1
|
Cuff JP, Labonte D, Windsor FM. Understanding Trophic Interactions in a Warming World by Bridging Foraging Ecology and Biomechanics with Network Science. Integr Comp Biol 2024; 64:306-321. [PMID: 38872009 PMCID: PMC11406160 DOI: 10.1093/icb/icae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024] Open
Abstract
Climate change will disrupt biological processes at every scale. Ecosystem functions and services vital to ecological resilience are set to shift, with consequences for how we manage land, natural resources, and food systems. Increasing temperatures cause morphological shifts, with concomitant implications for biomechanical performance metrics crucial to trophic interactions. Biomechanical performance, such as maximum bite force or running speed, determines the breadth of resources accessible to consumers, the outcome of interspecific interactions, and thus the structure of ecological networks. Climate change-induced impacts to ecosystem services and resilience are therefore on the horizon, mediated by disruptions of biomechanical performance and, consequently, trophic interactions across whole ecosystems. Here, we argue that there is an urgent need to investigate the complex interactions between climate change, biomechanical traits, and foraging ecology to help predict changes to ecological networks and ecosystem functioning. We discuss how these seemingly disparate disciplines can be connected through network science. Using an ant-plant network as an example, we illustrate how different data types could be integrated to investigate the interaction between warming, bite force, and trophic interactions, and discuss what such an integration will achieve. It is our hope that this integrative framework will help to identify a viable means to elucidate previously intractable impacts of climate change, with effective predictive potential to guide management and mitigation.
Collapse
Affiliation(s)
- Jordan P Cuff
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - David Labonte
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | |
Collapse
|
2
|
Donihue CM, Herrel A, Taverne M, Foufopoulos J, Pafilis P. The Evolution of Diet and Morphology in Insular Lizards: Insights from a Replicated Island Introduction Experiment. Animals (Basel) 2023; 13:1788. [PMID: 37889735 PMCID: PMC10251849 DOI: 10.3390/ani13111788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 10/29/2023] Open
Abstract
Resource-limited environments may drive the rapid evolution of phenotypic traits and ecological preferences optimizing the exploitation of resources. Very small islands are often characterized by reduced food availability, seasonal fluctuations in resources and strong unpredictability. These features may drive the evolution of phenotypic traits such as high bite forces, allowing animals to exploit a wider variety of the available resources. They may also lead to more generalist dietary patterns in response to food scarcity. However, the lack of predators and competitors on such small islands often also leads to high densities and the evolution of strong sexual dimorphism, which may also drive the evolution of bite force. Here, we take advantage of a unique replicated introduction experiment to test whether lizards introduced into very small islands alter their feeding ecology and use different resources, resulting in the evolution of a large body size, large head size and large bite forces. Our results show that three years after their introduction, the island lizards were larger and had greater bite forces and more pronounced sexual dimorphism. However, the diets were only marginally different between animals from the source population on a very large nearby island and those on the islets. Moreover, distinct differences in diet between animals on the different islets were observed, suggesting that the local environment is a strong driver of resource use. Overall, lizards with absolutely and relatively (adjusted for body size) large bite forces did eat larger and harder prey. Taken together, our data suggest that intraspecific competition is an important driver of the rapid evolution of bite force, which may allow these lizards to exploit the scarce and fluctuating resources on the islets. Whether or not lizards will evolve to include other types of food such as plants in their diet, facilitated by their large bite forces, remains to be explored in future studies.
Collapse
Affiliation(s)
- Colin M. Donihue
- Institute at Brown for Environment and Society, Brown University, Providence, RI 02903, USA
| | - Anthony Herrel
- UMR 7179 Centre National de la Recherche Scientifique/Muséum National d’Histoire Naturelle, Département Adaptations du Vivant, Bâtiment d’Anatomie Comparée, 55 rue Buffon, 75005 Paris, France; (A.H.); (M.T.)
- Department of Biology, Functional Morphology, University of Antwerp, 2000 Antwerp, Belgium
- Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, 9000 Ghent, Belgium
| | - Maxime Taverne
- UMR 7179 Centre National de la Recherche Scientifique/Muséum National d’Histoire Naturelle, Département Adaptations du Vivant, Bâtiment d’Anatomie Comparée, 55 rue Buffon, 75005 Paris, France; (A.H.); (M.T.)
| | - Johannes Foufopoulos
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Panayiotis Pafilis
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece;
- Zoological Museum, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
3
|
Lozano A, Sites Jr JW, Ramírez-Bautista A, Marshall JC, Pavón NP, Cruz-Elizalde R. Allometric analysis of sexual dimorphism and morphological variation in two chromosome races of the Sceloporus grammicus complex (Squamata: Phrynosomatidae) from Mexico. VERTEBRATE ZOOLOGY 2023. [DOI: 10.3897/vz.73.e94004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Sexual dimorphism is a widespread feature in the Animal Kingdom. In lizards of the Sceloporus grammicus complex, studies of sexual dimorphism that analyze the allometric trajectories of body traits remain unexplored. Here we investigate sexual dimorphism in key phenotypic traits, including body size (snout-vent length, SVL) as well as head length (HL), head width (HW), and forearm length (FL). We use an allometric approach to detect differences in scale relationships among body parts in the S. grammicus complex in Mexico. We focus on two chromosomal races within this complex, F5 (2n = 34) and FM2 (2n = 46). In the complex, we found that males are larger than females in all morphological variables, and this pattern was confirmed in both races. We determined negative allometric trajectories (SVLvs.HL and HW), isometry (SVLvs.FL) and intersexual differences in the slopes of the SVLvs.HL and HW; the males showed steeper slopes. Thus, the growth of the head is more pronounced in males than females. Additionally, we found between-race differences in these trajectories (SVLvs.FL) and in all morphological variables (F5 lizards are larger than those of the FM2 race), which correlate with their chromosomal divergence. We discuss biological implications of our findings in relation to sexual selection and natural selection.
Collapse
|
4
|
Tolley KA. Is it like night and day? Nocturnal versus diurnal perch use by dwarf chameleons ( Bradypodion pumilum). AFR J HERPETOL 2022. [DOI: 10.1080/21564574.2022.2098392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Krystal A Tolley
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa
- Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
5
|
Tan WC, Measey J, Vanhooydonck B, Herrel A. The relationship between bite force, morphology, and diet in southern African agamids. BMC Ecol Evol 2021; 21:126. [PMID: 34154535 PMCID: PMC8215774 DOI: 10.1186/s12862-021-01859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/09/2021] [Indexed: 11/22/2022] Open
Abstract
Background Many animals display morphological and behavioural adaptations to the habitats in which they live and the resources they exploit. Bite force is an important whole-organism performance trait that allows an increase in dietary breadth, the inclusion of novel prey in the diet, territory and predatory defence, and is important during mating in many lizards.
Methods Here, we study six species of southern African agamid lizards from three habitat types (ground-dwelling, rock-dwelling, and arboreal) to investigate whether habitat use constrains head morphology and bite performance. We further tested whether bite force and head morphology evolve as adaptations to diet by analysing a subset of these species for which diet data were available.
Results Overall, both jaw length and its out-lever are excellent predictors of bite performance across all six species. Rock-dwelling species have a flatter head relative to their size than other species, possibly as an adaptation for crevice use. However, even when correcting for jaw length and jaw out-lever length, rock-dwelling species bite harder than ground-dwelling species. Diet analyses demonstrate that body and head size are not directly related to diet, although greater in-levers for jaw closing (positively related to bite force) are associated to an increase of hard prey in the diet. Ground-dwelling species consume more ants than other species. Conclusions Our results illustrate the role of head morphology in driving bite force and demonstrate how habitat use impacts head morphology but not bite force in these agamids. Although diet is associated with variation in head morphology it is only partially responsible for the observed differences in morphology and performance. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01859-w.
Collapse
Affiliation(s)
- W C Tan
- Herpetology Section, Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany. .,Institut für Zoologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Bonn, Germany. .,Laboratoire EBI Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, UFR Sciences Fondamentales et Appliquées, Poitiers, France. .,Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa. .,Département Adaptations du Vivant, UMR 7179 C.N.R.S/M.N.H.N., Bâtiment d'Anatomie Comparée, 55 rue Buffon, 75005, Paris, France.
| | - J Measey
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - B Vanhooydonck
- Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
| | - A Herrel
- Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium.,Département Adaptations du Vivant, UMR 7179 C.N.R.S/M.N.H.N., Bâtiment d'Anatomie Comparée, 55 rue Buffon, 75005, Paris, France
| |
Collapse
|
6
|
Stepanova N, Bauer AM. Phylogenetic history influences convergence for a specialized ecology: comparative skull morphology of African burrowing skinks (Squamata; Scincidae). BMC Ecol Evol 2021; 21:86. [PMID: 33993867 PMCID: PMC8127277 DOI: 10.1186/s12862-021-01821-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/09/2021] [Indexed: 11/30/2022] Open
Abstract
Background Skulls serve many functions and as a result, are subject to many different evolutionary pressures. In squamates, many fossorial species occupy a unique region of skull morphospace, showing convergence across families, due to modifications related to head-first burrowing. As different substrates have variable physical properties, particular skull shapes may offer selective advantages in certain substrates. Despite this, studies of variation within burrowers have been limited and are typically focused on a single origin of fossoriality. We focused on seven skink genera (Acontias, Typhlosaurus, Scelotes, Sepsina, Feylinia, Typhlacontias, and Mochlus; 39 sp.) from southern Africa, encompassing at least three independent evolutions of semi-fossoriality/fossoriality. We used microCT scans and geometric morphometrics to test how cranial and mandibular shape were influenced by phylogenetic history, size, and ecology. We also qualitatively described the skulls of four species to look at variation across phylogenetic and functional levels, and assess the degree of convergence. Results We found a strong effect of phylogenetic history on cranial and mandibular shape, with size and substrate playing secondary roles. There was a clear gradient in morphospace from less specialized to more specialized burrowers and burrowers in sand were significantly different from those in other substrates. We also created an anatomical atlas for four species with each element described in isolation. Every bone showed some variation in shape and relative scaling of features, with the skull roofing bones, septomaxilla, vomer, and palatine showing the most variation. We showed how broad-scale convergence in traits related to fossoriality can be the result of different anatomical changes. Conclusions Our study used geometric morphometrics and comparative anatomy to examine how skull morphology changes for a highly specialized and demanding lifestyle. Although there was broad convergence in both shape and qualitative traits, phylogenetic history played a large role and much of this convergence was produced by different anatomical changes, implying different developmental pathways or lineage-specific constraints. Even within a single family, adaptation for a specialized ecology does not follow a singular deterministic path. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01821-w.
Collapse
Affiliation(s)
- Natasha Stepanova
- Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, Villanova, PA, USA. .,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Aaron M Bauer
- Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, Villanova, PA, USA
| |
Collapse
|
7
|
Tse YT, Calede JJM. Quantifying the link between craniodental morphology and diet in the Soricidae using geometric morphometrics. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Dietary adaptations have often been associated with heightened taxonomic diversity. Yet, one of the most species-rich mammalian families, the Soricidae, is often considered to be ecologically and morphologically relatively homogenous. Here, we use geometric morphometrics to capture skull and dentary morphology in a broad sample of shrew species and test the hypothesis that morphological variation among shrew species reflects adaptations to food hardness. Our analyses demonstrate that morphology is associated with dietary ecology. Species that consume hard food items are larger and have specific morphological adaptions including an anteroposteriorly expanded parietal, an anteroposteriorly short and dorsoventrally tall rostrum, a mediolaterally wide palate, buccolingually wide cheek teeth, a large coronoid process and a dorsoventrally short jaw joint. The masseter muscle does not appear to play an important role in the strong bite force of shrews and the dentary is a better indicator of ecology than the skull. Our phylogenetic flexible discriminant function analysis suggests that the evolutionary history of shrews has shaped their morphology, canalizing dietary adaptations and enabling functional equivalence whereby different morphologies achieve similar dietary performances. Our work makes possible future studies of niche partitioning among sympatric species as well as the investigation of the diet of extinct soricids.
Collapse
Affiliation(s)
- Yuen Ting Tse
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, OH, USA
| | - Jonathan J M Calede
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, OH, USA
- The Ohio State University at Marion, Marion, Ohio, OH, USA
| |
Collapse
|
8
|
Brassard C, Merlin M, Monchâtre-Leroy E, Guintard C, Barrat J, Garès H, Larralle A, Triquet R, Houssin C, Callou C, Cornette R, Herrel A. Masticatory system integration in a commensal canid: interrelationships between bones, muscles and bite force in the red fox. J Exp Biol 2021; 224:jeb.224394. [DOI: 10.1242/jeb.224394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 01/28/2021] [Indexed: 12/20/2022]
Abstract
ABSTRACT
The jaw system in canids is essential for defence and prey acquisition. However, how it varies in wild species in comparison with domestic species remains poorly understood, yet is of interest in terms of understanding the impact of artificial selection. Here, we explored the variability and interrelationships between the upper and lower jaws, muscle architecture and bite force in the red fox (Vulpes vulpes). We performed dissections and used 3D geometric morphometric approaches to quantify jaw shape in 68 foxes. We used a static lever model and bite force estimates were compared with in vivo measurements of 10 silver foxes. Our results show strong relationships exist between cranial and mandible shape, and between cranial or mandible shape on the one hand and muscles or estimated bite force on the other hand, confirming the strong integration of the bony and muscular components of the jaw system. These strong relationships are strongly driven by size. The functional links between shape and estimated bite force are stronger for the mandible, which probably reflects its greater specialisation towards biting. We then compared our results with data previously obtained for dogs (Canis lupus familiaris) to investigate the effect of domestication. Foxes and dogs differ in skull shape and muscle physiological cross-sectional area (PCSA). They show a similar amount of morphological variation in muscle PCSA, but foxes show lower variation in cranial and mandible shape. Interestingly, the patterns of covariation are not stronger in foxes than in dogs, suggesting that domestication did not lead to a disruption of the functional links of the jaw system.
Collapse
Affiliation(s)
- Colline Brassard
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum national d'Histoire naturelle, CNRS, 55 rue Buffon 75005, Paris, France
- Archéozoologie, archéobotanique: sociétés, pratiques et environnements (AASPE), Muséum national d'Histoire naturelle, CNRS, CP55, 57 rue Cuvier, 75005 Paris, France
| | - Marilaine Merlin
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum national d'Histoire naturelle, CNRS, 55 rue Buffon 75005, Paris, France
| | - Elodie Monchâtre-Leroy
- ANSES, Laboratoire de la rage et de la faune sauvage, Station expérimentale d'Atton, CS 40009, 54220 Malzéville, France
| | - Claude Guintard
- Laboratoire d'Anatomie comparée, Ecole Nationale Vétérinaire, de l'Agroalimentaire et de l'Alimentation, Nantes Atlantique – ONIRIS, Nantes Cedex 03, France
- GEROM, UPRES EA 4658, LABCOM ANR NEXTBONE, Faculté de santé de l'Université d'Angers, 49933 Angers Cedex, France
| | - Jacques Barrat
- ANSES, Laboratoire de la rage et de la faune sauvage, Station expérimentale d'Atton, CS 40009, 54220 Malzéville, France
| | - Hélène Garès
- Direction des Services Vétérinaires – D.D.C.S.P.P. de la Dordogne, 24000 Périgueux, France
| | | | - Raymond Triquet
- Université de Lille III, Domaine Universitaire du Pont de Bois BP 60149, Villeneuve d'ascq Cedex 59653, France
| | - Céline Houssin
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, Muséum national d'Histoire naturelle, Sorbonne Université, Ecole Pratique des hautes Etudes, Université des Antilles, CNRS, CP 50, 57 rue Cuvier, 75005 Paris, France
| | - Cécile Callou
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum national d'Histoire naturelle, CNRS, 55 rue Buffon 75005, Paris, France
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, Muséum national d'Histoire naturelle, Sorbonne Université, Ecole Pratique des hautes Etudes, Université des Antilles, CNRS, CP 50, 57 rue Cuvier, 75005 Paris, France
| | - Anthony Herrel
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum national d'Histoire naturelle, CNRS, 55 rue Buffon 75005, Paris, France
| |
Collapse
|
9
|
Bestwick J, Unwin DM, Henderson DM, Purnell MA. Dental microwear texture analysis along reptile tooth rows: complex variation with non-dietary variables. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201754. [PMID: 33972864 PMCID: PMC8074666 DOI: 10.1098/rsos.201754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/06/2021] [Indexed: 06/01/2023]
Abstract
Dental microwear texture analysis (DMTA) is a powerful technique for reconstructing the diets of extant and extinct taxa. Few studies have investigated intraspecific microwear differences along with tooth rows and the influence of endogenous non-dietary variables on texture characteristics. Sampling teeth that are minimally affected by non-dietary variables is vital for robust dietary reconstructions, especially for taxa with non-occlusal (non-chewing) dentitions as no standardized sampling strategies currently exist. Here, we apply DMTA to 13 species of extant reptile (crocodilians and monitor lizards) to investigate intraspecific microwear differences along with tooth rows and to explore the influence of three non-dietary variables on exhibited differences: (i) tooth position, (ii) mechanical advantage, and (iii) tooth aspect ratio. Five species exhibited intraspecific microwear differences. In several crocodilians, the distally positioned teeth exhibited the 'roughest' textures, and texture characteristics correlated with all non-dietary variables. By contrast, the mesial teeth of the roughneck monitor (Varanus rudicollis) exhibited the 'roughest' textures, and texture characteristics did not correlate with aspect ratio. These results are somewhat consistent with how reptiles preferentially use their teeth during feeding. We argue that DMTA has the potential to track mechanical and behavioural differences in tooth use which should be taken into consideration in future dietary reconstructions.
Collapse
Affiliation(s)
- Jordan Bestwick
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Centre for Palaeobiology Research, School of Geography, Geology and the Environment, University of Leicester, Leicester LE1 7RH, UK
| | - David M. Unwin
- Centre for Palaeobiology Research, School of Museum Studies, University of Leicester, Leicester LE1 7RF, UK
| | | | - Mark A. Purnell
- Centre for Palaeobiology Research, School of Geography, Geology and the Environment, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
10
|
Lozano A, Ramírez-Bautista A, Cruz-Elizalde R. Intraspecific variation in a lizard from the Central Mexican Plateau: intersexual differences in size and shape explored. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Morphological adaptations of individuals are directly (or indirectly) determined by the environment. Depending on sex, these adaptations may vary in different ways, given that different selective forces may be operating on organisms. Here, we evaluate intraspecific morphological variation (size and shape) in two populations of Sceloporus grammicus that occur in different structural habitats (trees and rocks). No difference in overall body size was found between the two populations. However, strong differences were found in body shape; the tree population was characterized by having shorter hindlimb proportions than the rock population, which agrees with the theory of biomechanical models. Furthermore, our results show that this species is dimorphic in size and shape, both in sex and population effects. A review of the literature suggests that the large overall body size and relatively longer distal segments of males could be an advantage for defending their territory, and the observation that females had relatively longer head length may be related to trophic niche divergence; however, this remains to be tested. Detailed quantification of behaviour, performance and reproductive characteristics must be performed to shed light on the evolution of sexual dimorphism in this widely distributed species in Mexico.
Collapse
Affiliation(s)
- Abraham Lozano
- CIIDIR Unidad Durango, Instituto Politécnico Nacional, Durango, México
| | - Aurelio Ramírez-Bautista
- Laboratorio de Ecología de Poblaciones, Centro de Investigaciones Biológicas, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de La Reforma, Hidalgo, México
| | - Raciel Cruz-Elizalde
- Museo de Zoología “Alfonso L. Herrera”, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Ciudad de México CP, México
| |
Collapse
|
11
|
Brassard C, Merlin M, Guintard C, Monchâtre-Leroy E, Barrat J, Bausmayer N, Bausmayer S, Bausmayer A, Beyer M, Varlet A, Houssin C, Callou C, Cornette R, Herrel A. Bite force and its relationship to jaw shape in domestic dogs. J Exp Biol 2020; 223:jeb224352. [PMID: 32587065 DOI: 10.1242/jeb.224352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/18/2020] [Indexed: 08/26/2023]
Abstract
Previous studies based on two-dimensional methods have suggested that the great morphological variability of cranial shape in domestic dogs has impacted bite performance. Here, we used a three-dimensional biomechanical model based on dissection data to estimate the bite force of 47 dogs of various breeds at several bite points and gape angles. In vivo bite force for three Belgian shepherd dogs was used to validate our model. We then used three-dimensional geometric morphometrics to investigate the drivers of bite force variation and to describe the relationships between the overall shape of the jaws and bite force. The model output shows that bite force is rather variable in dogs and that dogs bite harder on the molar teeth and at lower gape angles. Half of the bite force is determined by the temporal muscle. Bite force also increased with size, and brachycephalic dogs showed higher bite forces for their size than mesocephalic dogs. We obtained significant covariation between the shape of the upper or lower jaw and absolute or residual bite force. Our results demonstrate that domestication has not resulted in a disruption of the functional links in the jaw system in dogs and that mandible shape is a good predictor of bite force.
Collapse
Affiliation(s)
- Colline Brassard
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum National d'Histoire Naturelle, CNRS, 55 rue Buffon, 75005 Paris, France
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements (AASPE), Muséum National d'Histoire Naturelle, CNRS, CP55, 57 rue Cuvier, 75005 Paris, France
| | - Marilaine Merlin
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum National d'Histoire Naturelle, CNRS, 55 rue Buffon, 75005 Paris, France
| | - Claude Guintard
- ANSES, Laboratoire de la Rage et de la Faune Sauvage, Station Expérimentale d'Atton, CS 40009 54220 Malzéville, France
- Laboratoire d'Anatomie Comparée, Ecole Nationale Vétérinaire, de l'Agroalimentaire et de l'Alimentation, Nantes Atlantique - ONIRIS, Nantes Cedex 03, France
| | - Elodie Monchâtre-Leroy
- GEROM, UPRES EA 4658, LABCOM ANR NEXTBONE, Faculté de Santé de l'Université d'Angers, 49933 Angers Cedex, France
| | - Jacques Barrat
- GEROM, UPRES EA 4658, LABCOM ANR NEXTBONE, Faculté de Santé de l'Université d'Angers, 49933 Angers Cedex, France
| | - Nathalie Bausmayer
- Club de Chiens de Défense de Beauvais, avenue Jean Rostand, 60 000 Beauvais, France
- Société Centrale Canine, 155 Avenue Jean Jaurès, 93300 Aubervilliers, France
| | - Stéphane Bausmayer
- Club de Chiens de Défense de Beauvais, avenue Jean Rostand, 60 000 Beauvais, France
- Société Centrale Canine, 155 Avenue Jean Jaurès, 93300 Aubervilliers, France
| | - Adrien Bausmayer
- Club de Chiens de Défense de Beauvais, avenue Jean Rostand, 60 000 Beauvais, France
- Société Centrale Canine, 155 Avenue Jean Jaurès, 93300 Aubervilliers, France
| | - Michel Beyer
- Club de Chiens de Défense de Beauvais, avenue Jean Rostand, 60 000 Beauvais, France
- Société Centrale Canine, 155 Avenue Jean Jaurès, 93300 Aubervilliers, France
| | - André Varlet
- Société Centrale Canine, 155 Avenue Jean Jaurès, 93300 Aubervilliers, France
| | - Céline Houssin
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, Ecole Pratique des Hautes Etudes, Université des Antilles, CNRS, CP 50, 57 rue Cuvier, 75005 Paris, France
| | - Cécile Callou
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements (AASPE), Muséum National d'Histoire Naturelle, CNRS, CP55, 57 rue Cuvier, 75005 Paris, France
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, Ecole Pratique des Hautes Etudes, Université des Antilles, CNRS, CP 50, 57 rue Cuvier, 75005 Paris, France
| | - Anthony Herrel
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum National d'Histoire Naturelle, CNRS, 55 rue Buffon, 75005 Paris, France
| |
Collapse
|
12
|
Wilson BC, Ramos JA, Peters RA. Intraspecific variation in behaviour and ecology in a territorial agamid, Ctenophorus fionni. AUST J ZOOL 2020. [DOI: 10.1071/zo20091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Intraspecific variation as a way to explore factors affecting the evolution of species traits in natural environments is well documented, and also important in the context of preserving biodiversity. In this study, we investigated the extent of behavioural, morphological and ecological variation in the peninsula dragon (Ctenophorus fionni), an endemic Australian agamid that displays extensive variation in colour across three allopatric populations. The aims of the study were to quantify variation across the different populations in terms of the environment, morphometric characteristics and behaviour. We found population level differences in habitat structure and encounter rates. Adult body size of C. fionni, as well as a range of morphometric traits, differed between populations, as well as the frequency of social interactions, which appears to be related to population density and abundance. Analysis of communicative signals showed differences between the southern and central populations, which appear consistent with variations in response to environmental differences between study sites. The findings of the present study, coupled with previous work examining colour variation in this species, show that the three populations of C. fionni have likely undergone substantial differentiation, and would make an interesting study system to explore trait variation in more detail.
Collapse
|
13
|
Bestwick J, Unwin DM, Purnell MA. Dietary differences in archosaur and lepidosaur reptiles revealed by dental microwear textural analysis. Sci Rep 2019; 9:11691. [PMID: 31406164 PMCID: PMC6690991 DOI: 10.1038/s41598-019-48154-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/30/2019] [Indexed: 11/09/2022] Open
Abstract
Reptiles are key components of modern ecosystems, yet for many species detailed characterisations of their diets are lacking. Data currently used in dietary reconstructions are limited either to the last few meals or to proxy records of average diet over temporal scales of months to years, providing only coarse indications of trophic level(s). Proxies that record information over weeks to months would allow more accurate reconstructions of reptile diets and better predictions of how ecosystems might respond to global change drivers. Here, we apply dental microwear textural analysis (DMTA) to dietary guilds encompassing both archosaurian and lepidosaurian reptiles, demonstrating its value as a tool for characterising diets over temporal scales of weeks to months. DMTA, involving analysis of the three-dimensional, sub-micrometre scale textures created on tooth surfaces by interactions with food, reveals that the teeth of reptiles with diets dominated by invertebrates, particularly invertebrates with hard exoskeletons (e.g. beetles and snails), exhibit rougher microwear textures than reptiles with vertebrate-dominated diets. Teeth of fish-feeding reptiles exhibit the smoothest textures of all guilds. These results demonstrate the efficacy of DMTA as a dietary proxy in taxa from across the phylogenetic range of extant reptiles. This method is applicable to extant taxa (living or museum specimens) and extinct reptiles, providing new insights into past, present and future ecosystems.
Collapse
Affiliation(s)
- Jordan Bestwick
- School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH, United Kingdom.
| | - David M Unwin
- School of Museum Studies, University of Leicester, Leicester, LE1 7RF, United Kingdom
| | - Mark A Purnell
- School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH, United Kingdom.
| |
Collapse
|
14
|
Huby A, Lowie A, Herrel A, Vigouroux R, Frédérich B, Raick X, Kurchevski G, Godinho AL, Parmentier E. Functional diversity in biters: the evolutionary morphology of the oral jaw system in pacus, piranhas and relatives (Teleostei: Serrasalmidae). Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract
Serrasalmid fishes form a highly specialized group of biters that show a large trophic diversity, ranging from pacus able to crush seeds to piranhas capable of cutting flesh. Their oral jaw system has been hypothesized to be forceful, but variation in bite performance and morphology with respect to diet has not previously been investigated. We tested whether herbivorous species have higher bite forces, larger jaw muscles and more robust jaws than carnivorous species. We measured in vivo and theoretical bite forces in 27 serrasalmid species. We compared the size of the adductor mandibulae muscle, the jaw mechanical advantages, the type of jaw occlusion, and the size and shape of the lower jaw. We also examined the association between bite performance and functional morphological traits of the oral jaw system. Contrary to our predictions, carnivorous piranhas deliver stronger bites than their herbivorous counterparts. The size of the adductor mandibulae muscle varies with bite force and muscles are larger in carnivorous species. Our study highlights an underestimated level of functional morphological diversity in a fish group of exclusive biters. We provide evidence that the trophic specialization towards carnivory in piranhas results from changes in the configuration of the adductor mandibulae muscle and the lower jaw shape, which have major effects on bite performance and bite strategy.
Collapse
Affiliation(s)
- Alessia Huby
- Laboratory of Functional and Evolutionary Morphology, University of Liège, Liège, Belgium
| | - Aurélien Lowie
- Laboratory of Functional and Evolutionary Morphology, University of Liège, Liège, Belgium
- Evolutionary Morphology of Vertebrates, Ghent University, Gent, Belgium
| | - Anthony Herrel
- UMR7179 MNHN/CNRS, National Museum of Natural History, Paris, France
- Evolutionary Morphology of Vertebrates, Ghent University, Gent, Belgium
| | - Régis Vigouroux
- HYDRECO GUYANE, Laboratory Environment of Petit Saut, Kourou, French Guiana
| | - Bruno Frédérich
- Laboratory of Functional and Evolutionary Morphology, University of Liège, Liège, Belgium
| | - Xavier Raick
- Laboratory of Functional and Evolutionary Morphology, University of Liège, Liège, Belgium
| | - Gregório Kurchevski
- Fish Passage Center, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Eric Parmentier
- Laboratory of Functional and Evolutionary Morphology, University of Liège, Liège, Belgium
| |
Collapse
|
15
|
Interspecific size- and sex-related variation in the cranium of European brown frogs (Genus Rana). ZOOMORPHOLOGY 2019. [DOI: 10.1007/s00435-019-00441-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Bels V, Paindavoine AS, Zghikh LN, Paulet E, Pallandre JP, Montuelle SJ. Feeding in Lizards: Form–Function and Complex Multifunctional System. FEEDING IN VERTEBRATES 2019. [DOI: 10.1007/978-3-030-13739-7_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Montuelle SJ, Kane EA. Food Capture in Vertebrates: A Complex Integrative Performance of the Cranial and Postcranial Systems. FEEDING IN VERTEBRATES 2019. [DOI: 10.1007/978-3-030-13739-7_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Calamari ZT, Kuang-Hsien Hu J, Klein OD. Tissue Mechanical Forces and Evolutionary Developmental Changes Act Through Space and Time to Shape Tooth Morphology and Function. Bioessays 2018; 40:e1800140. [PMID: 30387177 PMCID: PMC6516060 DOI: 10.1002/bies.201800140] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/06/2018] [Indexed: 12/24/2022]
Abstract
Efforts from diverse disciplines, including evolutionary studies and biomechanical experiments, have yielded new insights into the genetic, signaling, and mechanical control of tooth formation and functions. Evidence from fossils and non-model organisms has revealed that a common set of genes underlie tooth-forming potential of epithelia, and changes in signaling environments subsequently result in specialized dentitions, maintenance of dental stem cells, and other phenotypic adaptations. In addition to chemical signaling, tissue forces generated through epithelial contraction, differential growth, and skeletal constraints act in parallel to shape the tooth throughout development. Here recent advances in understanding dental development from these studies are reviewed and important gaps that can be filled through continued application of evolutionary and biomechanical approaches are discussed.
Collapse
Affiliation(s)
- Zachary T. Calamari
- Department of Natural Sciences, Baruch College, City University of New York, New York City, New York, 10010, USA
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Jimmy Kuang-Hsien Hu
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Ophir D. Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, California, 94143, USA
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, California, 94143, USA
| |
Collapse
|
19
|
Law CJ, Duran E, Hung N, Richards E, Santillan I, Mehta RS. Effects of diet on cranial morphology and biting ability in musteloid mammals. J Evol Biol 2018; 31:1918-1931. [DOI: 10.1111/jeb.13385] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Chris J. Law
- Department of Ecology and Evolutionary Biology Coastal Biology Building University of California, Santa Cruz Santa Cruz CA USA
| | - Emma Duran
- Scotts Valley High School Scotts Valley CA USA
| | - Nancy Hung
- Massachusetts Institute of Technology Cambridge MA USA
| | - Ekai Richards
- Department of Ecology and Evolutionary Biology Coastal Biology Building University of California, Santa Cruz Santa Cruz CA USA
| | | | - Rita S. Mehta
- Department of Ecology and Evolutionary Biology Coastal Biology Building University of California, Santa Cruz Santa Cruz CA USA
| |
Collapse
|
20
|
Toyama KS, Junes K, Ruiz J, Mendoza A, Pérez JM. Ontogenetic Changes in the Diet and Head Morphology of an Omnivorous Tropidurid Lizard (Microlophus thoracicus). ZOOLOGY 2018; 129:45-53. [DOI: 10.1016/j.zool.2018.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 11/26/2022]
|
21
|
Meyers JJ, Nishikawa KC, Herrel A. The evolution of bite force in horned lizards: the influence of dietary specialization. J Anat 2017; 232:214-226. [PMID: 29159806 DOI: 10.1111/joa.12746] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2017] [Indexed: 01/05/2023] Open
Abstract
Dietary specialization is an important driver of the morphology and performance of the feeding system in many organisms, yet the evolution of phenotypic specialization has only rarely been examined within a species complex. Horned lizards are considered primarily myrmecophagous (ant eating), but variation in diet among the 17 species of horned lizards (Phrynosoma) makes them an ideal group to examine the relationship between dietary specialization and the resultant morphological and functional changes of the feeding system. In this study, we perform a detailed analysis of the jaw adductor musculature and use a biomechanical model validated with in vivo bite force data to examine the evolution of bite force in Phrynosoma. Our model simulations demonstrate that bite force varies predictably with respect to the gape angle and bite position along the tooth row, with maximal bite forces being attained at lower gape angles and at the posterior tooth positions. Maximal bite forces vary considerably among horned lizards, with highly myrmecophagous species exhibiting very low bite forces. In contrast, members of the short-horned lizard clade are able to bite considerably harder than even closely related dietary generalists. This group appears to be built for performing crushing bites and may represent a divergent morphology adapted for eating hard prey items. The evolutionary loss of processing morphology (teeth, jaw and muscle reduction) and bite force in ant specialists may be a response to the lack of prey processing rather than a functional adaptation per se.
Collapse
Affiliation(s)
- Jay J Meyers
- Physiology and Functional Morphology Group, Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Kiisa C Nishikawa
- Physiology and Functional Morphology Group, Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Anthony Herrel
- Département d'Ecologie et de Gestion de la Biodiversité, UMR 7179 C.N.R.S/M.N.H.N., Paris Cedex 5, France
| |
Collapse
|