1
|
Hounslow JL, Fossette S, Byrnes EE, Whiting SD, Lambourne RN, Armstrong NJ, Tucker AD, Richardson AR, Gleiss AC. Multivariate analysis of biologging data reveals the environmental determinants of diving behaviour in a marine reptile. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211860. [PMID: 35958091 PMCID: PMC9364005 DOI: 10.1098/rsos.211860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/20/2022] [Indexed: 06/10/2023]
Abstract
Diving behaviour of 'surfacers' such as sea snakes, cetaceans and turtles is complex and multi-dimensional, thus may be better captured by multi-sensor biologging data. However, analysing these large multi-faceted datasets remains challenging, though a high priority. We used high-resolution multi-sensor biologging data to provide the first detailed description of the environmental influences on flatback turtle (Natator depressus) diving behaviour, during its foraging life-history stage. We developed an analytical method to investigate seasonal, diel and tidal effects on diving behaviour for 24 adult flatback turtles tagged with biologgers. We extracted 16 dive variables associated with three-dimensional and kinematic characteristics for 4128 dives. K-means and hierarchical cluster analyses failed to identify distinct dive types. Instead, principal component analysis objectively condensed the dive variables, removing collinearity and highlighting the main features of diving behaviour. Generalized additive mixed models of the main principal components identified significant seasonal, diel and tidal effects on flatback turtle diving behaviour. Flatback turtles altered their diving behaviour in response to extreme tidal and water temperature ranges, displaying thermoregulation and predator avoidance strategies while likely optimizing foraging in this challenging environment. This study demonstrates an alternative statistical technique for objectively interpreting diving behaviour from multivariate collinear data derived from biologgers.
Collapse
Affiliation(s)
- Jenna L. Hounslow
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Western Australia, Australia
- Environmental and Conservation Science, Murdoch University, Western Australia, Australia
| | - Sabrina Fossette
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Evan E. Byrnes
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Western Australia, Australia
- Environmental and Conservation Science, Murdoch University, Western Australia, Australia
- Faculty of Science, Simon Fraser University, British Columbia, Canada
| | - Scott D. Whiting
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Renae N. Lambourne
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Western Australia, Australia
- Environmental and Conservation Science, Murdoch University, Western Australia, Australia
| | - Nicola J. Armstrong
- School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Anton D. Tucker
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Anthony R. Richardson
- Parks and Wildlife Service, West Kimberley District, Department of Biodiversity, Conservation and Attractions, Broome, Western Australia, Australia
| | - Adrian C. Gleiss
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Western Australia, Australia
- Environmental and Conservation Science, Murdoch University, Western Australia, Australia
| |
Collapse
|
2
|
Fine scale behaviour and time-budget in the cryptic ectotherm European pond turtle Emys orbicularis. PLoS One 2021; 16:e0256549. [PMID: 34653180 PMCID: PMC8519459 DOI: 10.1371/journal.pone.0256549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/10/2021] [Indexed: 12/02/2022] Open
Abstract
For ectotherms, behaviour and associated energetic costs are directly related to thermal conditions. In the present context of global change, estimating time-budget for these species is relevant to assess and predict their capacity to adapt to near future. We tested the hypothesis that in ectotherms where reproduction is highly energy consuming, energy expenditure should vary throughout the breeding season with a maximum around nesting events. To test this hypothesis, we assessed the fine-scale behaviour, time-budget and estimated energetic costs in eight adult female European pond turtles Emys orbicularis equipped with data-loggers recording ambient temperature, pressure, light and the animals’ 3-axis acceleration. Deployments occurred over four months throughout the nesting season 2017 in semi-natural captive conditions in Alsace, France. All study turtles showed a clear daily pattern over the 24h cycle, with four distinct phases (referred to as Night, Morning, Midday and Evening), associated with different behaviours and activity levels. Before oviposition, turtles were mostly active during Morning, and activity was positively driven by ambient temperature. Activity levels doubled during the nesting period, mostly due to the increased activity in the Evening, when nesting events occurred. Throughout the active season, basking occurrence at Midday was related to air temperature but cloud coverage was an even more important factor. Our results are a first step in predicting the seasonal time and energy budgets of the European pond turtle, and demonstrate the usefulness of animal-borne accelerometers to study free living freshwater turtles over extended periods of time.
Collapse
|
3
|
Jeantet L, Planas-Bielsa V, Benhamou S, Geiger S, Martin J, Siegwalt F, Lelong P, Gresser J, Etienne D, Hiélard G, Arque A, Regis S, Lecerf N, Frouin C, Benhalilou A, Murgale C, Maillet T, Andreani L, Campistron G, Delvaux H, Guyon C, Richard S, Lefebvre F, Aubert N, Habold C, le Maho Y, Chevallier D. Behavioural inference from signal processing using animal-borne multi-sensor loggers: a novel solution to extend the knowledge of sea turtle ecology. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200139. [PMID: 32537218 PMCID: PMC7277266 DOI: 10.1098/rsos.200139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/17/2020] [Indexed: 06/10/2023]
Abstract
The identification of sea turtle behaviours is a prerequisite to predicting the activities and time-budget of these animals in their natural habitat over the long term. However, this is hampered by a lack of reliable methods that enable the detection and monitoring of certain key behaviours such as feeding. This study proposes a combined approach that automatically identifies the different behaviours of free-ranging sea turtles through the use of animal-borne multi-sensor recorders (accelerometer, gyroscope and time-depth recorder), validated by animal-borne video-recorder data. We show here that the combination of supervised learning algorithms and multi-signal analysis tools can provide accurate inferences of the behaviours expressed, including feeding and scratching behaviours that are of crucial ecological interest for sea turtles. Our procedure uses multi-sensor miniaturized loggers that can be deployed on free-ranging animals with minimal disturbance. It provides an easily adaptable and replicable approach for the long-term automatic identification of the different activities and determination of time-budgets in sea turtles. This approach should also be applicable to a broad range of other species and could significantly contribute to the conservation of endangered species by providing detailed knowledge of key animal activities such as feeding, travelling and resting.
Collapse
Affiliation(s)
- Lorène Jeantet
- Institut Pluridisciplinaire Hubert Curien, CNRS–Unistra, 67087 Strasbourg, France
| | - Víctor Planas-Bielsa
- Centre Scientifique de Monaco, Département de Biologie Polaire, 8 quai Antoine Ier, MC 98000Monaco
| | - Simon Benhamou
- Centre d’Écologie Fonctionnelle et Évolutive, CNRS, Montpellier, France & Cogitamus Lab
| | - Sebastien Geiger
- Institut Pluridisciplinaire Hubert Curien, CNRS–Unistra, 67087 Strasbourg, France
| | - Jordan Martin
- Institut Pluridisciplinaire Hubert Curien, CNRS–Unistra, 67087 Strasbourg, France
| | - Flora Siegwalt
- Institut Pluridisciplinaire Hubert Curien, CNRS–Unistra, 67087 Strasbourg, France
| | - Pierre Lelong
- Institut Pluridisciplinaire Hubert Curien, CNRS–Unistra, 67087 Strasbourg, France
| | - Julie Gresser
- DEAL Martinique, Pointe de Jaham, BP 7212, 97274 Schoelcher Cedex, France
| | - Denis Etienne
- DEAL Martinique, Pointe de Jaham, BP 7212, 97274 Schoelcher Cedex, France
| | - Gaëlle Hiélard
- Office de l'Eau Martinique, 7 Avenue Condorcet, BP 32, 97201 Fort-de-France, Martinique, France
| | - Alexandre Arque
- Office de l'Eau Martinique, 7 Avenue Condorcet, BP 32, 97201 Fort-de-France, Martinique, France
| | - Sidney Regis
- Institut Pluridisciplinaire Hubert Curien, CNRS–Unistra, 67087 Strasbourg, France
| | - Nicolas Lecerf
- Institut Pluridisciplinaire Hubert Curien, CNRS–Unistra, 67087 Strasbourg, France
| | - Cédric Frouin
- Institut Pluridisciplinaire Hubert Curien, CNRS–Unistra, 67087 Strasbourg, France
| | | | - Céline Murgale
- Association POEMM, 73 lot papayers, Anse a l'âne, 97229 Les Trois Ilets, Martinique
| | - Thomas Maillet
- Association POEMM, 73 lot papayers, Anse a l'âne, 97229 Les Trois Ilets, Martinique
| | - Lucas Andreani
- Association POEMM, 73 lot papayers, Anse a l'âne, 97229 Les Trois Ilets, Martinique
| | - Guilhem Campistron
- Association POEMM, 73 lot papayers, Anse a l'âne, 97229 Les Trois Ilets, Martinique
| | - Hélène Delvaux
- DEAL Guyane, Rue Carlos Finley, CS 76003, 97306 Cayenne Cedex, France
| | - Christelle Guyon
- DEAL Guyane, Rue Carlos Finley, CS 76003, 97306 Cayenne Cedex, France
| | - Sandrine Richard
- Centre National d'Etudes Spatiales, Centre Spatial Guyanais, BP 726, 97387 Kourou Cedex, Guyane
| | - Fabien Lefebvre
- Institut Pluridisciplinaire Hubert Curien, CNRS–Unistra, 67087 Strasbourg, France
| | - Nathalie Aubert
- Institut Pluridisciplinaire Hubert Curien, CNRS–Unistra, 67087 Strasbourg, France
| | - Caroline Habold
- Institut Pluridisciplinaire Hubert Curien, CNRS–Unistra, 67087 Strasbourg, France
| | - Yvon le Maho
- Institut Pluridisciplinaire Hubert Curien, CNRS–Unistra, 67087 Strasbourg, France
- Centre Scientifique de Monaco, Département de Biologie Polaire, 8 quai Antoine Ier, MC 98000Monaco
| | - Damien Chevallier
- Institut Pluridisciplinaire Hubert Curien, CNRS–Unistra, 67087 Strasbourg, France
| |
Collapse
|
4
|
Shimada T, Limpus CJ, Hamann M, Bell I, Esteban N, Groom R, Hays GC. Fidelity to foraging sites after long migrations. J Anim Ecol 2019; 89:1008-1016. [PMID: 31785174 DOI: 10.1111/1365-2656.13157] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/20/2019] [Indexed: 11/28/2022]
Abstract
Patterns of animal movement associated with foraging lie at the heart of many ecological studies and often animals face decisions of staying in an environment they know versus relocating to new sites. The lack of knowledge of new foraging sites means there is risk associated with a decision to relocate (e.g. poor foraging) as well as a potential benefit (e.g. improved foraging). Using a unique long-term satellite tracking dataset for several sea turtle species, combined with capture-mark-recapture data extending over 50 years, we show how, across species, individuals generally maintain tight fidelity to specific foraging sites after extended (up to almost 10,000 km) migration to and from distant breeding sites as well as across many decades. Migrating individuals often travelled through suitable foraging areas en route to their 'home' site and so extended their journeys to maintain foraging site fidelity. We explore the likely mechanistic underpinnings of this trait, which is also seen in some migrating birds, and suggest that individuals will forgo areas of suitable forage encountered en route during migration when they have poor knowledge of the long-term suitability of those sites, making relocation to those sites risky.
Collapse
Affiliation(s)
- Takahiro Shimada
- College of Science and Engineering, James Cook University, Townsville, Qld, Australia.,Australian Institute of Marine Science, Crawley, WA, Australia
| | - Colin J Limpus
- Threatened Species Unit, Department of Environment and Science, Queensland Government, Brisbane, Qld, Australia
| | - Mark Hamann
- College of Science and Engineering, James Cook University, Townsville, Qld, Australia
| | - Ian Bell
- Threatened Species Unit, Department of Environment and Science, Queensland Government, Brisbane, Qld, Australia
| | - Nicole Esteban
- Department of Biosciences, Swansea University, Swansea, UK
| | - Rachel Groom
- Department of Environment and Natural Resources, Northern Territory Government of Australia, Palmerston, NT, Australia
| | | |
Collapse
|
5
|
Dalleau M, Kramer‐Schadt S, Gangat Y, Bourjea J, Lajoie G, Grimm V. Modeling the emergence of migratory corridors and foraging hot spots of the green sea turtle. Ecol Evol 2019; 9:10317-10342. [PMID: 31624552 PMCID: PMC6787826 DOI: 10.1002/ece3.5552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/03/2022] Open
Abstract
Environmental factors shape the spatial distribution and dynamics of populations. Understanding how these factors interact with movement behavior is critical for efficient conservation, in particular for migratory species. Adult female green sea turtles, Chelonia mydas, migrate between foraging and nesting sites that are generally separated by thousands of kilometers. As an emblematic endangered species, green turtles have been intensively studied, with a focus on nesting, migration, and foraging. Nevertheless, few attempts integrated these behaviors and their trade-offs by considering the spatial configurations of foraging and nesting grounds as well as environmental heterogeneity like oceanic currents and food distribution. We developed an individual-based model to investigate the impact of local environmental conditions on emerging migratory corridors and reproductive output and to thereby identify conservation priority sites. The model integrates movement, nesting, and foraging behavior. Despite being largely conceptual, the model captured realistic movement patterns which confirm field studies. The spatial distribution of migratory corridors and foraging hot spots was mostly constrained by features of the regional landscape, such as nesting site locations, distribution of feeding patches, and oceanic currents. These constraints also explained the mixing patterns in regional forager communities. By implementing alternative decision strategies of the turtles, we found that foraging site fidelity and nesting investment, two characteristics of green turtles' biology, are favorable strategies under unpredictable environmental conditions affecting their habitats. Based on our results, we propose specific guidelines for the regional conservation of green turtles as well as future research suggestions advancing spatial ecology of sea turtles. Being implemented in an easy to learn open-source software, our model can coevolve with the collection and analysis of new data on energy budget and movement into a generic tool for sea turtle research and conservation. Our modeling approach could also be useful for supporting the conservation of other migratory marine animals.
Collapse
Affiliation(s)
- Mayeul Dalleau
- Centre d'Etude et de Découverte des Tortues Marines (CEDTM)Saint Leu/La RéunionFrance
| | - Stephanie Kramer‐Schadt
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Department of EcologyTechnische Universität BerlinBerlinGermany
| | - Yassine Gangat
- LIM‐IREMIA, EA2525University of La Réunion, PTUSainte‐Clotilde/La RéunionFrance
| | - Jérôme Bourjea
- Institut Français de Recherche pour l'Exploitation de la MerMARBECUniversité de MontpellierCNRSIfremerIRDSète CedexFrance
| | - Gilles Lajoie
- UMR Espace‐DevUniversity of La RéunionSaint‐DenisFrance
| | - Volker Grimm
- Department of Ecological ModellingHelmholtz Centre for Environmental Research – UFZLeipzigGermany
- Department of Plant Ecology and Nature ConservationUniversity of PotsdamPotsdam‐GolmGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| |
Collapse
|
6
|
Iverson AR, Fujisaki I, Lamont MM, Hart KM. Loggerhead sea turtle (Caretta caretta) diving changes with productivity, behavioral mode, and sea surface temperature. PLoS One 2019; 14:e0220372. [PMID: 31390354 PMCID: PMC6685635 DOI: 10.1371/journal.pone.0220372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/15/2019] [Indexed: 11/29/2022] Open
Abstract
The relationship between dive behavior and oceanographic conditions is not well understood for marine predators, especially sea turtles. We tagged loggerhead turtles (Caretta caretta) with satellite-linked depth loggers in the Gulf of Mexico, where there is a minimal amount of dive data for this species. We tested for associations between four measurements of dive behavior (total daily dive frequency, frequency of dives to the bottom, frequency of long dives and time-at-depth) and both oceanographic conditions (sea surface temperature [SST], net primary productivity [NPP]) and behavioral mode (inter-nesting, migration, or foraging). From 2011-2013 we obtained 26 tracks from 25 adult female loggerheads tagged after nesting in the Gulf of Mexico. All turtles remained in the Gulf of Mexico and spent about 10% of their time at the surface (10% during inter-nesting, 14% during migration, 9% during foraging). Mean total dive frequency was 41.9 times per day. Most dives were ≤ 25 m and between 30-40 min. During inter-nesting and foraging, turtles dived to the bottom 95% of days. SST was an important explanatory variable for all dive patterns; higher SST was associated with more dives per day, more long dives and more dives to the seafloor. Increases in NPP were associated with more long dives and more dives to the bottom, while lower NPP resulted in an increased frequency of overall diving. Longer dives occurred more frequently during migration and a higher proportion of dives reached the seafloor during foraging when SST and NPP were higher. Our study stresses the importance of the interplay between SST and foraging resources for influencing dive behavior.
Collapse
Affiliation(s)
- Autumn R. Iverson
- Cherokee Nation Technologies, contracted to Wetland and Aquatic Research Center, United States Geological Survey, Davie, Florida, United States of America
| | - Ikuko Fujisaki
- Fort Lauderdale Research and Education Center, University of Florida, Davie, Florida, United States of America
| | - Margaret M. Lamont
- Wetland and Aquatic Research Center, United States Geological Survey, Gainesville, Florida, United States of America
| | - Kristen M. Hart
- Wetland and Aquatic Research Center, United States Geological Survey, Davie, Florida, United States of America
| |
Collapse
|
7
|
Pagano AM, Williams TM. Estimating the energy expenditure of free-ranging polar bears using tri-axial accelerometers: A validation with doubly labeled water. Ecol Evol 2019; 9:4210-4219. [PMID: 31015999 PMCID: PMC6468055 DOI: 10.1002/ece3.5053] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 01/27/2023] Open
Abstract
Measures of energy expenditure can be used to inform animal conservation and management, but methods for measuring the energy expenditure of free-ranging animals have a variety of limitations. Advancements in biologging technologies have enabled the use of dynamic body acceleration derived from accelerometers as a proxy for energy expenditure. Although dynamic body acceleration has been shown to strongly correlate with oxygen consumption in captive animals, it has been validated in only a few studies on free-ranging animals. Here, we use relationships between oxygen consumption and overall dynamic body acceleration in resting and walking polar bears Ursus maritimus and published values for the costs of swimming in polar bears to estimate the total energy expenditure of 6 free-ranging polar bears that were primarily using the sea ice of the Beaufort Sea. Energetic models based on accelerometry were compared to models of energy expenditure on the same individuals derived from doubly labeled water methods. Accelerometer-based estimates of energy expenditure on average predicted total energy expenditure to be 30% less than estimates derived from doubly labeled water. Nevertheless, accelerometer-based measures of energy expenditure strongly correlated (r 2 = 0.70) with measures derived from doubly labeled water. Our findings highlight the strengths and limitations in dynamic body acceleration as a measure of total energy expenditure while also further supporting its use as a proxy for instantaneous, detailed energy expenditure in free-ranging animals.
Collapse
Affiliation(s)
- Anthony M. Pagano
- Alaska Science CenterU.S. Geological SurveyAnchorageAlaska
- Present address:
Institute for Conservation ResearchSan Diego Zoo GlobalSan DiegoCalifornia
| | - Terrie M. Williams
- Department of Ecology & Evolutionary BiologyUniversity of California, Santa CruzSanta CruzCalifornia
| |
Collapse
|
8
|
Forin-Wiart MA, Enstipp MR, LE Maho Y, Handrich Y. Why implantation of bio-loggers may improve our understanding of how animals cope within their natural environment. Integr Zool 2019; 14:48-64. [PMID: 30251470 DOI: 10.1111/1749-4877.12364] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bio-loggers are miniaturized autonomous devices that record quantitative data on the state of free-ranging animals (e.g. behavior, position and physiology) and their natural environment. This is especially relevant for species where direct visual observation is difficult or impossible. Today, ongoing technical development allows the monitoring of numerous parameters in an increasing range of species over extended periods. However, the external attachment of devices might affect various aspects of animal performance (energetics, thermoregulation, foraging as well as social and reproductive behavior), which ultimately affect fitness. External attachment might also increase entanglement risk and the conspicuousness of animals, leaving them more vulnerable to predation. By contrast, implantation of devices can mitigate many of these undesirable effects and might be preferable, especially for long-term studies, provided that the many challenges associated with surgical procedures can be mastered. Implantation may then allow us to gather data that would be impossible to obtain otherwise and thereby may provide new and ecologically relevant insights into the life of wild animals. Here, we: (i) discuss the pros and cons of attachment methods; (ii) highlight recent field studies that used implanted bio-loggers to address eco-physiological questions in a wide range of species; and (iii) discuss logger implantation in light of ethical considerations.
Collapse
Affiliation(s)
- Marie-Amélie Forin-Wiart
- Université de Strasbourg, CNRS, IPHC, Département Ecologie, Physiologie et Ethologie, UMR 7178, Strasbourg, France
| | - Manfred R Enstipp
- Université de Strasbourg, CNRS, IPHC, Département Ecologie, Physiologie et Ethologie, UMR 7178, Strasbourg, France.,Centre d'Etudes Biologiques de Chizé, CNRS, UMR 7372, Villiers en Bois, France
| | - Yvon LE Maho
- Université de Strasbourg, CNRS, IPHC, Département Ecologie, Physiologie et Ethologie, UMR 7178, Strasbourg, France.,Centre Scientifique de Monaco, Département de Biologie Polaire, Monaco
| | - Yves Handrich
- Université de Strasbourg, CNRS, IPHC, Département Ecologie, Physiologie et Ethologie, UMR 7178, Strasbourg, France
| |
Collapse
|