1
|
Zocchi R, Compagnucci C, Bertini E, Sferra A. Deciphering the Tubulin Language: Molecular Determinants and Readout Mechanisms of the Tubulin Code in Neurons. Int J Mol Sci 2023; 24:ijms24032781. [PMID: 36769099 PMCID: PMC9917122 DOI: 10.3390/ijms24032781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Microtubules (MTs) are dynamic components of the cell cytoskeleton involved in several cellular functions, such as structural support, migration and intracellular trafficking. Despite their high similarity, MTs have functional heterogeneity that is generated by the incorporation into the MT lattice of different tubulin gene products and by their post-translational modifications (PTMs). Such regulations, besides modulating the tubulin composition of MTs, create on their surface a "biochemical code" that is translated, through the action of protein effectors, into specific MT-based functions. This code, known as "tubulin code", plays an important role in neuronal cells, whose highly specialized morphologies and activities depend on the correct functioning of the MT cytoskeleton and on its interplay with a myriad of MT-interacting proteins. In recent years, a growing number of mutations in genes encoding for tubulins, MT-interacting proteins and enzymes that post-translationally modify MTs, which are the main players of the tubulin code, have been linked to neurodegenerative processes or abnormalities in neural migration, differentiation and connectivity. Nevertheless, the exact molecular mechanisms through which the cell writes and, downstream, MT-interacting proteins decipher the tubulin code are still largely uncharted. The purpose of this review is to describe the molecular determinants and the readout mechanisms of the tubulin code, and briefly elucidate how they coordinate MT behavior during critical neuronal events, such as neuron migration, maturation and axonal transport.
Collapse
Affiliation(s)
- Riccardo Zocchi
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Claudia Compagnucci
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Research Hospital, IRCCS, 00146 Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence: (E.B.); or (A.S.); Tel.: +39-06-6859-2104 (E.B. & A.S.)
| | - Antonella Sferra
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence: (E.B.); or (A.S.); Tel.: +39-06-6859-2104 (E.B. & A.S.)
| |
Collapse
|
2
|
Fang CT, Kuo HH, Amartuvshin O, Hsu HJ, Liu SL, Yao JS, Yih LH. Inhibition of acetyl-CoA carboxylase impaired tubulin palmitoylation and induced spindle abnormalities. Cell Death Dis 2023; 9:4. [PMID: 36617578 PMCID: PMC9826786 DOI: 10.1038/s41420-023-01301-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023]
Abstract
Tubulin s-palmitoylation involves the thioesterification of a cysteine residue in tubulin with palmitate. The palmitate moiety is produced by the fatty acid synthesis pathway, which is rate-limited by acetyl-CoA carboxylase (ACC). While it is known that ACC is phosphorylated at serine 79 (pSer79) by AMPK and accumulates at the spindle pole (SP) during mitosis, a functional role for tubulin palmitoylation during mitosis has not been identified. In this study, we found that modulating pSer79-ACC level at the SP using AMPK agonist and inhibitor induced spindle defects. Loss of ACC function induced spindle abnormalities in cell lines and in germ cells of the Drosophila germarium, and palmitic acid (PA) rescued the spindle defects in the cell line treated transiently with the ACC inhibitor, TOFA. Furthermore, inhibition of protein palmitoylating or depalmitoylating enzymes also induced spindle defects. Together, these data suggested that precisely regulated cellular palmitate level and protein palmitoylation may be required for accurate spindle assembly. We then showed that tubulin was largely palmitoylated in interphase cells but less palmitoylated in mitotic cells. TOFA treatment diminished tubulin palmitoylation at doses that disrupt microtubule (MT) instability and cause spindle defects. Moreover, spindle MTs comprised of α-tubulins mutated at the reported palmitoylation site exhibited disrupted dynamic instability. We also found that TOFA enhanced the MT-targeting drug-induced spindle abnormalities and cytotoxicity. Thus, our study reveals that precise regulation of ACC during mitosis impacts tubulin palmitoylation to delicately control MT dynamic instability and spindle assembly, thereby safeguarding nuclear and cell division.
Collapse
Affiliation(s)
- Chieh-Ting Fang
- grid.506933.a0000 0004 0633 7835Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hsiao-Hui Kuo
- grid.506933.a0000 0004 0633 7835Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Oyundari Amartuvshin
- grid.506933.a0000 0004 0633 7835Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan ,grid.28665.3f0000 0001 2287 1366Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan ,grid.260565.20000 0004 0634 0356Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Hwei-Jan Hsu
- grid.506933.a0000 0004 0633 7835Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan ,grid.28665.3f0000 0001 2287 1366Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan ,grid.260565.20000 0004 0634 0356Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Sih-Long Liu
- grid.506933.a0000 0004 0633 7835Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jhong-Syuan Yao
- grid.506933.a0000 0004 0633 7835Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ling-Huei Yih
- grid.506933.a0000 0004 0633 7835Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
3
|
Mechanistic insights into the inhibitory effects of palmitoylation on cytosolic thioredoxin reductase and thioredoxin. Biochimie 2015; 110:25-35. [PMID: 25576832 DOI: 10.1016/j.biochi.2014.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/29/2014] [Indexed: 11/20/2022]
Abstract
Overnutrition can lead to oxidative stress, but its underlying mechanism remains unclear. In this study, we report that human liver-derived HepG2 cells utilize cytosolic thioredoxin reductase (TrxR1) and thioredoxin (hTrx1) to defend against the high glucose/palmitate-mediated increase in reactive oxygen species. However, enhanced TrxR1/hTrx1 palmitoylation occurs in parallel with a decrease in their activities under the conditions studied here. An autoacylation process appears to be the major mechanism for generating palmitoylated TrxR1/Trx1 in HepG2 cells. A novel feature of this post-translational modification is the covalent inhibition of TrxR1/hTrx1 by palmitoyl-CoA, an activated form of palmitate. The palmitoyl-CoA/TrxR1 reaction is NADPH-dependent and produces palmitoylated TrxR1 at an active site selenocysteine residue. Conversely, S-palmitoylation occurs at the structural Cys62/Cys69/Cys72 residues but not the active site Cys32/Cys35 residues of hTrx1. Palmitoyl-CoA concentration and the period of incubation with TrxR1/hTrx1 are important factors that influence the inhibitory efficacy of palmitoyl-CoA on TrxR1/hTrx1. Thus, an increase in TrxR1/hTrx1 palmitoylation could be a potential consequence of high glucose/palmitate. The time-dependent inactivation of the NADPH-TrxR1-Trx1 system by palmitoyl-CoA occurs in a biphasic manner - a fast phase followed by a slow phase. Kinetic analysis suggests that the fast phase is consistent with a fast and reversible association between TrxR1/hTrx1 and palmitoyl-CoA. The slow phase is correlated with a slow and irreversible inactivation, in which selenolate/thiolate groups nucleophilically attack the α-carbon of bound palmitoyl-CoA, leading to the formation of thioester/selenoester bonds. hTrx1 can enhance rate of fast phase but limits the rate of slow phase when it is present in a preincubation mixture containing NADPH, TrxR1 and palmitoyl-CoA. Therefore, hTrx1 may provide palmitoylation sites or partially protect the TrxR1 active site selenol/thiol group(s) from palmitoylation. Our data suggest that Se/S-palmitoylation acts as an important modulator of TrxR1/hTrx1 activities, representing a novel potential mechanism that underlies overnutrition-induced events.
Collapse
|
4
|
Song Y, Brady ST. Post-translational modifications of tubulin: pathways to functional diversity of microtubules. Trends Cell Biol 2014; 25:125-36. [PMID: 25468068 DOI: 10.1016/j.tcb.2014.10.004] [Citation(s) in RCA: 290] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 01/01/2023]
Abstract
Tubulin and microtubules are subject to a remarkable number of post-translational modifications. Understanding the roles these modifications play in determining the functions and properties of microtubules has presented a major challenge that is only now being met. Many of these modifications are found concurrently, leading to considerable diversity in cellular microtubules, which varies with development, differentiation, cell compartment, and cell cycle. We now know that post-translational modifications of tubulin affect, not only the dynamics of the microtubules, but also their organization and interaction with other cellular components. Many early suggestions of how post-translational modifications affect microtubules have been replaced with new ideas and even new modifications as our understanding of cellular microtubule diversity comes into focus.
Collapse
Affiliation(s)
- Yuyu Song
- Yale School of Medicine, Department of Genetics and Howard Hughes Medical Institute, Boyer Center, 295 Congress Avenue, New Haven, CT 065105, USA
| | - Scott T Brady
- Department of Anatomy and Cell Biology, 808 S. Wood St., Rm 578 (M/C 512), University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
5
|
Abstract
The covalent attachment of palmitate to proteins can alter protein-lipid and protein-protein interactions thereby influencing protein function. Palmitoylation is a reversible post-translational modification. Thus, like protein phosphorylation, protein palmitoylation can function in activation-dependent signaling pathways. This review will provide an overview of the mechanisms and regulation of protein palmitoylation and focus on the role of palmitoylation in signal transduction pathways of lymphocytes and platelets.
Collapse
Affiliation(s)
- Robert Flaumenhaft
- Beth Israel Deaconess Medical Center, Harvard Medical School, Division of Hemostasis and Thrombosis, Department of Medicine, Boston, MA, 02215, USA.
| | | |
Collapse
|
6
|
Wilson JP, Raghavan AS, Yang YY, Charron G, Hang HC. Proteomic analysis of fatty-acylated proteins in mammalian cells with chemical reporters reveals S-acylation of histone H3 variants. Mol Cell Proteomics 2010; 10:M110.001198. [PMID: 21076176 DOI: 10.1074/mcp.m110.001198] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bioorthogonal chemical reporters are useful tools for visualizing and identifying post-translational modifications on proteins. Here we report the proteomic analysis of mammalian proteins targeted by a series of fatty acid chemical reporters ranging from myristic to stearic acid. The large-scale analysis of total cell lysates from fully solubilized Jurkat T cells identified known fatty-acylated proteins and many new candidates, including nuclear proteins and in particular histone H3 variants. We demonstrate that histones H3.1, H3.2, and H3.3 are modified with fatty acid chemical reporters and identify the conserved cysteine 110 as a new site of S-acylation on histone H3.2. This newly discovered modification of histone H3 could have implications for nuclear organization and chromatin regulation. The unbiased proteomic analysis of fatty-acylated proteins using chemical reporters has revealed a greater diversity of lipid-modified proteins in mammalian cells and identified a novel post-translational modification of histones.
Collapse
Affiliation(s)
- John P Wilson
- The Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
7
|
Zhao Z, Hou J, Xie Z, Deng J, Wang X, Chen D, Yang F, Gong W. Acyl-biotinyl Exchange Chemistry and Mass Spectrometry-Based Analysis of Palmitoylation Sites of In Vitro Palmitoylated Rat Brain Tubulin. Protein J 2010; 29:531-7. [DOI: 10.1007/s10930-010-9285-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
|
9
|
Wolff J. Plasma membrane tubulin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1415-33. [PMID: 19328773 DOI: 10.1016/j.bbamem.2009.03.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/13/2009] [Accepted: 03/19/2009] [Indexed: 01/17/2023]
Abstract
The association of tubulin with the plasma membrane comprises multiple levels of penetration into the bilayer: from integral membrane protein, to attachment via palmitoylation, to surface binding, and to microtubules attached by linker proteins to proteins in the membrane. Here we discuss the soundness and weaknesses of the chemical and biochemical evidence marshaled to support these associations, as well as the mechanisms by which tubulin or microtubules may regulate functions at the plasma membrane.
Collapse
Affiliation(s)
- J Wolff
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Abstract
Many proteins are S-acylated, affecting their localization and function. Dynamic S-acylation in response to various stimuli has been seen for several proteins in vivo. The regulation of S-acylation is beginning to be elucidated. Proteins can autoacylate or be S-acylated by protein acyl transferases (PATs). Deacylation, on the other hand, is an enzymatic process catalyzed by protein thioesterases (APT1 and PPT1) but only APT1 appears to be involved in the regulation of the reversible S-acylation of cytoplasmic proteins seen in vivo. PPT1, on the other hand, is involved in the lysosomal degradation of S-acylated proteins and PPT1 deficiency causes the disease infant neuronal ceroid lipofuscinosis.
Collapse
Affiliation(s)
- Ruth Zeidman
- Molecular Medicine, National Heart & Lung Institute, Sir Alexander Fleming Building, Imperial College London, London, UK
| | | | | |
Collapse
|
11
|
Abstract
S-Palmitoylation is a reversible post-translational modification that results in the addition of a C16-carbon saturated fatty acyl chain to cytoplasmic cysteine residues. This modification is mediated by Palmitoyl-acyl Transferases that are starting to be investigated, and reversed by Protein Palmitoyl Thioesterases, which remain enigmatic. Palmitoylation of cytoplasmic proteins has been well described to regulate the interaction of these soluble proteins with specific membranes or membrane domains. Less is known about the consequences of palmitoylation in transmembrane proteins not only due to the dual difficulty of following a lipid modification and dealing with membrane proteins, but also due to the complexity of the palmitoylation-induced behavior. Moreover, possibly because the available data set is limited, the change in behavior induced by palmitoylation of a transmembrane protein is currently not predictable. We here review the various consequences reported for the palmitoylation of membrane proteins, which include improper folding in the endoplasmic reticulum, retention in the Golgi, inability to assemble into protein platforms, altered signaling capacity, premature endocytosis and missorting in the endocytic pathway. We then discuss the possible underlying mechanisms, in particular the ability of palmitoylation to control the conformation of transmembrane segments, to modify the affinity of a membrane protein for specific membrane domains and to control protein-protein interactions.
Collapse
Affiliation(s)
- Julie Charollais
- Global Health Institute, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
12
|
Kokubo J, Nagatani N, Hiroki K, Kuroiwa K, Watanabe N, Arai T. Mechanism of destruction of microtubule structures by 4-hydroxy-2-nonenal. Cell Struct Funct 2008; 33:51-9. [PMID: 18360009 DOI: 10.1247/csf.07038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A major end product of lipid peroxidation, 4-hydroxy-2-nonenal (HNE), is an electrophilic alkenal and produces Michael adducts with cellular proteins. It is known that exposure of cultured cells to HNE causes rapid disappearance of microtubule networks. In this study we addressed the mechanism. Immunochemical studies revealed that HNE preferentially modified alpha-tubulin in rat primary neuronal cells, PC12 cells, and rat fibroblast cell line 3Y1 cells. This was morphologically associated with the disappearance of microtubule structures in those cells. In a purified rat brain microtubule fraction, HNE modified unpolymerized tubulin and impaired its polymerizability, with a concomitant increase in insolubilized tubulin. Nevertheless, HNE had a marginal effect on the stability of pre-polymerized microtubules. These results suggest that disruption of microtubule assembly as a result of HNE modification of unpolymerized tubulin, rather than destruction of assembled microtubules, is responsible for the disappearance of microtubule structures in cells exposed to HNE.
Collapse
Affiliation(s)
- June Kokubo
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Xue Y, Chen H, Jin C, Sun Z, Yao X. NBA-Palm: prediction of palmitoylation site implemented in Naïve Bayes algorithm. BMC Bioinformatics 2006; 7:458. [PMID: 17044919 PMCID: PMC1624852 DOI: 10.1186/1471-2105-7-458] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 10/17/2006] [Indexed: 11/16/2022] Open
Abstract
Background Protein palmitoylation, an essential and reversible post-translational modification (PTM), has been implicated in cellular dynamics and plasticity. Although numerous experimental studies have been performed to explore the molecular mechanisms underlying palmitoylation processes, the intrinsic feature of substrate specificity has remained elusive. Thus, computational approaches for palmitoylation prediction are much desirable for further experimental design. Results In this work, we present NBA-Palm, a novel computational method based on Naïve Bayes algorithm for prediction of palmitoylation site. The training data is curated from scientific literature (PubMed) and includes 245 palmitoylated sites from 105 distinct proteins after redundancy elimination. The proper window length for a potential palmitoylated peptide is optimized as six. To evaluate the prediction performance of NBA-Palm, 3-fold cross-validation, 8-fold cross-validation and Jack-Knife validation have been carried out. Prediction accuracies reach 85.79% for 3-fold cross-validation, 86.72% for 8-fold cross-validation and 86.74% for Jack-Knife validation. Two more algorithms, RBF network and support vector machine (SVM), also have been employed and compared with NBA-Palm. Conclusion Taken together, our analyses demonstrate that NBA-Palm is a useful computational program that provides insights for further experimentation. The accuracy of NBA-Palm is comparable with our previously described tool CSS-Palm. The NBA-Palm is freely accessible from: .
Collapse
Affiliation(s)
- Yu Xue
- Laboratory of Cellular Dynamics, Hefei National Laboratory for Physical Sciences, and the University of Science and Technology of China, Hefei, China 230027
| | - Hu Chen
- Institute of Bioinformatics and Systems Biology, MOE Key Laboratory of Bioinformatics, State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China 100084
| | - Changjiang Jin
- Laboratory of Cellular Dynamics, Hefei National Laboratory for Physical Sciences, and the University of Science and Technology of China, Hefei, China 230027
| | - Zhirong Sun
- Institute of Bioinformatics and Systems Biology, MOE Key Laboratory of Bioinformatics, State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China 100084
| | - Xuebiao Yao
- Laboratory of Cellular Dynamics, Hefei National Laboratory for Physical Sciences, and the University of Science and Technology of China, Hefei, China 230027
- Department of Physiology and Cancer Research Program, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
14
|
Qanbar R, Bouvier M. Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol Ther 2003; 97:1-33. [PMID: 12493533 DOI: 10.1016/s0163-7258(02)00300-5] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G-protein-coupled receptors (GPCRs) constitute one of the largest protein families in the human genome. They are subject to numerous post-translational modifications, including palmitoylation. This review highlights the dynamic nature of palmitoylation and its role in GPCR expression and function. The palmitoylation of other proteins involved in GPCR signaling, such as G-proteins, regulators of G-protein signaling, and G-protein-coupled receptor kinases, is also discussed.
Collapse
Affiliation(s)
- Riad Qanbar
- Département de Biochimie, Université de Montréal, C.P. 6128 Succursale Centre-Ville, 2900 Edouard Montpetit, Montreál, Quebec, Canada H3C 3J7
| | | |
Collapse
|
15
|
Zambito AM, Knipling L, Wolff J. Charge variants of tubulin, tubulin S, membrane-bound and palmitoylated tubulin from brain and pheochromocytoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1601:200-7. [PMID: 12445483 DOI: 10.1016/s1570-9639(02)00472-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Isoelectric focusing (IEF) of only approximately 1 microg of rat brain tubulin yields 27-30 distinct charge variants in the pH range of 4.5-5.4 with band separations of 0.01-0.02 pH units as detected by silver staining. Variants can be efficiently transferred from the immobilized gradient strip to polyvinylidene difluoride (PVDF) membranes for reaction with monoclonal antibodies. C-terminal-directed antibodies to alpha- and beta-tubulin yield patterns similar to N-terminal-directed antibodies. Removal of the acidic C-termini with subtilisin to form tubulin S increases the pI values by approximately 1 pH unit, leads to a loss in the isoelectric distinction between the alpha- and beta-tubulin variants seen by N-terminal-directed antibodies, and abolishes reactions with all beta-variants and all but three alpha variants by C-terminal-directed antibodies (TU-04 and TU-14). Many, but not all, of the variants are substrates for autopalmitoylation of rat brain tubulin. The distribution of isoelectric variants differs between cytoplasm and membrane fractions from PC12 pheochromocytoma cells. A potential role for different variants is suggested.
Collapse
Affiliation(s)
- Anna Maria Zambito
- Laboratory of Biochemistry and Genetics, NIDDK, NIH, Building 8, Room 2A23, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
16
|
Britto PJ, Knipling L, Wolff J. The local electrostatic environment determines cysteine reactivity of tubulin. J Biol Chem 2002; 277:29018-27. [PMID: 12023292 DOI: 10.1074/jbc.m204263200] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Of the 20 cysteines of rat brain tubulin, some react rapidly with sulfhydryl reagents, and some react slowly. The fast reacting cysteines cannot be distinguished with [14C]iodoacetamide, N-[(14)C]ethylmaleimide, or IAEDANS ([5-((((2-iodoacetyl)amino)ethyl)amino) naphthalene-1-sulfonic acid]), since modification to mole ratios 1 cysteine/dimer always leads to labeling of 6-7 cysteine residues. These have been identified as Cys-305alpha, Cys-315alpha, Cys-316alpha, Cys-347alpha, Cys-376alpha, Cys-241beta, and Cys-356beta by mass spectroscopy and sequencing. This lack of specificity can be ascribed to reagents that are too reactive; only with the relatively inactive chloroacetamide could we identify Cys-347alpha as the most reactive cysteine of tubulin. Using the 3.5-A electron diffraction structure, it could be shown that the reactive cysteines were within 6.5 A of positively charged arginines and lysines or the positive edges of aromatic rings, presumably promoting dissociation of the thiol to the thiolate anion. By the same reasoning the inactivity of a number of less reactive cysteines could be ascribed to inhibition of modification by negatively charged local environments, even with some surface-exposed cysteines. We conclude that the local electrostatic environment of cysteine is an important, although not necessarily the only, determinant of its reactivity.
Collapse
Affiliation(s)
- P J Britto
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
17
|
Abstract
PC12 pheochromocytoma cells incorporate [(3)H]palmitic acid into tubulin in a time- and cell-density-dependent manner. The plasma membrane-enriched fraction contains most of the radioactivity of the membrane pellet. While palmitoylated tubulin is found in both the cytoplasm and particulate fraction, the bulk of [(3)H]palmitic acid bound to tubulin is present in the crude membrane pellet and the tubulin extracted from the plasma membrane is more heavily palmitoylated than that extracted from endoplasmic reticulum. Detergent-extracted tubulin from plasma membrane is, to a large extent, polymerization competent; a substantial fraction, increasing as a function of labeling time, is not hydroxylamine-labile. The requirement for detergent extraction, the accompanying changes in tubulin properties and the present findings of preferential incorporation of labeled tubulin into plasma membranes, make it clear that direct incorporation of tubulin into the plasma membrane can occur.
Collapse
Affiliation(s)
- A M Zambito
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA.
| | | |
Collapse
|