1
|
Wang Q, Huang Z, Wang F, Sun Z, Ju X, Chen K. Evidence for Transgenerational Immunity in Antiviral Immunity in Silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70041. [PMID: 40114532 DOI: 10.1002/arch.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 03/22/2025]
Abstract
Transgenerational immune priming (TGIP) is a phenomenon in which parental exposure to pathogen infection enhances resistance to pathogens in their offspring. TGIP has been reported in several insects, including Lepidoptera, but it has not yet been documented in silkworms. In this study, we demonstrated the existence of TGIP in silkworms by exposing the parental generation to a low dose of Bombyx mori nucleopolyhedrovirus (BmNPV). Notably, when maternal or paternal-primed moths were mated to produce the F1 generation, the F1 generation larvae from both primed groups were more resistant to the BmNPV challenge than silkworm larvae with only maternal or paternal priming. Importantly, both maternal and paternal contributions to offspring immunity were essential for TGIP. However, due to the characteristics of the BmNPV itself, no within-generation immune responses were detected following BmNPV priming. Further analysis revealed that immune-related genes might play a role in mediating specific TGIP in silkworms after BmNPV priming. These results broaden our understanding of TGIP and the antiviral memory of insects in their offspring.
Collapse
Affiliation(s)
- Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zengqing Huang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - FeiFei Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zhonghe Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiaoli Ju
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
López-Ferber M, Caballero P, Williams T. Baculovirus Genetic Diversity and Population Structure. Viruses 2025; 17:142. [PMID: 40006898 PMCID: PMC11861870 DOI: 10.3390/v17020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Baculoviruses can naturally regulate lepidopteran populations and are used as biological insecticides. The genetic diversity of these viruses affects their survival and efficacy in pest control. For nucleopolyhedroviruses, occlusion-derived virions and the occlusion body facilitate the transmission of groups of genomes, whereas this is not the case for granuloviruses. We review the evidence for baculovirus genetic diversity in the environment, in the host insect, and in occlusion bodies and virions. Coinfection allows defective genotypes to persist through complementation and results in the pseudotyping of virus progeny that can influence their transmissibility and insecticidal properties. Genetic diversity has marked implications for the development of pest resistance to virus insecticides. We conclude that future research is warranted on the physical segregation of genomes during virus replication and on the independent action of virions during infection. We also identify opportunities for studies on the transmission of genetic diversity and host resistance to viruses.
Collapse
Affiliation(s)
| | - Primitivo Caballero
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, 31006 Pamplona, Spain;
- Departamento de Investigación y Desarrollo, Bioinsectis SL, 31110 Noain, Spain
| | - Trevor Williams
- Instituto de Ecología AC (INECOL), Xalapa, Veracruz 91073, Mexico
| |
Collapse
|
3
|
Donkersley P, Rice A, Graham RI, Wilson K. Gut microbial community supplementation and reduction modulates African armyworm susceptibility to a baculovirus. FEMS Microbiol Ecol 2022; 99:6880154. [PMID: 36473704 PMCID: PMC9764207 DOI: 10.1093/femsec/fiac147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota stimulates the immune system and inhibits pathogens, and thus, it is critical for disease prevention. Probiotics represent an effective alternative to antibiotics used for the therapy and prevention of bacterial diseases. Probiotic bacteria are commonly used in vertebrates, although their use in invertebrates is still rare. We manipulated the gut microbiome of the African Armyworm (Spodoptera exempta Walker) using antibiotics and field-collected frass, in an attempt to understand the interactions of the gut microbiome with the nucleopolyhedrovirus, SpexNPV. We found that S. exempta individuals with supplemented gut microbiome were significantly more resistant to SpexNPV, relative to those with a typical laboratory gut microbiome. Illumina MiSeq sequencing revealed the bacterial phyla in the S. exempta gut belonged to 28 different classes. Individuals with an increased abundance of Lactobacillales had a higher probability of surviving viral infection. In contrast, there was an increased abundance of Enterobacteriales and Pseudomonadales in individuals dying from viral infection, corresponding with decreased abundance of these two Orders in surviving caterpillars, suggesting a potential role for them in modulating the interaction between the host and its pathogen. These results have important implications for laboratory studies testing biopesticides.
Collapse
Affiliation(s)
- Philip Donkersley
- Corresponding author: Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom. E-mail:
| | - Annabel Rice
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Robert I Graham
- Department of Rural Land Use, SRUC, Craibstone Campus, Aberdeen AB21 9YA, United Kingdom
| | - Kenneth Wilson
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| |
Collapse
|
4
|
Paraskevopoulou S, Gattis S, Ben-Ami F. Parasite resistance and parasite tolerance: insights into transgenerational immune priming in an invertebrate host. Biol Lett 2022; 18:20220018. [PMID: 35382587 PMCID: PMC8984330 DOI: 10.1098/rsbl.2022.0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/08/2022] [Indexed: 01/04/2023] Open
Abstract
Parasites impose different selection regimes on their hosts, which respond by increasing their resistance and/or tolerance. Parental challenge with parasites can enhance the immune response of their offspring, a phenomenon documented in invertebrates and termed transgenerational immune priming. We exposed two parental generations of the model organism Daphnia magna to the horizontally transmitted parasitic yeast Metschnikowia bicuspidata and recorded resistance- and tolerance-related traits in the offspring generation. We hypothesized that parentally primed offspring will increase either their resistance or their tolerance to the parasite. Our susceptibility assays revealed no impact of parental exposure on offspring resistance. Nonetheless, different fitness-related traits, which are indicative of tolerance, were altered. Specifically, maternal priming increased offspring production and decreased survival. Grandmaternal priming positively affected age at first reproduction and negatively affected brood size at first reproduction. Interestingly, both maternal and grandmaternal priming significantly reduced within-host-parasite proliferation. Nevertheless, Daphnia primed for two consecutive generations had no competitive advantage in comparison to unprimed ones, implying additive maternal and grandmaternal effects. Our findings do not support evidence of transgenerational immune priming from bacterial infections in the same host species, thus, emphasizing that transgenerational immune responses may not be consistent even within the same host species.
Collapse
Affiliation(s)
- Sofia Paraskevopoulou
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Sabrina Gattis
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Frida Ben-Ami
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
5
|
Ordovás‐Montañés M, Preston GM, Drew GC, Rafaluk‐Mohr C, King KC. Reproductive consequences of transient pathogen exposure across host genotypes and generations. Ecol Evol 2022; 12:e8720. [PMID: 35356553 PMCID: PMC8938310 DOI: 10.1002/ece3.8720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/14/2023] Open
Abstract
To maximize fitness upon pathogenic infection, host organisms might reallocate energy and resources among life-history traits, such as reproduction and defense. The fitness costs of infection can result from both immune upregulation and direct pathogen exploitation. The extent to which these costs, separately and together, vary by host genotype and across generations is unknown. We attempted to disentangle these costs by transiently exposing wild isolates and a lab-domesticated strain of Caenorhabditis elegans nematodes to the pathogen Staphylococcus aureus, using exposure to heat-killed pathogens to distinguish costs due to immune upregulation and pathogen exploitation. We found that host nematodes exhibit a short-term delay in offspring production when exposed to live and heat-killed pathogen, but their lifetime fecundity (total offspring produced) recovered to control levels. We also found genetic variation between host isolates for both cumulative offspring production and magnitude of fitness costs. We further investigated whether there were maternal pathogen exposure costs (or benefits) to offspring and revealed a positive correlation between the magnitude of the pathogen-induced delay in the parent's first day of reproduction and the cost to offspring population growth. Our findings highlight the capacity for hosts to recover fecundity after transient exposure to a pathogen.
Collapse
Affiliation(s)
| | | | | | - Charlotte Rafaluk‐Mohr
- Department of ZoologyUniversity of OxfordOxfordUK
- Institute of BiologyFreie Universitat BerlinBerlinGermany
| | | |
Collapse
|
6
|
Sułek M, Kordaczuk J, Wojda I. Current understanding of immune priming phenomena in insects. J Invertebr Pathol 2021; 185:107656. [PMID: 34464656 DOI: 10.1016/j.jip.2021.107656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
It may seem that the most important issues related to insect immunity have already been described. However, novel phenomena observed in recent years shed new light on the understanding of the immune response in insects.The adaptive abilities of insects helped them to populate all ecological land niches.One important adaptive ability of insects that facilitates their success is the plasticity of their immune system. Although they only have innate immune mechanisms, insects can increase their resistance after the first encounter with the pathogen. In recent years, this phenomenon,namedimmunepriming, has become a "hot topic" in immunobiology.Priming can occur within or across generations. In the first case, the resistance of a given individual can increase after surviving a previous infection. Transstadial immune priming occurs when infection takes place at one of the initial developmental stages and increased resistance is observed at the pupal or imago stages. Priming across generations (transgenerationalimmune priming, TGIP) relies on the increased resistance of the offspring when one or both parents are infected during their lifetime.Despite the attention that immune priming has received, basic questions remain to be answered, such as regulation of immune priming at the molecular level. Research indicates that pathogen recognition receptors (PRRs) can be involved in the priming phenomenon. Recent studies have highlighted the special role of microRNAs and epigenetics, which can influence expression of genes that can be transmitted through generations although they are not encoded in the nucleotide sequence. Considerable amounts of research are required to fully understand the mechanisms that regulate priming phenomena. The aim of our work is to analyse thoroughly the most important information on immune priming in insects and help raise pertinent questions such that a greater understanding of this phenomenon can be obtained in the future.
Collapse
Affiliation(s)
- Michał Sułek
- Maria Curie-Skłodowska University, Institute of Biological Sciences, Department of Immunobiology, Akademicka 19, Lublin 20-033, Poland.
| | - Jakub Kordaczuk
- Maria Curie-Skłodowska University, Institute of Biological Sciences, Department of Immunobiology, Akademicka 19, Lublin 20-033, Poland
| | - Iwona Wojda
- Maria Curie-Skłodowska University, Institute of Biological Sciences, Department of Immunobiology, Akademicka 19, Lublin 20-033, Poland.
| |
Collapse
|
7
|
Wilson K, Grzywacz D, Cory JS, Donkersley P, Graham RI. Trans-generational viral transmission and immune priming are dose-dependent. J Anim Ecol 2021; 90:1560-1569. [PMID: 33724454 DOI: 10.1111/1365-2656.13476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/08/2021] [Indexed: 12/30/2022]
Abstract
It is becoming increasingly apparent that trans-generational immune priming (i.e. the transfer of the parental immunological experience to its progeny resulting in offspring protection from pathogens that persist across generations) is a common phenomenon not only in vertebrates, but also invertebrates. Likewise, it is known that covert pathogenic infections may become 'triggered' into an overt infection by various stimuli, including exposure to heterologous infections. Yet, rarely have both phenomena been explored in parallel. Using as a model system the African armyworm Spodoptera exempta, an eruptive agricultural pest and its endemic dsDNA virus (Spodoptera exempta nucleopolyhedrovirus, SpexNPV), the aim of this study was to explore the impact of parental inoculating-dose on trans-generational pathogen transmission and immune priming (in its broadest sense). Larvae were orally challenged with one of five doses of SpexNPV and survivors from these treatments were mated and their offspring monitored for viral mortality. Offspring from parents challenged with low viral doses showed evidence of 'immune priming' (i.e. enhanced survival following SpexNPV challenge); in contrast, offspring from parents challenged with higher viral doses exhibited greater susceptibility to viral challenge. Most offspring larvae died of the virus they were orally challenged with; in contrast, most offspring from parents that had been challenged with the highest doses were killed by the vertically transmitted virus (90%) and not the challenge virus. These results demonstrate that the outcome of a potentially lethal virus challenge is critically dependent on the level of exposure to virus in the parental generation-either increasing resistance at very low parental viral doses (consistent with trans-generational immune priming) or increasing susceptibility at higher parental doses (consistent with virus triggering). We discuss the implications of these findings for understanding both natural epizootics of baculoviruses and for using them as biological control agents.
Collapse
Affiliation(s)
- Kenneth Wilson
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - David Grzywacz
- Department of Agriculture Health and Environment, Natural Resources Institute, University of Greenwich, Kent, UK
| | - Jenny S Cory
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | - Robert I Graham
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|