1
|
Experimental and approved treatments for skin photosensitivity in individuals with erythropoietic protoporphyria or X-linked protoporphyria: A systematic review. Biomed Pharmacother 2023; 158:114132. [PMID: 36525819 DOI: 10.1016/j.biopha.2022.114132] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Erythropoietic protoporphyria (EPP) and X-linked protoporphyria (XLP) are characterized by skin photosensitivity caused by accumulation of protoporphyrin IX. We aimed to review the clinical evidence of efficacy and safety of skin photosensitivity treatments in individuals with EPP or XLP. We systematically searched MEDLINE, Embase, the Cochrane Library, and ClinicalTrials.gov. A total of 40 studies with data on 18 treatment modalities were included. Comprehensive treatment safety data were obtained from the European Medicines Agency and the United States Food and Drug Administration. The studies used different outcome measures to evaluate the sensitivity without a generally accepted method to assess treatment effect on skin photosensitivity. Of the included studies, 13 were controlled trials. Gathered, the trials showed moderate positive effect of inorganic sunscreen application and subcutaneous implant of afamelanotide and no effect of organic sunscreen application, or oral treatment with beta-carotene, cysteine, N-acetylcysteine, vitamin C, or warfarin. Studies without control groups suggested treatment effect of foundation cream, dihydroxyacetone/lawsone cream, narrow-band ultraviolet B phototherapy, erythrocyte transfusion, extracorporeal erythrocyte photodynamic therapy, or oral treatment with zinc sulphate, terfenadine, cimetidine, or canthaxanthin, but the real effect is uncertain. Assessment of treatment effect on photosensitivity in patients with EPP or XLP carries a high risk of bias since experienced photosensitivity varies with both weather conditions, exposure pattern, and pigmentation. Controlled trials of promising treatment options are important although challenging in this small patient population.
Collapse
|
2
|
Heerfordt IM, Philipsen PA, Lerche CM, Wulf HC. Protection against visible light by dihydroxyacetone in erythropoietic protoporphyria. Photodiagnosis Photodyn Ther 2023; 41:103302. [PMID: 36690194 DOI: 10.1016/j.pdpdt.2023.103302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND Patients with erythropoietic protoporphyria (EPP) are hypersensitive to long wave ultraviolet (UVA) radiation and visible light and they experience severe skin pain by light exposure. The patients have very limited treatment options. Sunless skin tanning with dihydroxyacetone (DHA) is now being investigated as a possible treatment modality of skin photosensitivity in EPP. METHODS We simulated the theoretical light protection factor provided by DHA application. In addition, we present 19 cases with EPP who were treated at our department with DHA weekly during spring and summer from 2018 to 2021 inclusive. RESULTS The protection factor against UVA and visible light was estimated to approximately two. Out of the 19 patients with EPP who were treated with DHA in 2018, 11 patients experienced a sustained good effect and continued to use the treatment on a weekly basis in the spring and summer of 2019, 2020, and 2021. CONCLUSION AND PERSPECTIVES Both the theoretical estimates and the uncontrolled study suggest that sunless tanning with DHA reduces photosensitivity in patients with EPP. Our hypothesis is that skin treated with DHA can tolerate twice the daylight dose compared to untreated skin before onset of skin symptoms. To validate this conclusion, we plan a randomized clinical trial to determine the effect of DHA application to reduce photosensitivity in patients with EPP under controlled clinical conditions. The study protocol for this trial is presented in the paper.
Collapse
Affiliation(s)
- Ida M Heerfordt
- Department of Dermatology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark.
| | - Peter A Philipsen
- Department of Dermatology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark
| | - Catharina M Lerche
- Department of Dermatology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark; Department of Pharmacy, University of Copenhagen, Denmark
| | - Hans Christian Wulf
- Department of Dermatology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark
| |
Collapse
|
3
|
Sernicola A, Cama E, Pelizzo MG, Tessarolo E, Nicolli A, Viero G, Alaibac M. In vitro Assessment of Solar Filters for Erythropoietic Protoporphyria in the Action Spectrum of Protoporphyrin IX. Front Med (Lausanne) 2021; 8:796884. [PMID: 34988101 PMCID: PMC8720878 DOI: 10.3389/fmed.2021.796884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/03/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction: Subjects with erythropoietic protoporphyria rely on broad-spectrum sunscreens with high sun protection factor, which is not informative on efficacy in the absorption spectrum of protoporphyrin IX, spanning visible radiation and peaking around 408 nm. Photoactivation of protoporphyrin IX is responsible for painful skin photosensitivity in erythropoietic protoporphyria. The authors assessed the protective efficacy of six sunscreens in vitro in the absorption spectrum of protoporphyrin IX. Method: Transmittance measurements were performed in the 300-850 nm wavelengths on samples of six photoprotective products applied to polymethyl methacrylate plates. Porphyrin protection factor was calculated in the 300-700 nm region to provide a measurement for the efficacy of each product based on the action spectrum of protoporphyrin IX. Results: Product A showed the highest porphyrin protection factor among tested products with a median value of 4.22. Product A is a sunscreen containing organic filters, titanium dioxide and synthetic iron oxides, pigmentary grade active ingredients that absorb visible radiation. Other products showed inefficient protection in the visible, with transmittance between 75 and 95% at 500 nm. The low porphyrin protection factor of inorganic filter product B was attributed to particle micronization, as declared by the manufacturer. Conclusion: Adding porphyrin protection factor to sunscreen labeling could help patients with erythropoietic protoporphyria and other photosensitivity disorders identify products tailored on their specific needs. The development of sunscreens providing protection from visible radiation and excellent cosmetical tolerability could improve the lifestyle of patients with erythropoietic protoporphyria.
Collapse
Affiliation(s)
- Alvise Sernicola
- Dermatology Unit, Department of Medicine (DIMED), University of Padova, Padua, Italy
| | - Elena Cama
- Dermatology Unit, Department of Medicine (DIMED), University of Padova, Padua, Italy
| | - Maria Guglielmina Pelizzo
- Department of Information Engineering, University of Padova, Padua, Italy
- Institute for Photonics and Nanotechnologies, National Research Council of Italy, Padua, Italy
| | - Enrico Tessarolo
- Institute for Photonics and Nanotechnologies, National Research Council of Italy, Padua, Italy
| | - Annamaria Nicolli
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health (DCTV), University of Padova, Padua, Italy
| | - Giulia Viero
- Dermatology Unit, Department of Medicine (DIMED), University of Padova, Padua, Italy
| | - Mauro Alaibac
- Dermatology Unit, Department of Medicine (DIMED), University of Padova, Padua, Italy
| |
Collapse
|
4
|
Geisler AN, Austin E, Nguyen J, Hamzavi I, Jagdeo J, Lim HW. Visible light. Part II: Photoprotection against visible and ultraviolet light. J Am Acad Dermatol 2021; 84:1233-1244. [PMID: 33640513 DOI: 10.1016/j.jaad.2020.11.074] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/08/2023]
Abstract
Cutaneous photobiology studies have focused primarily on the ultraviolet portion of the solar spectrum. Visible light (VL), which comprises 50% of the electromagnetic radiation that reaches the Earth's surface and, as discussed in Part I of this CME, has cutaneous biologic effects, such as pigment darkening and erythema. Photoprotection against VL includes avoiding the sun, seeking shade, and using photoprotective clothing. The organic and inorganic ultraviolet filters used in sunscreens do not protect against VL, only tinted sunscreens do. In the United States, these filters are regulated by the Food and Drug Administration as an over-the-counter drug and are subject to more stringent regulations than in Europe, Asia, and Australia. There are no established guidelines regarding VL photoprotection. Alternative measures to confer VL photoprotection are being explored. These novel methods include topical, oral, and subcutaneous agents. Further development should focus on better protection in the ultraviolet A1 (340-400 nm) and VL ranges while enhancing the cosmesis of the final products.
Collapse
Affiliation(s)
| | - Evan Austin
- Department of Dermatology, Center for Photomedicine, SUNY Downstate Medical Center, Brooklyn, New York; Dermatology Service, VA New York Harbor Healthcare System, Brooklyn, New York
| | - Julie Nguyen
- Department of Dermatology, Center for Photomedicine, SUNY Downstate Medical Center, Brooklyn, New York; Dermatology Service, VA New York Harbor Healthcare System, Brooklyn, New York
| | - Iltefat Hamzavi
- Department of Dermatology, Photomedicine and Photobiology Unit, Henry Ford Health System, Detroit, Michigan
| | - Jared Jagdeo
- Department of Dermatology, Center for Photomedicine, SUNY Downstate Medical Center, Brooklyn, New York; Dermatology Service, VA New York Harbor Healthcare System, Brooklyn, New York.
| | - Henry W Lim
- Department of Dermatology, Photomedicine and Photobiology Unit, Henry Ford Health System, Detroit, Michigan
| |
Collapse
|
5
|
Romanhole RC, Fava ALM, Tundisi LL, Macedo LMD, Santos ÉMD, Ataide JA, Mazzola PG. Unplanned absorption of sunscreen ingredients: Impact of formulation and evaluation methods. Int J Pharm 2020; 591:120013. [PMID: 33132151 DOI: 10.1016/j.ijpharm.2020.120013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/30/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022]
Abstract
Permeation of sunscreens agents reduces its effectiveness and safety, leading to systemic circulation and causing unknown adverse effects. In order to maintain the sunscreen efficacy and safety, the filters must stay on the skin surface, with minimum penetration through dermis. Even facing the possibility of filters permeation, the use of sunscreen is important to avoid skin damage as erythema, free-radicals formation, skin ageing and skin cancer, caused by ultraviolet radiation. Aiming potential side effects caused by topical absorption of sunscreens, studies are carried to improve formulation characteristics and stability, reduce skin permeation and evaluate sun protections factor (SPF). Current assays to detect the permeation of sunscreens involve in vivo or in vitro studies, to simulate physiological conditions of use. The aim of this review is to revisit sunscreen skin permeation data over the last decade and the factors that can enhance skin permeation or improve the sunscreen efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | - Janaína Artem Ataide
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil.
| | - Priscila Gava Mazzola
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| |
Collapse
|
6
|
Balwani M. Erythropoietic Protoporphyria and X-Linked Protoporphyria: pathophysiology, genetics, clinical manifestations, and management. Mol Genet Metab 2019; 128:298-303. [PMID: 30704898 PMCID: PMC6656624 DOI: 10.1016/j.ymgme.2019.01.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 11/18/2022]
Abstract
Erythropoietic Protoporphyria (EPP) and X-linked Protoporphyria (XLP) are rare, genetic photodermatoses resulting from defects in enzymes of the heme-biosynthetic pathway. EPP results from the partial deficiency of ferrochelatase, and XLP results from gain-of-function mutations in erythroid specific ALAS2. Both disorders result in the accumulation of erythrocyte protoporphyrin, which is released in the plasma and taken up by the liver and vascular endothelium. The accumulated protoporphyrin is activated by sunlight exposure, generating singlet oxygen radical reactions leading to tissue damage and excruciating pain. About 2-5% of patients develop clinically significant liver dysfunction due to protoporphyrin deposition in bile and/or hepatocytes which can advance to cholestatic liver failure requiring transplantation. Clinically these patients present with acute, severe, non-blistering phototoxicity within minutes of sun-exposure. Anemia is seen in about 47% of patients and about 27% of patients will develop abnormal serum aminotransferases. The diagnosis of EPP and XLP is made by detection of markedly increased erythrocyte protoporphyrin levels with a predominance of metal-free protoporphyrin. Genetic testing by sequencing the FECH or ALAS2 gene confirms the diagnosis. Treatment is limited to sun-protection and there are no currently available FDA-approved therapies for these disorders. Afamelanotide, a synthetic analogue of α-melanocyte stimulating hormone was found to increase pain-free sun exposure and improve quality of life in adults with EPP. It has been approved for use in the European Union since 2014 and is not available in the U.S. In addition to the development of effective therapeutics, future studies are needed to establish the role of iron and the risks related to the development of hepatopathy in these patients.
Collapse
MESH Headings
- 5-Aminolevulinate Synthetase/genetics
- Anemia/etiology
- Clinical Trials as Topic
- Dermatitis, Phototoxic
- Disease Management
- Genes, X-Linked
- Heme/metabolism
- Humans
- Liver Diseases/etiology
- Liver Diseases/physiopathology
- Porphyrias, Hepatic/complications
- Porphyrias, Hepatic/genetics
- Porphyrias, Hepatic/physiopathology
- Porphyrias, Hepatic/therapy
- Protoporphyria, Erythropoietic/complications
- Protoporphyria, Erythropoietic/genetics
- Protoporphyria, Erythropoietic/physiopathology
- Protoporphyria, Erythropoietic/therapy
Collapse
Affiliation(s)
- Manisha Balwani
- Department of Genetics and Genomic Sciences and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|