1
|
Esmaeili Z, Kamal Shahsavar S, Ghazvini K. A systematic review of the avian antibody (IgY) therapeutic effects on human bacterial infections over the decade. Antib Ther 2025; 8:111-123. [PMID: 40177645 PMCID: PMC11959693 DOI: 10.1093/abt/tbaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/11/2025] [Accepted: 02/17/2025] [Indexed: 04/05/2025] Open
Abstract
The overuse of antibiotics worldwide, especially during the Coronavirus pandemic, has raised concerns about the rise of antibiotic resistance and its side effects. Immunoglobulin Y, a natural protein that specifically targets foreign antigens, holds promise as a potential therapeutic option, particularly for individuals with sensitive immune systems. Despite numerous studies on IgY, the optimal administration method, effective dose, target antigen, and potential side effects of this antibody remain areas of active research and challenge. This review selected and evaluated articles published in the last ten years from databases such as PubMed and Science Direct with appropriate keywords discussing the therapeutic effects of immunoglobulin Y in human infections in vivo. Out of all the reviewed articles, 35 articles met the inclusion criteria. The results showed that the specific antibody against dental, respiratory, and skin infections has an acceptable effectiveness. In contrast, some infections, such as neurological infections, including tetanus and botulism, still need further investigation due to the short survival time of mice. On the other hand, reporting side effects such as antibody-dependent enhancement in some infections limits its use.
Collapse
Affiliation(s)
- Zahra Esmaeili
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177949025, Iran
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad 9177949025, Iran
| | - Sara Kamal Shahsavar
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177949025, Iran
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad 9177949025, Iran
| | - Kiarash Ghazvini
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177949025, Iran
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad 9177949025, Iran
| |
Collapse
|
2
|
Cruz, Tipantiza N, Torres, Arias M. Tecnología IgY: Estrategia en el tratamiento de enfermedades infecciosas humanas. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.03.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
La aparición de microorganismos resistentes a antibióticos, el descubrimiento de nuevos agentes patógenos con potencial pandémico y el aumento de una población inmunocomprometida han dejado casi obsoleta la terapia antimicrobiana, terapia comúnmente usada para tratar enfermedades infecciosas. Por otro lado, las investigaciones acerca del uso del anticuerpo IgY para desarrollar inmunidad pasiva han demostrado el potencial que tiene la tecnología IgY para tratar enfermedades infecciosas víricas y bacterianas. Donde los anticuerpos IgY de aves se destacan por su alta especificidad, rendimiento y escalabilidad de producción a menor costo, con relación a los anticuerpos IgG de mamíferos. El objetivo de esta revisión es determinar la importancia del uso de los anticuerpos IgY como tratamiento terapéutico y profiláctico frente a los patógenos causantes de infecciones virales y bacterianas en humanos, mediante la recopilación de ensayos clínicos, productos comerciales y patentes registradas en el período de 2010-2021. Finalmente, con este estudio se estableció que la tecnología IgY es una herramienta biotecnológica versátil y eficaz para tratar y prevenir enfermedades infecciosas, al reducir los síntomas y la carga del patógeno.
Collapse
Affiliation(s)
- Nathaly Cruz, Tipantiza
- Departamento de Ciencias de la Vida y la Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE
| | - Marbel Torres, Arias
- Departamento de Ciencias de la Vida y la Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE Laboratorio de Inmunología y Virología, CENCINAT, GISAH, Universidad de las Fuerzas Armadas, ESPE
| |
Collapse
|
3
|
Wang Z, Li J, Li J, Li Y, Wang L, Wang Q, Fang L, Ding X, Huang P, Yin J, Yin Y, Yang H. Protective effect of chicken egg yolk immunoglobulins (IgY) against enterotoxigenic Escherichia coli K88 adhesion in weaned piglets. BMC Vet Res 2019; 15:234. [PMID: 31286936 PMCID: PMC6615277 DOI: 10.1186/s12917-019-1958-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 06/12/2019] [Indexed: 11/17/2022] Open
Abstract
Background Enterotoxigenic Escherichia coli K88 (E. coli K88) are considered as a major cause of diarrhea and death in newly weaned piglets. Oral passive immunization with chicken egg yolk immunoglobulins (IgY) have attracted considerable attention for treatment of gastrointestinal infection due to its high specificity. In this study it was estimated the protective effect of anti-K88 fimbriae IgY against E. coli K88 adhesion to piglet intestinal mucus in vitro and to investigate the potential use of IgY for controlling E. coli-induced diarrhea in weaned piglets in vivo. Results E. coli K88 was incubated with IgY for 24 h, and the bacterial growth profiles showed that specific IgY with a concentration higher than 5 mg/mL was observed to significantly inhibit the growth of E. coli K88 compared to nonspecific yolk powder in a liquid medium. Moreover, pretreatment with 50 mg/mL of IgY was found to significantly decrease the adhesion ability of E. coli K88 to porcine jejunal and ileal mucus, further supported by the observations from our immunofluorescence microscopic analysis. In vivo, administration of IgY successfully protected piglets from diarrhea caused by E. coli K88 challenge. Additionally, IgY treatment efficiently alleviated E. coli-induced intestinal inflammation in piglets as the gene expression levels of inflammatory cytokines TNF-α, IL-22, IL-6 and IL-1β in IgY-treated piglets remained unchanged after E. coli K88 infection. Furthermore, IgY significantly prevented E. coli K88 adhering to the jejunal and ileal mucosa of piglets with E. coli infection and significantly decreased E. coli and enterotoxin expression in colonic contents. Conclusion Outcome of the study demonstrated that IgY against the fimbrial antigen K88 was able to significantly inhibit the growth of E. coli K88, block the binding of E. coli to small intestinal mucus, and protect piglets from E. coli-induced diarrhea. These results indicate that passive immunization with IgY may be useful to prevent bacterial colonization and to control enteric diseases due to E. coli infection. The study has great clinical implication to provide alternative therapy to antibiotics in E coli induced diarrhea. Electronic supplementary material The online version of this article (10.1186/s12917-019-1958-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhaobin Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.,Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha City, 410125, Hunan, China
| | - Jia Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.,Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha City, 410125, Hunan, China
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Yali Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Lixia Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Qingping Wang
- Zyme Fast (Changsha) Biotechnology Co., Ltd, Changsha City, 410311, Hunan, China
| | - Lin Fang
- Zyme Fast (Changsha) Biotechnology Co., Ltd, Changsha City, 410311, Hunan, China
| | - Xueqin Ding
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Pengfei Huang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jia Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yulong Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.,Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha City, 410125, Hunan, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China. .,Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha City, 410125, Hunan, China.
| |
Collapse
|
4
|
Wang X, Song L, Tan W, Zhao W. Clinical efficacy of oral immunoglobulin Y in infant rotavirus enteritis: Systematic review and meta-analysis. Medicine (Baltimore) 2019; 98:e16100. [PMID: 31277110 PMCID: PMC6635298 DOI: 10.1097/md.0000000000016100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Rotavirus (RV) can cause vomiting and diarrhea in infants and children, and could be treated clinically with immunoglobulin Y (IgY), which is an immunoglobulin extracted from chicken yolk. There is no systematic evaluation of immunoglobulin in the treatment of rotavirus enteritis. Therefore, we systematically evaluated rotavirus enteritis with oral immunoglobulin Y therapy using meta-analysis. METHODS We conducted a systematic search in CNKI, WANFANG DATA, VIP, PubMed, and the Cochrane Library databases (up to April 30, 2018). Using Revman 5.3 software for meta-analysis. RESULTS A total of 2626 subjects with rotavirus diarrhea from 17 randomized clinical trials were included in the meta-analysis. Of these, 1347 subjects received oral immunoglobulin Y and 1279 subjects received conventional treatment. The results of the meta-analysis indicated that the total number of effective cases and effective rates of immunoglobulin Y in treatment of rotavirus enteritis in infants and children was statistically different from that in the control group (odds ratio [OR] = 3.87, 95% confidence interval [CI] (3.17, 4.74), P < .00001) and (OR = 3.63, 95% CI [2.75, 4.80], P < .00001). CONCLUSIONS Immunoglobulin Y is effective in the treatment of infantile rotavirus enteritis. Oral immunoglobulin Y can be widely used in the treatment of rotavirus enteritis in clinic.
Collapse
Affiliation(s)
- Xiaotong Wang
- School of Pharmacy, Guangdong Medical University, Dongguan
| | - Lijun Song
- School of Pharmacy, Guangdong Medical University, Dongguan
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Wenpan Tan
- School of Pharmacy, Guangdong Medical University, Dongguan
| | - Wenchang Zhao
- School of Pharmacy, Guangdong Medical University, Dongguan
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
5
|
Thu HM, Myat TW, Win MM, Thant KZ, Rahman S, Umeda K, Nguyen SV, Icatlo FC, Higo-Moriguchi K, Taniguchi K, Tsuji T, Oguma K, Kim SJ, Bae HS, Choi HJ. Chicken Egg Yolk Antibodies (IgY) for Prophylaxis and Treatment of Rotavirus Diarrhea in Human and Animal Neonates: A Concise Review. Korean J Food Sci Anim Resour 2017; 37:1-9. [PMID: 28316465 PMCID: PMC5355572 DOI: 10.5851/kosfa.2017.37.1.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 01/22/2023] Open
Abstract
The rotavirus-induced diarrhea of human and animal neonates is a major public health concern worldwide. Until recently, no effective therapy is available to specifically inactivate the rotavirion particles within the gut. Passive immunotherapy by oral administration of chicken egg yolk antibody (IgY) has emerged of late as a fresh alternative strategy to control infectious diseases of the alimentary tract and has been applied in the treatment of diarrhea due to rotavirus infection. The purpose of this concise review is to evaluate evidence on the properties and performance of anti-rotavirus immunoglobulin Y (IgY) for prevention and treatment of rotavirus diarrhea in human and animal neonates. A survey of relevant anti-rotavirus IgY basic studies and clinical trials among neonatal animals (since 1994-2015) and humans (since 1982-2015) have been reviewed and briefly summarized. Our analysis of a number of rotavirus investigations involving animal and human clinical trials revealed that anti-rotavirus IgY significantly reduced the severity of clinical manifestation of diarrhea among IgY-treated subjects relative to a corresponding control or placebo group. The accumulated information as a whole depicts oral IgY to be a safe and efficacious option for treatment of rotavirus diarrhea in neonates. There is however a clear need for more randomized, placebo controlled and double-blind trials with bigger sample size to further solidify and confirm claims of efficacy and safety in controlling diarrhea caused by rotavirus infection especially among human infants with health issues such as low birth weights or compromised immunity in whom it is most needed.
Collapse
Affiliation(s)
- Hlaing Myat Thu
- Department of Medical Research, No. 5, Ziwaka road, Dagon township, P.O. 11191, Yangon, Myanmar
| | - Theingi Win Myat
- Department of Medical Research, No. 5, Ziwaka road, Dagon township, P.O. 11191, Yangon, Myanmar
| | - Mo Mo Win
- Department of Medical Research, No. 5, Ziwaka road, Dagon township, P.O. 11191, Yangon, Myanmar
| | - Kyaw Zin Thant
- Department of Medical Research, No. 5, Ziwaka road, Dagon township, P.O. 11191, Yangon, Myanmar
| | - Shofiqur Rahman
- Immunology Research Institute in Gifu, EW Nutrition Japan, 839-7 Sano, Gifu 501-1101, Japan
| | - Kouji Umeda
- Immunology Research Institute in Gifu, EW Nutrition Japan, 839-7 Sano, Gifu 501-1101, Japan
| | - Sa Van Nguyen
- Immunology Research Institute in Gifu, EW Nutrition Japan, 839-7 Sano, Gifu 501-1101, Japan
| | - Faustino C Icatlo
- Immunology Research Institute in Gifu, EW Nutrition Japan, 839-7 Sano, Gifu 501-1101, Japan
| | - Kyoko Higo-Moriguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Takao Tsuji
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Keiji Oguma
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Sang Jong Kim
- Dairy Team, Lotte R&D Center, 30 Seonyu-ro 9-gil, Yeongdeungpo-gu, Seoul, Korea
| | - Hyun Suk Bae
- Dairy Team, Lotte R&D Center, 30 Seonyu-ro 9-gil, Yeongdeungpo-gu, Seoul, Korea
| | - Hyuk Joon Choi
- BK bio, #2706-38, Iljudong-ro, Gujwa-eup, Jeju-si, Jeju-do, 63359, Korea
| |
Collapse
|
6
|
Steil D, Bonse R, Meisen I, Pohlentz G, Vallejo G, Karch H, Müthing J. A Topographical Atlas of Shiga Toxin 2e Receptor Distribution in the Tissues of Weaned Piglets. Toxins (Basel) 2016; 8:toxins8120357. [PMID: 27916888 PMCID: PMC5198551 DOI: 10.3390/toxins8120357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 01/08/2023] Open
Abstract
Shiga toxin (Stx) 2e of Stx-producing Escherichia coli (STEC) is the primary virulence factor in the development of pig edema disease shortly after weaning. Stx2e binds to the globo-series glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer, Galα1-4Galβ1-4Glcβ1-1Cer) and globotetraosylceramide (Gb4Cer, GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer), the latter acting as the preferential Stx2e receptor. We determined Stx receptor profiles of 25 different tissues of a male and a female weaned piglet using immunochemical solid phase binding assays combined with mass spectrometry. All probed tissues harbored GSL receptors, ranging from high (category I) over moderate (category II) to low content (category III). Examples of Gb4Cer expression in category I tissues are small intestinal ileum, kidney pelvis and whole blood, followed by colon, small intestinal duodenum and jejunum belonging to category II, and kidney cortex, cerebrum and cerebellum as members of category III organs holding true for both genders. Dominant Gb3Cer and Gb4Cer lipoforms were those with ceramides carrying constant sphingosine (d18:1) and a variable C16:0, C22:0 or C24:1/C24:0 fatty acid. From the mapping data, we created a topographical atlas for Stx2e receptors in piglet tissues and organs, which might be helpful to further investigations on the molecular and cellular mechanisms that underlie infections of Stx2e-producing STEC in pigs and their zoonotic potential for humans.
Collapse
Affiliation(s)
- Daniel Steil
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany.
| | - Robert Bonse
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany.
| | - Iris Meisen
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany.
| | | | - German Vallejo
- Veterinary practice Dr. med. vet. K. Nolte and Dr. med. vet. G. Vallejo, D-48329 Havixbeck, Germany.
| | - Helge Karch
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany.
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
7
|
Brandon DL, Korn AM. Immunosorbent analysis of toxin contamination in milk and ground beef using IgY-based ELISA. FOOD AGR IMMUNOL 2016. [DOI: 10.1080/09540105.2015.1126809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|