1
|
Dezső K, Paku S, Juhász M, Kóbori L, Nagy P. Evolutionary View of Liver Pathology. Evol Appl 2024; 17:e70059. [PMID: 39717436 PMCID: PMC11664044 DOI: 10.1111/eva.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/23/2024] [Accepted: 11/28/2024] [Indexed: 12/25/2024] Open
Abstract
Evolutionary medicine emerged in the late twentieth century, integrating principles of natural selection and adaptation with the health sciences. Today, with a rapidly widening gap between the biology of Homo sapiens and its environment, maladaptation or maladaptive disorders can be detected in almost all diseases, including liver dysfunction. However, in hepatology, as in most medical specialties, evolutionary considerations are neglected because the majority of the medical community is not familiar with evolutionary principles. The aim of this brief review is to highlight an evolutionary approach that may facilitate understanding various liver diseases.
Collapse
Affiliation(s)
- Katalin Dezső
- Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Sándor Paku
- Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Mária‐Manuela Juhász
- Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - László Kóbori
- Department of Surgery, Transplantation and GastroenterologySemmelweis UniversityBudapestHungary
| | - Péter Nagy
- Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| |
Collapse
|
2
|
Compton ZT, Ågren JA, Marusyk A, Nedelcu AM. The Elephant and the Spandrel. Evol Med Public Health 2024; 13:92-100. [PMID: 40276264 PMCID: PMC12018762 DOI: 10.1093/emph/eoae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/01/2024] [Indexed: 04/26/2025] Open
Abstract
Comparative oncology has made great strides in identifying patterns of cancer prevalence and risk across the tree of life. Such studies have often centered on elucidating the evolution of mechanisms that prevent the development and progression of cancer, especially in large animals such as elephants. Conclusions from this approach, however, may have been exaggerated, given that the deep evolutionary origins of multicellularity suggest that the preeminent functions of the identified mechanisms may be unrelated to cancer. Instead, cancer suppression may have emerged as an evolutionary byproduct, or "spandrel". We propose a novel evolutionary perspective that highlights the importance of somatic maintenance as the underlying axis of natural selection. We argue that by shifting the focus of study from cancer suppression to somatic maintenance, we can gain a deeper understanding of the evolutionary pressures that shaped the mechanisms responsible for the observed variation in cancer prevalence across species.
Collapse
Affiliation(s)
- Zachary T Compton
- University of Arizona Cancer Center, Tucson, AZ, USA
- University of Arizona College of Medicine, Tucson, AZ, USA
| | - J Arvid Ågren
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | - Andriy Marusyk
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Aurora M Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, Canada
| |
Collapse
|
3
|
Evo-devo perspectives on cancer. Essays Biochem 2022; 66:797-815. [PMID: 36250956 DOI: 10.1042/ebc20220041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022]
Abstract
The integration of evolutionary and developmental approaches into the field of evolutionary developmental biology has opened new areas of inquiry- from understanding the evolution of development and its underlying genetic and molecular mechanisms to addressing the role of development in evolution. For the last several decades, the terms 'evolution' and 'development' have been increasingly linked to cancer, in many different frameworks and contexts. This mini-review, as part of a special issue on Evolutionary Developmental Biology, discusses the main areas in cancer research that have been addressed through the lenses of both evolutionary and developmental biology, though not always fully or explicitly integrated in an evo-devo framework. First, it briefly introduces the current views on carcinogenesis that invoke evolutionary and/or developmental perspectives. Then, it discusses the main mechanisms proposed to have specifically evolved to suppress cancer during the evolution of multicellularity. Lastly, it considers whether the evolution of multicellularity and development was shaped by the threat of cancer (a cancer-evo-devo perspective), and/or whether the evolution of developmental programs and life history traits can shape cancer resistance/risk in various lineages (an evo-devo-cancer perspective). A proper evolutionary developmental framework for cancer, both as a disease and in terms of its natural history (in the context of the evolution of multicellularity and development as well as life history traits), could bridge the currently disparate evolutionary and developmental perspectives and uncover aspects that will provide new insights for cancer prevention and treatment.
Collapse
|
4
|
Pepke ML, Kvalnes T, Lundregan S, Boner W, Monaghan P, Saether BE, Jensen H, Ringsby TH. Genetic architecture and heritability of early-life telomere length in a wild passerine. Mol Ecol 2022; 31:6360-6381. [PMID: 34825754 DOI: 10.1111/mec.16288] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/01/2021] [Accepted: 11/09/2021] [Indexed: 01/31/2023]
Abstract
Early-life telomere length (TL) is associated with fitness in a range of organisms. Little is known about the genetic basis of variation in TL in wild animal populations, but to understand the evolutionary and ecological significance of TL it is important to quantify the relative importance of genetic and environmental variation in TL. In this study, we measured TL in 2746 house sparrow nestlings sampled across 20 years and used an animal model to show that there is a small heritable component of early-life TL (h2 = 0.04). Variation in TL among individuals was mainly driven by environmental (annual) variance, but also brood and parental effects. Parent-offspring regressions showed a large maternal inheritance component in TL ( h maternal 2 = 0.44), but no paternal inheritance. We did not find evidence for a negative genetic correlation underlying the observed negative phenotypic correlation between TL and structural body size. Thus, TL may evolve independently of body size and the negative phenotypic correlation is likely to be caused by nongenetic environmental effects. We further used genome-wide association analysis to identify genomic regions associated with TL variation. We identified several putative genes underlying TL variation; these have been inferred to be involved in oxidative stress, cellular growth, skeletal development, cell differentiation and tumorigenesis in other species. Together, our results show that TL has a low heritability and is a polygenic trait strongly affected by environmental conditions in a free-living bird.
Collapse
Affiliation(s)
- Michael Le Pepke
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thomas Kvalnes
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sarah Lundregan
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), University of Glasgow, Glasgow, UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), University of Glasgow, Glasgow, UK
| | - Bernt-Erik Saether
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thor Harald Ringsby
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
5
|
Devi A, Dwibedi V, Rath SK, Khan ZA. Theories and Mechanism of Aging and Longevity Through Evolutionary Lens: a Coalition of Plant Anti-oxidants. REVISTA BRASILEIRA DE FARMACOGNOSIA 2022; 32:291-320. [DOI: 10.1007/s43450-022-00254-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/28/2022] [Indexed: 01/03/2025]
|
6
|
Dujon AM, Boutry J, Tissot S, Lemaître JF, Boddy AM, Gérard AL, Alvergne A, Arnal A, Vincze O, Nicolas D, Giraudeau M, Telonis-Scott M, Schultz A, Pujol P, Biro PA, Beckmann C, Hamede R, Roche B, Ujvari B, Thomas F. Cancer Susceptibility as a Cost of Reproduction and Contributor to Life History Evolution. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.861103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reproduction is one of the most energetically demanding life-history stages. As a result, breeding individuals often experience trade-offs, where energy is diverted away from maintenance (cell repair, immune function) toward reproduction. While it is increasingly acknowledged that oncogenic processes are omnipresent, evolving and opportunistic entities in the bodies of metazoans, the associations among reproductive activities, energy expenditure, and the dynamics of malignant cells have rarely been studied. Here, we review the diverse ways in which age-specific reproductive performance (e.g., reproductive aging patterns) and cancer risks throughout the life course may be linked via trade-offs or other mechanisms, as well as discuss situations where trade-offs may not exist. We argue that the interactions between host–oncogenic processes should play a significant role in life-history theory, and suggest some avenues for future research.
Collapse
|
7
|
Lemaître J, Rey B, Gaillard J, Régis C, Gilot‐Fromont E, Débias F, Duhayer J, Pardonnet S, Pellerin M, Haghani A, Zoller JA, Li CZ, Horvath S. DNA methylation as a tool to explore ageing in wild roe deer populations. Mol Ecol Resour 2022; 22:1002-1015. [PMID: 34665921 PMCID: PMC9297961 DOI: 10.1111/1755-0998.13533] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
DNA methylation-based biomarkers of ageing (epigenetic clocks) promise to lead to new insights into evolutionary biology of ageing. Relatively little is known about how the natural environment affects epigenetic ageing effects in wild species. In this study, we took advantage of a unique long-term (>40 years) longitudinal monitoring of individual roe deer (Capreolus capreolus) living in two wild populations (Chizé and Trois-Fontaines, France) facing different ecological contexts, to investigate the relationship between chronological age and levels of DNA methylation (DNAm). We generated novel DNA methylation data from n = 94 blood samples, from which we extracted leucocyte DNA, using a custom methylation array (HorvathMammalMethylChip40). We present three DNA methylation-based estimators of age (DNAm or epigenetic age), which were trained in males, females, and both sexes combined. We investigated how sex differences influenced the relationship between DNAm age and chronological age using sex-specific epigenetic clocks. Our results highlight that old females may display a lower degree of biological ageing than males. Further, we identify the main sites of epigenetic alteration that have distinct ageing patterns between the two sexes. These findings open the door to promising avenues of research at the crossroads of evolutionary biology and biogerontology.
Collapse
Affiliation(s)
- Jean‐François Lemaître
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Benjamin Rey
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Jean‐Michel Gaillard
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Corinne Régis
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Emmanuelle Gilot‐Fromont
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
- Université de LyonVetAgro SupMarcy‐l'EtoileFrance
| | - François Débias
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Jeanne Duhayer
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Sylvia Pardonnet
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Maryline Pellerin
- Direction de la Recherche et de l'Appui ScientifiqueOffice Français de la BiodiversitéUnité Ongulés SauvagesGapFrance
| | - Amin Haghani
- Human GeneticsDavid Geffen School of MedicineUniversity of CaliforniaLos Angeles CaliforniaUSA
| | - Joseph A. Zoller
- Department of BiostatisticsFielding School of Public HealthUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Caesar Z. Li
- Department of BiostatisticsFielding School of Public HealthUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Steve Horvath
- Human GeneticsDavid Geffen School of MedicineUniversity of CaliforniaLos Angeles CaliforniaUSA
- Department of BiostatisticsFielding School of Public HealthUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
8
|
Richardson RB, Anghel CV, Deng DS. Profound synchrony of age-specific incidence rates and tumor suppression for different cancer types as revealed by the multistage-senescence model of carcinogenesis. Aging (Albany NY) 2021; 13:23545-23578. [PMID: 34695806 PMCID: PMC8580351 DOI: 10.18632/aging.203651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022]
Abstract
The age-specific trend of cancer incidence rates, but not its magnitude, is well described employing the multistage theory of carcinogenesis by Armitage and Doll in combination with the senescence model of Pompei and Wilson. We derived empirical parameters of the multistage-senescence model from U.S. Surveillance, Epidemiology, and End Results (SEER) incidence data from 2000–2003 and 2010–2013 for The Cancer Genome Atlas (TCGA) cancer types. Under the assumption of a constant tumor-specific transition rate between stages, there is an extremely strong linear relationship (P < 0.0001) between the number of stages and the stage transition rate. The senescence tumor suppression factor for 20 non-reproductive cancers is remarkably consistent (0.0099±0.0005); however, five female reproductive cancers have significantly higher tumor suppression. The peak incidence rate for non-reproductive cancers occurs at a younger age for cancers with fewer stages and their carcinogenic stages are of longer duration. Driver gene mutations are shown to contribute on average only about a third of the carcinogenic stages of different tumor types. A tumor’s accumulated incidence, calculated using a two-variable (age, stage) model, is strongly associated with intrinsic cancer risk. During both early adulthood and senescence, the pace of tumor suppression appears to be synchronized across most cancer types, suggesting the presence of overlapping evolutionary processes.
Collapse
Affiliation(s)
- Richard B Richardson
- Radiobiology and Health Branch, Canadian Nuclear Laboratories (CNL), Chalk River Laboratories, Chalk River, ON K0J 1J0, Canada.,Medical Physics Unit, Cedars Cancer Centre, McGill University Health Centre - Glen Site, Montreal, QC H4A 3J1, Canada
| | - Catalina V Anghel
- Computational Techniques Branch, Canadian Nuclear Laboratories (CNL), Chalk River Laboratories, Chalk River, ON K0J 1J0, Canada
| | - Dennis S Deng
- Computational Techniques Branch, Canadian Nuclear Laboratories (CNL), Chalk River Laboratories, Chalk River, ON K0J 1J0, Canada
| |
Collapse
|
9
|
Chusyd DE, Ackermans NL, Austad SN, Hof PR, Mielke MM, Sherwood CC, Allison DB. Aging: What We Can Learn From Elephants. FRONTIERS IN AGING 2021; 2:726714. [PMID: 35822016 PMCID: PMC9261397 DOI: 10.3389/fragi.2021.726714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022]
Abstract
Elephants are large-brained, social mammals with a long lifespan. Studies of elephants can provide insight into the aging process, which may be relevant to understanding diseases that affect elderly humans because of their shared characteristics that have arisen through independent evolution. Elephants become sexually mature at 12 to 14 years of age and are known to live into, and past, their 7th decade of life. Because of their relatively long lifespans, elephants may have evolved mechanisms to counter age-associated morbidities, such as cancer and cognitive decline. Elephants rely heavily on their memory, and engage in multiple levels of competitive and collaborative relationships because they live in a fission-fusion system. Female matrilineal relatives and dependent offspring form tight family units led by an older-aged matriarch, who serves as the primary repository for social and ecological knowledge in the herd. Similar to humans, elephants demonstrate a dependence on social bonds, memory, and cognition to navigate their environment, behaviors that might be associated with specializations of brain anatomy. Compared with other mammals, the elephant hippocampus is proportionally smaller, whereas the temporal lobe is disproportionately large and expands laterally. The elephant cerebellum is also relatively enlarged, and the cerebral cortex is highly convoluted with numerous gyral folds, more than in humans. Last, an interesting characteristic unique to elephants is the presence of at least 20 copies of the TP53 tumor suppressor gene. Humans have only a single copy. TP53 encodes for the p53 protein, which is known to orchestrate cellular response to DNA damage. The effects of these multiple copies of TP53 are still being investigated, but it may be to protect elephants against multiple age-related diseases. For these reasons, among others, studies of elephants would be highly informative for aging research. Elephants present an underappreciated opportunity to explore further common principles of aging in a large-brained mammal with extended longevity. Such research can contribute to contextualizing our knowledge of age-associated morbidities in humans.
Collapse
Affiliation(s)
- Daniella E. Chusyd
- Department of Epidemiology and Biostatistics, Indiana University-Bloomington, Bloomington, IN, United States
- *Correspondence: Daniella E. Chusyd,
| | - Nicole L. Ackermans
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Steven N. Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- Nathan Shock Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michelle M. Mielke
- Division of Epidemiology, Department of Quantitative Health Sciences and Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, DC, United States
| | - David B. Allison
- Department of Epidemiology and Biostatistics, Indiana University-Bloomington, Bloomington, IN, United States
| |
Collapse
|
10
|
Capp JP, Thomas F. Tissue-disruption-induced cellular stochasticity and epigenetic drift: Common origins of aging and cancer? Bioessays 2020; 43:e2000140. [PMID: 33118188 DOI: 10.1002/bies.202000140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 01/10/2023]
Abstract
Age-related and cancer-related epigenomic modifications have been associated with enhanced cell-to-cell gene expression variability that characterizes increased cellular stochasticity. Since gene expression variability appears to be highly reduced by-and epigenetic and phenotypic stability acquired through-direct or long-range cellular interactions during cell differentiation, we propose a common origin for aging and cancer in the failure to control cellular stochasticity by cell-cell interactions. Tissue-disruption-induced cellular stochasticity associated with epigenetic drift would be at the origin of organ dysfunction because of an increase in phenotypic variation among cells, ultimately leading to cell death and organ failure through a loss of coordination in cellular functions, and eventually to cancerization. We propose mechanistic research perspectives to corroborate this hypothesis and explore its evolutionary consequences, highlighting a positive correlation between the median age of mass loss onset (a proxy for the onset of organ aging) and the median age at cancer diagnosis.
Collapse
Affiliation(s)
- Jean-Pascal Capp
- Toulouse Biotechnology Institute, University of Toulouse, INSA, CNRS, INRAE, Toulouse, France
| | - Frédéric Thomas
- CREEC (CREES), UMR IRD 224-CNRS 5290-University of Montpellier, Montpellier, France
| |
Collapse
|
11
|
Meitern R, Fort J, Giraudeau M, Rattiste K, Sild E, Sepp T. Age-dependent expression of cancer-related genes in a long-lived seabird. Evol Appl 2020; 13:1708-1718. [PMID: 32821278 PMCID: PMC7428815 DOI: 10.1111/eva.13024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/21/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Studies of model animals like mice and rats have led to great advances in our understanding of the process of tumorigenesis, but this line of study has less to offer for understanding the mechanisms of cancer resistance. Increasing the diversity of nonmodel species from the perspective of molecular mechanisms of natural cancer resistance can lead to new insights into the evolution of protective mechanisms against neoplastic processes and to a wider understanding of natural cancer defense mechanisms. Such knowledge could then eventually be harnessed for the development of human cancer therapies. We suggest here that seabirds are promising, albeit currently completely ignored candidates for studying cancer defense mechanisms, as they have a longer maximum life span than expected from their body size and rates of energy metabolism and may have thus evolved mechanisms to limit neoplasia progression, especially at older ages. We here apply a novel, intraspecific approach of comparing old and young seabirds for improving our understanding of aging and neoplastic processes in natural settings. We used the long-lived common gulls (Larus canus) for studying the age-related pattern of expression of cancer-related genes, based on transcriptome analysis and databases of orthologues of human cancer genes. The analysis of differently expressed cancer-related genes between young and old gulls indicated that similarly to humans, age is potentially affecting cancer risk in this species. Out of eleven differentially expressed cancer-related genes between the groups, three were likely artifactually linked to cancer. The remaining eight were downregulated in old gulls compared to young ones. The downregulation of five of them could be interpreted as a mechanism suppressing neoplasia risk and three as increasing the risk. Based on these results, we suggest that old gulls differ from young ones both from the aspect of cancer susceptibility and tumor suppression at the genetic level.
Collapse
Affiliation(s)
- Richard Meitern
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Jérôme Fort
- Littoral Environnement et Sociétés (LIENSs)UMR 7266 CNRS‐La Rochelle UniversitéLa RochelleFrance
| | | | - Kalev Rattiste
- Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | - Elin Sild
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Tuul Sepp
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| |
Collapse
|
12
|
Affiliation(s)
- Jean‐Michel Gaillard
- Laboratoire de Biométrie et Biologie Evolutive UMR5558 CNRS Université Lyon 1 University of Lyon Villeurbanne France
| | - Jean‐François Lemaître
- Laboratoire de Biométrie et Biologie Evolutive UMR5558 CNRS Université Lyon 1 University of Lyon Villeurbanne France
| |
Collapse
|
13
|
Affiliation(s)
- Eric R. Lucas
- Department of Vector Biology Liverpool School of Tropical Medicine Liverpool UK
| | - Laurent Keller
- Department of Ecology and Evolution, Biophore University of Lausanne Lausanne Switzerland
| |
Collapse
|