution structural detail. An overview of the methodology of the technique is provided. Ultimately, the correlation of the thermodynamic parameters determined by ITC with structural perturbation observed on going from the free to the bound state should be possible at an atomic level. Currently, thermodynamic data provide some insight as to potential changes occurring on complex formation. Here, this is demonstrated in the context of in vitro quantification of intracellular tyrosine kinase-mediated signal transduction and the issue of specificity of the important interactions. The apparent lack of specificity in the interactions of domains of proteins involved in early signalling from membrane-bound receptors is demonstrated using data from ITC.
Collapse
Affiliation(s)
- John E Ladbury
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, England.
| |
Collapse
|
23
|
Ivancic M, Spuches AM, Guth EC, Daugherty MA, Wilcox DE, Lyons BA. Backbone nuclear relaxation characteristics and calorimetric investigation of the human Grb7-SH2/erbB2 peptide complex. Protein Sci 2005; 14:1556-69. [PMID: 15930003 PMCID: PMC2253377 DOI: 10.1110/ps.041102305] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Grb7 is a member of the Grb7 family of proteins, which also includes Grb10 and Grb14. All three proteins have been found to be overexpressed in certain cancers and cancer cell lines. In particular, Grb7 (along with the receptor tyrosine kinase erbB2) is overexpressed in 20%-30% of breast cancers. Grb7 binds to erbB2 and may be involved in cell signaling pathways that promote the formation of metastases and inflammatory responses. In a prior study, we reported the solution structure of the Grb7-SH2/erbB2 peptide complex. In this study, T(1), T(2), and steady-state NOE measurements were performed on the Grb7-SH2 domain, and the backbone relaxation behavior of the domain is discussed with respect to the potential function of an insert region present in all three members of this protein family. Isothermal titration calorimetry (ITC) studies were completed measuring the thermodynamic parameters of the binding of a 10-residue phosphorylated peptide representative of erbB2 to the SH2 domain. These measurements are compared to calorimetric studies performed on other SH2 domain/phosphorylated peptide complexes available in the literature.
Collapse
Affiliation(s)
- Monika Ivancic
- Department of Biochemistry, College of Medicine, University of Vermont, Burlington 05405, USA
| | | | | | | | | | | |
Collapse
|
24
|
Shekar SC, Wu H, Fu Z, Yip SC, Cahill SM, Girvin ME, Backer JM. Mechanism of Constitutive Phosphoinositide 3-Kinase Activation by Oncogenic Mutants of the p85 Regulatory Subunit. J Biol Chem 2005; 280:27850-5. [PMID: 15932879 DOI: 10.1074/jbc.m506005200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p85/p110 phosphoinositide 3-kinases regulate multiple cell functions and are frequently mutated in human cancer. The p85 regulatory subunit stabilizes and inhibits the p110 catalytic subunit. The minimal fragment of p85 capable of regulating p110 is the N-terminal SH2 domain linked to the coiled-coil iSH2 domain (referred to as p85ni). We have previously proposed that the conformationally rigid iSH2 domain tethers p110 to p85, facilitating regulatory interactions between p110 and the p85 nSH2 domain. In an oncogenic mutant of murine p85, truncation at residue 571 leads to constitutively increased phosphoinositide 3-kinase activity, which has been proposed to result from either loss of an inhibitory Ser-608 autophosphorylation site or altered interactions with cellular regulatory factors. We have examined this mutant (referred to as p65) in vitro and find that p65 binds but does not inhibit p110, leading to constitutive p110 activity. This activated phenotype is observed with recombinant proteins in the absence of cellular factors. Importantly, this effect is also produced by truncating p85ni at residue 571. Thus, the phenotype is not because of loss of the Ser-608 inhibitory autophosphorylation site, which is not present in p85ni. To determine the structural basis for the phenotype of p65, we used a broadly applicable spin label/NMR approach to define the positioning of the nSH2 domain relative to the iSH2 domain. We found that one face of the nSH2 domain packs against the 581-593 region of the iSH2 domain. The loss of this interaction in the truncated p65 would remove the orienting constraints on the nSH2 domain, leading to a loss of p110 regulation by the nSH2. Based on these findings, we propose a general model for oncogenic mutants of p85 and p110 in which disruption of nSH2-p110 regulatory contacts leads to constitutive p110 activity.
Collapse
Affiliation(s)
- S Chandra Shekar
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Fu Z, Aronoff-Spencer E, Wu H, Gerfen GJ, Backer JM. The iSH2 domain of PI 3-kinase is a rigid tether for p110 and not a conformational switch. Arch Biochem Biophys 2005; 432:244-51. [PMID: 15542063 PMCID: PMC3889214 DOI: 10.1016/j.abb.2004.09.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Indexed: 11/23/2022]
Abstract
Class IA PI 3-kinases are heterodimeric proteins with distinct catalytic (p110) and regulatory (p85) subunits. The minimal fragment of p85 capable of regulating p110 activity (p85ni) is the N-terminal SH2 domain linked to the iSH2 coiled-coil domain. We used cysteine mutagenesis and (14)C-NEM-labeling to show that the p110-binding site in the iSH2 domain includes two regions: residues 482-484 and 532-541. These regions are adjacent to each other in the three-dimensional structural model of the iSH2 domain, and define a coherent binding site. We then used spin labeling and EPR spectroscopy to demonstrate that the conformation of the iSH2 domain is unaffected by binding to the N-terminal fragment of p110 (residues 1-108), and/or by phosphopeptide binding to p85ni/p110(1-108) heterodimers. Finally, we show that the cSH2 domain cannot substitute for the nSH2 domain with regard to inhibition of p110. These data support a model in which the iSH2 domain is a rigid tether for p110, and regulation of p85/p110 is mediated by nSH2-p110 contacts.
Collapse
Affiliation(s)
- Zheng Fu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
In this chapter, we have described the biophysical investigations which have dissected the mechanisms of SH2 domain function. Due to nearly a decade and a half of investigation on SH2 domains, much about their binding mechanism has been characterized. SH2 domains have been found to have a positively charged binding cavity, largely conserved between different SH2 domains, which coordinates binding of the pTyr in the target. The ionic interactions between this pocket and the pTyr, in particular, between Arg beta B5 and the phosphate, provide the majority of the binding energy stabilizing SH2 domain-target interactions. The specificity in SH2 domain-target interactions emanates most often from the interactions between the residues C-terminal to the pTyr in the target and the specificity determining residues in the C-terminal half of the SH2 domain. However, the interactions in the specificity determining region of SH2 domains are weak, and hence single SH2 domains show only a modest level of specificity for tyrosine phosphorylated targets. Greater specificity in SH2 domain-containing protein-tyrosine phosphorylated target interactions can be achieved by placing SH2 domains in tandem (as is often found) or possibly through specific localization of SH2 domain-containing proteins within the cell. Although a relatively good understanding of how SH2 domains function in isolation has been obtained, the ways in which SH2 domain binding is coupled to allosteric transmission of signals in larger SH2 domain-containing proteins are still not clear. Hence, the future should bring further investigations of the mechanisms by which SH2 domain ligation alters the enzymatic activity and cellular localization of SH2 domain-containing proteins.
Collapse
Affiliation(s)
- J Michael Bradshaw
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
27
|
Fu Z, Aronoff-Spencer E, Backer JM, Gerfen GJ. The structure of the inter-SH2 domain of class IA phosphoinositide 3-kinase determined by site-directed spin labeling EPR and homology modeling. Proc Natl Acad Sci U S A 2003; 100:3275-80. [PMID: 12629217 PMCID: PMC152282 DOI: 10.1073/pnas.0535975100] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphoinositide (PI) 3-kinases catalyze the phosphorylation of the D3 position of the inositol ring of PI, and its phosphorylated derivatives and play important roles in many intracellular signal transducing pathways. Class IA PI3-kinases contain distinct regulatory (p85) and catalytic (p110) subunits. p110 is stabilized and inhibited by constitutive association with p85, and is disinhibited when the SH2 domains of p85 bind to tyrosyl-phosphorylated proteins. Because the two subunits do not dissociate, disinhibition of p110 presumably occurs by an allosteric mechanism. To explore the means by which p85 regulates the activity of p110, structures of the inter-SH2 domain of p85 were determined with and without phosphopeptide by using a combination of site directed spin labeling EPR and homology modeling and molecular dynamics. The inter-SH2 domain is assigned as a rigid anti-parallel coiled-coil whose primary function is to bind p110, facilitating inhibition of p110 by the N-terminal SH2 domain of p85.
Collapse
Affiliation(s)
- Zheng Fu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|