1
|
Matera MG, Capristo C, de Novellis V, Cazzola M. The ongoing challenge of prevention of pertussis in infants: what's new in 2024? Expert Rev Anti Infect Ther 2025; 23:247-263. [PMID: 40051224 DOI: 10.1080/14787210.2025.2476010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/28/2025] [Indexed: 05/03/2025]
Abstract
INTRODUCTION Pertussis, a respiratory disease caused primarily by Bordetella pertussis, is undergoing a resurgence despite decades of high rates of vaccination. The prevention of pertussis in infants presents several challenges, including the waning immunity of the acellular pertussis (aP) vaccine, the limited protection afforded to newborns before they complete the vaccine series, and the existence of gaps in maternal vaccination. Furthermore, the unwillingness or refusal of a considerable number of individuals, including some healthcare workers, to receive vaccinations represents another significant challenge. AREAS COVERED This narrative review provides an updated overview of the ongoing challenge of preventing pertussis in infants and discusses some possible solutions. EXPERT OPINION The ongoing challenge of preventing pertussis in infants is multifaceted. To address these challenging issues, a multi-pronged approach is required. This approach should be designed to address various barriers and increase uptake. It should include measures to strengthen maternal vaccination programs, ensure timely infant vaccinations, improve public education, and continue research into more effective vaccines with longer-lasting immunity.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Carlo Capristo
- Unit of Pediatrics, Department of Woman, Child and General and Specialized Surgery, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Vito de Novellis
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
2
|
Hisyam Bin Ismail CMK, Raihan Mohammad Shabani N, Chuah C, Hassan Z, Bakar Abdul Majeed A, Herng Leow C, Kaur Banga Singh K, Yee Leow C. Shigella iron-binding proteins: An insight into molecular physiology, pathogenesis, and potential target vaccine development. Vaccine 2022; 40:3991-3998. [PMID: 35660036 DOI: 10.1016/j.vaccine.2022.05.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/21/2021] [Accepted: 05/19/2022] [Indexed: 12/01/2022]
Abstract
Shigella is a well-known etiological agent responsible for intestinal infection among children, the elderly, and immunocompromised people ranging from mild to severe cases. Shigellosis remains endemic in Malaysia and yet there is no commercial vaccine available to eradicate the disease. Iron is an essential element for the survival of Shigella within the host. Hence, it is required for regulating metabolic mechanisms and virulence determinants. Alteration of iron status in the extracellular environment directly triggers the signal in enteropathogenic bacterial, providing information that they are in a hostile environment. To survive in an iron-limited environment, molecular regulation of iron-binding proteins plays a vital role in facilitating the transportation and utilization of sufficient iron sources. Given the importance of iron molecules for bacterial survival and pathogenicity, this review summarizes the physiological role of iron-binding proteins in bacterial survival and their potential use in vaccine and therapeutic developments.
Collapse
Affiliation(s)
| | - Nor Raihan Mohammad Shabani
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; Faculty of Health Sciences, Universiti Teknologi MARA, Kampus Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Candy Chuah
- Department of Medical and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia; Faculty of Health Sciences, Universiti Teknologi MARA, Kampus Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Abu Bakar Abdul Majeed
- Faculty of Pharmacy, Universiti Teknologi MARA, Kampus Puncak Alam, 42300 Kuala Selangor, Selangor, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Kirnpal Kaur Banga Singh
- Department of Medical and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
3
|
Oviedo JM, Surmann K, Gorgojo JP, Valdez H, Dhople VM, Lamberti Y, Völker U, Rodriguez ME. Shotgun proteomic analysis of Bordetella parapertussis provides insights into the physiological response to iron starvation and potential new virulence determinants absent in Bordetella pertussis. J Proteomics 2019; 206:103448. [PMID: 31325608 DOI: 10.1016/j.jprot.2019.103448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/19/2019] [Accepted: 07/11/2019] [Indexed: 01/05/2023]
Abstract
Bordetella parapertussis is one of the pathogens that cause whooping cough. Even though its incidence has been rising in the last decades, this species remained poorly investigated. This study reports the first extensive proteome analysis of this bacterium. In an attempt to gain some insight into the infective phenotype, we evaluated the response of B. parapertussis to iron starvation, a critical stress the bacteria face during infection. Among other relevant findings, we observed that the adaptation to this condition involves significant changes in the abundance of two important virulence factors of this pathogen, namely, adenylate cyclase and the O-antigen. We further used the proteomic data to search for B. parapertussis proteins that are absent or classified as pseudogenes in the genome of Bordetella pertussis to unravel differences between both whooping cough causative agents. Among them, we identified proteins involved in stress resistance and virulence determinants that might help to explain the differences in the pathogenesis of these species and the lack of cross-protection of current acellular vaccines. Altogether, these results contribute to a better understanding of B. parapertussis biology and pathogenesis. SIGNIFICANCE: Whooping cough is a reemerging disease caused by both Bordetella pertussis and Bordetella parapertussis. Current vaccines fail to induce protection against B parapertussis and the incidence of this species has been rising over the years. The proteomic analysis of this study provided relevant insights into potential virulence determinants of this poorly-studied pathogen. It further identified proteins produced by B. parapertussis not present in B. pertussis, which might help to explain both the differences on their respective infectious process and the current vaccine failure. Altogether, the results of this study contribute to the better understanding of B. parapertussis pathogenesis and the eventual design of improved preventive strategies against whooping cough.
Collapse
Affiliation(s)
- Juan Marcos Oviedo
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Kristin Surmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Juan Pablo Gorgojo
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Hugo Valdez
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Vishnu M Dhople
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Yanina Lamberti
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - María Eugenia Rodriguez
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
4
|
Wang Y, Wang X, Ali F, Li Z, Fu Y, Yang X, Lin W, Lin X. Comparative Extracellular Proteomics of Aeromonas hydrophila Reveals Iron-Regulated Secreted Proteins as Potential Vaccine Candidates. Front Immunol 2019; 10:256. [PMID: 30833947 PMCID: PMC6387970 DOI: 10.3389/fimmu.2019.00256] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/29/2019] [Indexed: 01/07/2023] Open
Abstract
In our previous study, several iron-related outer membrane proteins in Aeromonas hydrophila, a serious pathogen of farmed fish, conferred high immunoprotectivity to fish, and were proposed as potential vaccine candidates. However, the protective efficacy of these extracellular proteins against A. hydrophila remains largely unknown. Here, we identified secreted proteins that were differentially expressed in A. hydrophila LP-2 in response to iron starvation using an iTRAQ-based quantitative proteomics method. We identified 341 proteins, of which 9 were upregulated in response to iron starvation and 24 were downregulated. Many of the differently expressed proteins were associated with protease activity. We confirmed our proteomics results with Western blotting and qPCR. We constructed three mutants by knocking out three genes encoding differentially expressed proteins (Δorf01830, Δorf01609, and Δorf03641). The physiological characteristics of these mutants were investigated. In all these mutant strains, protease activity decreased, and Δorf01609, and Δorf01830 were less virulent in zebrafish. This indicated that the proteins encoded by these genes may play important roles in bacterial infection. We next evaluated the immune response provoked by the six iron-related recombinant proteins (ORF01609, ORF01830, ORF01839, ORF02943, ORF03355, and ORF03641) in zebrafish as well as the immunization efficacy of these proteins. Immunization with these proteins significantly increased the zebrafish immune response. In addition, the relative percent survival (RPS) of the immunized zebrafish was 50-80% when challenged with three virulent A. hydrophila strains, respectively. Thus, these extracellular secreted proteins might be effective vaccine candidates against A. hydrophila infection in fish.
Collapse
Affiliation(s)
- Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyun Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Farman Ali
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Zeqi Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Yuying Fu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Xiaojun Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| |
Collapse
|
5
|
Bottero D, Zurita ME, Gaillard ME, Carriquiriborde F, Martin Aispuro P, Elizagaray M, Bartel E, Castuma C, Hozbor D. Outer-Membrane-Vesicle-Associated O Antigen, a Crucial Component for Protecting Against Bordetella parapertussis Infection. Front Immunol 2018; 9:2501. [PMID: 30459769 PMCID: PMC6232878 DOI: 10.3389/fimmu.2018.02501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/10/2018] [Indexed: 01/06/2023] Open
Abstract
Bordetella parapertussis is a respiratory-disease pathogen producing symptomatology similar to that of pertussis but of underestimated incidence and with no specific vaccine existing. We recently designed a vaccine candidate from B. parapertussis outer-membrane vesicles (OMVs) that proved to be safe and protective in a murine-infection model. Based on protection recently reported for the B. parapertussis O antigen in aqueous solution, we assessed here whether the B. parapertussis O-antigen-containing lipopolysaccharide (BppLPS-O+) embedded in the membranes, as present in B. parapertussis-derived OMVs (OMVs(Bpp-LPS-O+)), was the component responsible for that previously observed protection by OMVs. By performing a comparative study with OMVs from a human strain with undetectable O antigen (OMVs(Bpp-LPS-O-)), we demonstrated that the OMVs(Bpp-LPS-O+), but not the OMVs(Bpp-LPS-O-), protected mice against sublethal B. parapertussis infections. Indeed, the B. parapertussis loads were significantly reduced in the lungs of OMVs(Bpp-LPS-O+) -vaccinated animals, with the CFUs recovered being decreased by 4 log units below those detected in the non-immunized animals or in the animals treated with the OMVs(Bpp-LPS-O-), (p < 0.001). We detected that the OMVs(Bpp-LPS-O+) induced IgG antibodies against B. parapertussis whole-cell lysates, which immunocomponents recognized, among others, the O antigen and accordingly conferred protection against B. parapertussis infection, as observed in in-vivo-passive-transfer experiments. Of interest was that the OMVs(Bpp-LPS-O+) -generated sera had opsonophagocytic and bactericidal capabilities that were not detected with the OMVs(Bpp-LPS-O-)-induced sera, suggesting that those activities were involved in the clearance of B. parapertussis. Though stimulation of cultured spleen cells from immunized mice with formulations containing the O antigen resulted in gamma interferon (IFN-γ) and interleukin-17 production, spleen cells from OMVs(Bpp-LPS-O+) -immunized mice did not significantly contribute to the observed protection against B. parapertussis infection. The protective capability of the B. parapertussis O antigen was also detected in formulations containing both the OMVs derived from B. pertussis and purified BppLPS-O+. This combined formulation protected mice against B. pertussis along with B. parapertussis.
Collapse
Affiliation(s)
- Daniela Bottero
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Eugenia Zurita
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Emilia Gaillard
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - Francisco Carriquiriborde
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - Pablo Martin Aispuro
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - Maia Elizagaray
- Facultad de Ciencias Exactas, Instituto de Estudios Inmunológicos y Fisiopatológicos, Universidad Nacional de La Plata, La Plata, Argentina
| | - Erika Bartel
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - Celina Castuma
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - Daniela Hozbor
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|