2
|
Naryzhnaya NV, Maslov LN, Derkachev IA, Ma H, Zhang Y, Prasad NR, Singh N, Fu F, Pei JM, Sarybaev A, Sydykov A. The effect of adaptation to hypoxia on cardiac tolerance to ischemia/reperfusion. J Biomed Res 2022:1-25. [PMID: 37183617 PMCID: PMC10387748 DOI: 10.7555/jbr.36.20220125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The acute myocardial infarction (AMI) and sudden cardiac death (SCD), both associated with acute cardiac ischemia, are one of the leading causes of adult death in economically developed countries. The development of new approaches for the treatment and prevention of AMI and SCD remains the highest priority for medicine. A study on the cardiovascular effects of chronic hypoxia (CH) may contribute to the development of these methods. Chronic hypoxia exerts both positive and adverse effects. The positive effects are the infarct-reducing, vasoprotective, and antiarrhythmic effects, which can lead to the improvement of cardiac contractility in reperfusion. The adverse effects are pulmonary hypertension and right ventricular hypertrophy. This review presents a comprehensive overview of how CH enhances cardiac tolerance to ischemia/reperfusion. It is an in-depth analysis of the published data on the underlying mechanisms, which can lead to future development of the cardioprotective effect of CH. A better understanding of the CH-activated protective signaling pathways may contribute to new therapeutic approaches in an increase of cardiac tolerance to ischemia/reperfusion.
Collapse
|
3
|
Naryzhnaya NV, Prokudina ES, Skryabina AS. Intracellular Kinase Mechanism of the Cytoprotective Action of Adaptation to Chronic Hypoxia in Anoxia/Reoxygenation of Cardiomyocytes. Bull Exp Biol Med 2020; 169:441-444. [PMID: 32889568 DOI: 10.1007/s10517-020-04905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Indexed: 10/23/2022]
Abstract
On the model of anoxia/reoxygenation of isolated cardiomyocytes, we studied the role of kinases in the implementation of the cytoprotective effect of chronic continuous normobaric hypoxia (21 days on continuous exposure of rats at 12% O2). Anoxia/reoxygenation of cardiomyocytes from intact rats caused death of 16.5% cells, which was accompanied by the release of lactate dehydrogenase; in suspension of cardiomyocytes from adapted rats, only 6.8% cells died and the release of lactate dehydrogenase was lower by 60%. Incubation of cells with inhibitors of protein kinase C (chelerythrin, 10 mM), protein kinase Cδ (rottlerin, 1 μM), tyrosine kinases (genistein, 50 μM), but not with PI3K inhibitor (wortmannin, 100 nM) eliminated the cytoprotective effect of chronic continuous normobaric hypoxia. Thus, the cytoprotective effect of chronic normobaric hypoxia is realized through activation of protein kinase Cδ and tyrosine kinases, but not through PI3K.
Collapse
Affiliation(s)
- N V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| | - E S Prokudina
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - A S Skryabina
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
4
|
Prokudina ES, Naryzhnaya NV, Nesterov EA, Tsibulnikov SY, Maslov LN. Continuous Normobaric Hypoxia Improved Cardiac Bioenergetics after Ischemia/Reperfusion: Role of Opioid Receptors. Bull Exp Biol Med 2020; 169:13-17. [PMID: 32474669 DOI: 10.1007/s10517-020-04814-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Indexed: 11/27/2022]
Abstract
We analyzed the role of opioid receptors in the conditioning effect of continuous normobaric hypoxia on bioenergetics of the heart subjected to ischemia/reperfusion injury. Male Wistar rats were adapted to a 21-day continuous normobaric hypoxia (12% pO2). Then, the hearts were isolated and subjected to 45-min total ischemia followed by 30-min reperfusion. Damage to the myocardium was assessed by activity of creatine phosphokinase in the perfusate. Experiments on isolated mitochondria showed that ischemia/reperfusion injury decreased the respiration rate in state 3 (V3), the ratio of added ADP and oxygen consumption in respiration state 3 (ADP/O ratio), the mitochondrial potential across the inner membrane (Δψ), and Ca2+ binding capacity of mitochondria. In addition, ischemia/reperfusion injury decreased myocardial ATP. Preventive continuous normobaric hypoxia pronouncedly moderated these adverse effects of reperfusion. It was found that its protective effects were related to activation of cardiac μ- and δ2-opioid receptors.
Collapse
Affiliation(s)
- E S Prokudina
- Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - N V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - E A Nesterov
- National Research Tomsk Polytechnic University, Tomsk, Russia
| | - S Yu Tsibulnikov
- Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - L N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk, Russia.
| |
Collapse
|
5
|
Naryzhnaya NV, Prokudina ES, Nesterov EA, Tsibulnikov SY, Maslov LN. The Role of Cardiac Opioid Receptors in the Cardioprotective Effect of Continuous Normobaric Hypoxia. Bull Exp Biol Med 2020; 168:727-729. [PMID: 32337663 DOI: 10.1007/s10517-020-04789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Indexed: 10/24/2022]
Abstract
We studied the role of opioid receptor subtypes in improvement of the functional state of the heart during reperfusion after adaptation to continuous normobaric hypoxia. To this end, male Wistar rats were subjected to continuous normobaric hypoxia (12% O2). Then, the hearts were isolated and exposed to total 45-min ischemia followed by 30-min reperfusion. Opioid receptor antagonists were added to the perfusion solution prior to ischemia. It was found that continuous normobaric hypoxia reduced the release of creatine phosphokinase into the effluent, increased myocardial contractile force, and decreased the end-diastolic pressure during reperfusion; these positive effects were related to activation of cardiac δ2- and μ-opioid receptors.
Collapse
Affiliation(s)
- N V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - E S Prokudina
- Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - E A Nesterov
- National Research Tomsk Polytechnic University, Tomsk, Russia
| | - S Yu Tsibulnikov
- Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - L N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk, Russia.
| |
Collapse
|
6
|
Wang K, Liu Z, Zhao M, Zhang F, Wang K, Feng N, Fu F, Li J, Li J, Liu Y, Zhang S, Fan R, Guo H, Pei J. κ-opioid receptor activation promotes mitochondrial fusion and enhances myocardial resistance to ischemia and reperfusion injury via STAT3-OPA1 pathway. Eur J Pharmacol 2020; 874:172987. [PMID: 32032598 DOI: 10.1016/j.ejphar.2020.172987] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/19/2022]
Abstract
Mitochondrial dynamics, determining mitochondrial morphology, quality and abundance, have recently been implicated in myocardial ischemia and reperfusion (MI/R) injury. The roles of κ-opioid receptor activation in cardioprotection have been confirmed in our previous studies, while the underlying mechanism associated with mitochondrial dynamics remains unclear. This study aims to investigate the effect of κ-opioid receptor activation on the pathogenesis of MI/R and its underlying mechanisms. MI/R mouse model and hypoxia-reoxygenation cardiomyocyte model were established in this study. Mitochondrial dynamics were analyzed with transmission electron microscopy in vivo and confocal microscopy in vitro. STAT3 phosphorylation and OPA1 expression were detected by Western blotting. We show here that κ-opioid receptor activation with its selective receptor agonist U50,488H promoted mitochondrial fusion and enhanced myocardial resistance to MI/R injury, while these protective effects were blockaded by nor-BNI, a selective κ-opioid receptor antagonist. In addition, κ-opioid receptor activation increased STAT3 phosphorylation and OPA1 expression, which were blockaded by nor-BNI. Furthermore, inhibition of STAT3 phosphorylation by stattic, a specific STAT3 inhibitor, repressed the effects of κ-opioid receptor activation on promoting OPA1 expression and mitochondrial fusion, as well as inhibiting cell apoptosis and oxidative stress both in vivo and in vitro during MI/R injury. Overall, our data for the first time provide evidence that κ-opioid receptor activation promotes mitochondrial fusion and enhances myocardial resistance to MI/R injury via STAT3-OPA1 pathway. Targeting the pathway regulated by κ-opioid receptor activation may be a potential therapeutic strategy for MI/R injury.
Collapse
Affiliation(s)
- Kaiyan Wang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zhenhua Liu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Meina Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Fuyang Zhang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Na Feng
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jun Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Juan Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yali Liu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shumiao Zhang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Rong Fan
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Haitao Guo
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Jianming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
8
|
Selective replacement of mitochondrial DNA increases the cardioprotective effect of chronic continuous hypoxia in spontaneously hypertensive rats. Clin Sci (Lond) 2017; 131:865-881. [PMID: 28292971 DOI: 10.1042/cs20170083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/08/2017] [Accepted: 03/14/2017] [Indexed: 12/13/2022]
Abstract
Mitochondria play an essential role in improved cardiac ischaemic tolerance conferred by adaptation to chronic hypoxia. In the present study, we analysed the effects of continuous normobaric hypoxia (CNH) on mitochondrial functions, including the sensitivity of the mitochondrial permeability transition pore (MPTP) to opening, and infarct size (IS) in hearts of spontaneously hypertensive rats (SHR) and the conplastic SHR-mtBN strain, characterized by the selective replacement of the mitochondrial genome of SHR with that of the more ischaemia-resistant brown Norway (BN) strain. Rats were adapted to CNH (10% O2, 3 weeks) or kept at room air as normoxic controls. In the left ventricular mitochondria, respiration and cytochrome c oxidase (COX) activity were measured using an Oxygraph-2k and the sensitivity of MPTP opening was assessed spectrophotometrically as Ca2+-induced swelling. Myocardial infarction was analysed in anaesthetized open-chest rats subjected to 20 min of coronary artery occlusion and 3 h of reperfusion. The IS reached 68±3.0% and 65±5% of the area at risk in normoxic SHR and SHR-mtBN strains, respectively. CNH significantly decreased myocardial infarction to 46±3% in SHR. In hypoxic SHR-mtBN strain, IS reached 33±2% and was significantly smaller compared with hypoxic SHR. Mitochondria isolated from hypoxic hearts of both strains had increased detergent-stimulated COX activity and were less sensitive to MPTP opening. The maximum swelling rate was significantly lower in hypoxic SHR-mtBN strain compared with hypoxic SHR, and positively correlated with myocardial infarction in all experimental groups. In conclusion, the mitochondrial genome of SHR modulates the IS-limiting effect of adaptation to CNH by affecting mitochondrial energetics and MPTP sensitivity to opening.
Collapse
|
9
|
Abstract
This paper is the thirty-eighth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2015 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|