1
|
Abueldahab L, Suwanmanee Y, Muriungi N, Ohsaki E, Wada M, Kimura‐Ohba S, Ueda K. Analysis of the Functional Role of TIMM29 in the Hepatitis B Virus Life Cycle. Microbiol Immunol 2025; 69:229-246. [PMID: 39956808 PMCID: PMC11973851 DOI: 10.1111/1348-0421.13206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
Hepatitis B virus (HBV) causes chronic hepatitis B, which can progress to liver cirrhosis and hepatocellular carcinoma. HBV has complex interactions with various cell organelles and proteins that ensure effective progeny virus production. We previously reported that a mitochondrial protein, TIMM29, should regulate the HBV life cycle through interactions with the HBV preS1 protein. Here, we established Halo-TIMM29wt-, Halo-TIMM29:∆99-192-, and Halo-TIMM29:92-194-expressing cells using TIMM29-knockout HB611 (TIMM29KO/HB611) cells, a stably HBV-producing cell line based on Huh6 cells. We found that HBV antigen expression and replication were downregulated in cells stably expressing full-length TIMM29, but not in those expressing TIMM29 deletion mutants. On the other hand, in the case of TIMM29-knockout C4 (TIMM29KO/C4), which is a human NTCP-expressing HepG2 cell line that is competent for HBV infection and amplification, these phenomena were not reproduced, except in full-length TIMM29 (Halo-TIMM29wt)-expressing cells. Using gene expression microarrays, we identified downregulation of ARRDC3 and BASP1 in TIMM29KO/HB611 and TIMM29KO/C4. It was suggested that TIMM29 localized at the mitochondrial inner membrane served as a signaling hub, orchestrating the activation of ARRDC3 and BASP1 expression to restrict HBV transcription. The expression of TIMM29 mutants in TIMM29KO/HB611 and TIMM29KO/C4 cells suggested that ARRDC3 was dependent on the HBV preS1-binding region of TIMM29 (amino acids 99-189). In contrast, BASP1 expression varied according to cell type, indicating additional regulatory mechanisms. Thus, this study should significantly advance our understanding of TIMM29-mediated inhibition of HBV amplification and lead to improvements in antiviral strategies and therapeutic interventions against HBV.
Collapse
Grants
- This research was supported by Grants from the Japan Agency for Medical Research and Development (AMED) (nos. 16fk0310504h0005, 17fk0310105h0001, 18fk0310105h0002, 19fk0310105h0003, 20fk0310105h0004, 21fk310105h005, 22fk0310505h0001, 23fk0310505h0002 and 24fk0310505h0003 to K.U.).
- This research was supported by Grants from the Japan Agency for Medical Research and Development (AMED) (nos. 16fk0310504h0005, 17fk0310105h0001, 18fk0310105h0002, 19fk0310105h0003, 20fk0310105h0004, 21fk310105h005, 22fk0310505h0001, 23fk0310505h0002 and 24fk0310505h0003 to K.U.).
Collapse
Affiliation(s)
- Limia Abueldahab
- Division of Virology, Department of Microbiology and ImmunologyOsaka University Graduate School of MedicineSuitaJapan
| | - Yadarat Suwanmanee
- Division of Virology, Department of Microbiology and ImmunologyOsaka University Graduate School of MedicineSuitaJapan
| | - Nelly Muriungi
- Division of Virology, Department of Microbiology and ImmunologyOsaka University Graduate School of MedicineSuitaJapan
| | - Eriko Ohsaki
- Division of Virology, Department of Microbiology and ImmunologyOsaka University Graduate School of MedicineSuitaJapan
| | - Masami Wada
- Division of Virology, Department of Microbiology and ImmunologyOsaka University Graduate School of MedicineSuitaJapan
| | - Shihoko Kimura‐Ohba
- Division of Virology, Department of Microbiology and ImmunologyOsaka University Graduate School of MedicineSuitaJapan
| | - Keiji Ueda
- Division of Virology, Department of Microbiology and ImmunologyOsaka University Graduate School of MedicineSuitaJapan
| |
Collapse
|
2
|
Guo L, Liu JJ, Long SY, Wang PY, Li S, Wang JL, Wei XF, Li J, Lei L, Huang AL, Hu JL. TIM22 and TIM29 inhibit HBV replication by up-regulating SRSF1 expression. J Med Virol 2024; 96:e29439. [PMID: 38294104 DOI: 10.1002/jmv.29439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
Hepatitis B virus (HBV) infection is a serious global health problem. After the viruses infect the human body, the host can respond to the virus infection by coordinating various cellular responses, in which mitochondria play an important role. Evidence has shown that mitochondrial proteins are involved in host antiviral responses. In this study, we found that the overexpression of TIM22 and TIM29, the members of the inner membrane translocase TIM22 complex, significantly reduced the level of intracellular HBV DNA and RNA and secreted HBV surface antigens and E antigen. The effects of TIM22 and TIM29 on HBV replication and transcription is attributed to the reduction of core promoter activity mediated by the increased expression of SRSF1 which acts as a suppressor of HBV replication. This study provides new evidence for the critical role of mitochondria in the resistance of HBV infection and new targets for the development of treatment against HBV infection.
Collapse
Affiliation(s)
- Lin Guo
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- Department of Clinical Laboratory, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, China
| | - Jia-Jun Liu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shao-Yuan Long
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Pei-Yun Wang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shan Li
- Department of Clinical Laboratory, the Sixth Hospital of Chengdu, Chengdu, China
| | - Jin-Lan Wang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xia-Fei Wei
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Jie Li
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ling Lei
- Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jie-Li Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Paul SS, Patwa SM, Tan YJ. Development of monoclonal antibodies to target the large surface protein of hepatitis B virus and their use in therapeutic and diagnostic applications. J Viral Hepat 2023; 30:870-878. [PMID: 37525419 DOI: 10.1111/jvh.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/11/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
Over 250 million people are living with chronic infection caused by the hepatitis B virus (HBV). HBV has three surface proteins, namely small (SHBs), medium (MHBs) and large (LHBs), and they play different roles in the virus life cycle. The approved hepatitis B vaccine only contains the SHBs protein and many studies have focused on characterising the functional domains in SHBs. Although the LHBs protein is less studied, recent studies have shown that it plays important roles in mediating viral entry, replication and assembly. Over the years, there have been major advancements in monoclonal antibody (mAb) discovery tools and multiple mAbs have been developed to specifically target the preS1 domain in LHBs. We summarise the HBV infection systems and antibody discovery strategies that have been utilised by various research groups to assess the potential use of anti-preS1 mAbs as therapeutic antibodies against HBV or in the development of new diagnostic assays.
Collapse
Affiliation(s)
| | - Som Mohanlal Patwa
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Yee-Joo Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| |
Collapse
|
4
|
Ouchida T, Maeda H, Akamatsu Y, Maeda M, Takamatsu S, Kondo J, Misaki R, Kamada Y, Ueda M, Ueda K, Miyoshi E. The specific core fucose-binding lectin Pholiota squarrosa lectin (PhoSL) inhibits hepatitis B virus infection in vitro. Sci Rep 2023; 13:6175. [PMID: 37061516 PMCID: PMC10105536 DOI: 10.1038/s41598-023-28572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/20/2023] [Indexed: 04/17/2023] Open
Abstract
Glycosylation of proteins and lipids in viruses and their host cells is important for viral infection and is a target for antiviral therapy. Hepatitis B virus (HBV) is a major pathogen that causes acute and chronic hepatitis; it cannot be cured because of the persistence of its covalently closed circular DNA (cccDNA) in hepatocytes. Here we found that Pholiota squarrosa lectin (PhoSL), a lectin that specifically binds core fucose, bound to HBV particles and inhibited HBV infection of a modified human HepG2 cell line, HepG2-hNTCP-C4, that expresses an HBV receptor, sodium taurocholate cotransporting polypeptide. Knockout of fucosyltransferase 8, the enzyme responsible for core fucosylation and that aids receptor endocytosis, in HepG2-hNTCP-C4 cells reduced HBV infectivity, and PhoSL facilitated that reduction. PhoSL also blocked the activity of epidermal growth factor receptor, which usually enhances HBV infection. HBV particles bound to fluorescently labeled PhoSL internalized into HepG2-hNTCP-C4 cells, suggesting that PhoSL might inhibit HBV infection after internalization. As PhoSL reduced the formation of HBV cccDNA, a marker of chronic HBV infection, we suggest that PhoSL could impair processes from internalization to cccDNA formation. Our finding could lead to the development of new anti-HBV agents.
Collapse
Affiliation(s)
- Tsunenori Ouchida
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-Oka, Suita, Osaka, 565-0871, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Haruka Maeda
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-Oka, Suita, Osaka, 565-0871, Japan
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yuka Akamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-Oka, Suita, Osaka, 565-0871, Japan
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Megumi Maeda
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-Oka, Suita, Osaka, 565-0871, Japan
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Jumpei Kondo
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Ryo Misaki
- Applied Microbiology Laboratory, International Center for Biotechnology, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Kamada
- Department of Advanced Metabolic Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Masahiro Ueda
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Keiji Ueda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
5
|
Ueda K, Suwanmanee Y. ATP5B Is an Essential Factor for Hepatitis B Virus Entry. Int J Mol Sci 2022; 23:ijms23179570. [PMID: 36076968 PMCID: PMC9455612 DOI: 10.3390/ijms23179570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Elucidation of the factors responsible for hepatitis B virus (HBV) is extremely important in order to understand the viral life cycle and pathogenesis, and thereby explore potential anti-HBV drugs. The recent determination that sodium taurocholate co-transporting peptide (NTCP) is an essential molecule for the HBV entry into cells led to the development of an HBV infection system in vitro using a human hepatocellular carcinoma (HCC) cell line expressing NTCP; however, the precise mechanism of HBV entry is still largely unknown, and thus it may be necessary to elucidate all the molecules involved. Here, we identified ATP5B as another essential factor for HBV entry. ATP5B was expressed on the cell surface of the HCC cell lines and bound with myristoylated but not with non-myristoylated preS1 2-47, which supported the notion that ATP5B is involved in the HBV entry process. Knockdown of ATP5B in NTCP-expressing HepG2 cells, which allowed HBV infection, reduced HBV infectivity with less cccDNA formation. Taken together, these results strongly suggested that ATP5B is an essential factor for HBV entry into the cells.
Collapse
|
6
|
Vachon A, Osiowy C. Novel Biomarkers of Hepatitis B Virus and Their Use in Chronic Hepatitis B Patient Management. Viruses 2021; 13:951. [PMID: 34064049 PMCID: PMC8224022 DOI: 10.3390/v13060951] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
Even though an approved vaccine for hepatitis B virus (HBV) is available and widely used, over 257 million individuals worldwide are living with chronic hepatitis B (CHB) who require monitoring of treatment response, viral activity, and disease progression to reduce their risk of HBV-related liver disease. There is currently a lack of predictive markers to guide clinical management and to allow treatment cessation with reduced risk of viral reactivation. Novel HBV biomarkers are in development in an effort to improve the management of people living with CHB, to predict disease outcomes of CHB, and further understand the natural history of HBV. This review focuses on novel HBV biomarkers and their use in the clinical setting, including the description of and methodology for quantification of serum HBV RNA, hepatitis B core-related antigen (HBcrAg), quantitative hepatitis B surface antigen (qHBsAg), including ultrasensitive HBsAg detection, quantitative anti-hepatitis B core antigen (qAHBc), and detection of HBV nucleic acid-related antigen (HBV-NRAg). The utility of these biomarkers in treatment-naïve and treated CHB patients in several clinical situations is further discussed. Novel HBV biomarkers have been observed to provide critical clinical information and show promise for improving patient management and our understanding of the natural history of HBV.
Collapse
Affiliation(s)
- Alicia Vachon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Carla Osiowy
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| |
Collapse
|
7
|
Suwanmanee Y, Wada M, Ueda K. Functional roles of GRP78 in hepatitis B virus infectivity and antigen secretion. Microbiol Immunol 2021; 65:189-203. [PMID: 33491806 DOI: 10.1111/1348-0421.12876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 01/12/2023]
Abstract
Viruses utilize cellular proteins to mediate their life cycle. However, the hepatitis B virus (HBV) life cycle is still mysterious and remains to be elucidated. Here, GRP78/BiP/HSPA5, a 78 kDa glucose-regulated protein, was identified as a preS2 interacting protein. Pulldown assay showed the interaction of glucose-regulated protein 78 (GRP78) with both the preS2 domain-containing large S and middle S proteins expressed in a human hepatocellular cell line. The immunofluorescence studies revealed that the preS2 colocalized with GRP78. Interestingly, it was found that preS2 specifically bound to the ATPase domain of GRP78. To understand how GRP78 plays a role in HBV infection, stably GRP78-expressing cells were established, which promoted HBV infectivity and replication. In contrast, knockdown of GRP78 changed the HBV antigen secretion but not the viral DNA amplification. Taken together, these results suggest that GRP78 should interact with preS2 via the ATPase domain and modulate both the HBV infectivity and HBV antigen secretion.
Collapse
Affiliation(s)
- Yadarat Suwanmanee
- Department of Microbiology and Immunology, Division of Virology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masami Wada
- Department of Microbiology and Immunology, Division of Virology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiji Ueda
- Department of Microbiology and Immunology, Division of Virology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|