1
|
Liang SP, Wang XZ, Piao MH, Chen X, Wang ZC, Li C, Wang YB, Lu S, He C, Wang YL, Chi GF, Ge PF. Activated SIRT1 contributes to DPT-induced glioma cell parthanatos by upregulation of NOX2 and NAT10. Acta Pharmacol Sin 2023; 44:2125-2138. [PMID: 37277492 PMCID: PMC10545831 DOI: 10.1038/s41401-023-01109-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Parthanatos is a type of programmed cell death dependent on hyper-activation of poly (ADP-ribose) polymerase 1 (PARP-1). SIRT1 is a highly conserved nuclear deacetylase and often acts as an inhibitor of parthanatos by deacetylation of PARP1. Our previous study showed that deoxypodophyllotoxin (DPT), a natural compound isolated from the traditional herb Anthriscus sylvestris, triggered glioma cell death via parthanatos. In this study, we investigated the role of SIRT1 in DPT-induced human glioma cell parthanatos. We showed that DPT (450 nmol/L) activated both PARP1 and SIRT1, and induced parthanatos in U87 and U251 glioma cells. Activation of SIRT1 with SRT2183 (10 μmol/L) enhanced, while inhibition of SIRT1 with EX527 (200 μmol/L) or knockdown of SIRT1 attenuated DPT-induced PARP1 activation and glioma cell death. We demonstrated that DPT (450 nmol/L) significantly decreased intracellular NAD+ levels in U87 and U251 cells. Further decrease of NAD+ levels with FK866 (100 μmol/L) aggravated, but supplement of NAD+ (0.5, 2 mmol/L) attenuated DPT-induced PARP1 activation. We found that NAD+ depletion enhanced PARP1 activation via two ways: one was aggravating ROS-dependent DNA DSBs by upregulation of NADPH oxidase 2 (NOX2); the other was reinforcing PARP1 acetylation via increase of N-acetyltransferase 10 (NAT10) expression. We found that SIRT1 activity was improved when being phosphorylated by JNK at Ser27, the activated SIRT1 in reverse aggravated JNK activation via upregulating ROS-related ASK1 signaling, thus forming a positive feedback between JNK and SIRT1. Taken together, SIRT1 activated by JNK contributed to DPT-induced human glioma cell parthanatos via initiation of NAD+ depletion-dependent upregulation of NOX2 and NAT10.
Collapse
Affiliation(s)
- Shi-Peng Liang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Xuan-Zhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Mei-Hua Piao
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, 130021, China
| | - Xi Chen
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhen-Chuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Yu-Bo Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Shan Lu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chuan He
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Yan-Li Wang
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
- Department of Obstetrics and Gynecology, First Hospital of Jilin University, Changchun, 130021, China
| | - Guang-Fan Chi
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Peng-Fei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China.
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Molecular Mechanisms of Parthanatos and Its Role in Diverse Diseases. Int J Mol Sci 2022; 23:ijms23137292. [PMID: 35806303 PMCID: PMC9266317 DOI: 10.3390/ijms23137292] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Differential evolution of apoptosis, programmed necrosis, and autophagy, parthanatos is a form of cell death mediated by poly(ADP-ribose) polymerase 1 (PARP1), which is caused by DNA damage. PARP1 hyper-activation stimulates apoptosis-inducing factor (AIF) nucleus translocation, and accelerates nicotinamide adenine dinucleotide (NAD+) and adenosine triphosphate (ATP) depletion, leading to DNA fragmentation. The mechanisms of parthanatos mainly include DNA damage, PARP1 hyper-activation, PAR accumulation, NAD+ and ATP depletion, and AIF nucleus translocation. Now, it is reported that parthanatos widely exists in different diseases (tumors, retinal diseases, neurological diseases, diabetes, renal diseases, cardiovascular diseases, ischemia-reperfusion injury...). Excessive or defective parthanatos contributes to pathological cell damage; therefore, parthanatos is critical in the therapy and prevention of many diseases. In this work, the hallmarks and molecular mechanisms of parthanatos and its related disorders are summarized. The questions raised by the recent findings are also presented. Further understanding of parthanatos will provide a new treatment option for associated conditions.
Collapse
|
3
|
Melatonin Attenuates Ropivacaine-Induced Apoptosis by Inhibiting Excessive Mitophagy Through the Parkin/PINK1 Pathway in PC12 and HT22 Cells. Inflammation 2022; 45:725-738. [PMID: 34994877 DOI: 10.1007/s10753-021-01579-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/07/2021] [Indexed: 11/05/2022]
Abstract
Melatonin, as an endogenous circadian indoleamine secreted by the pineal gland, executes extensive biological functions, including antioxidant, anti-inflammatory, anti-tumor, and neuroprotective effects. Although melatonin has been reported to serve as a potential therapeutic against many nerve injury diseases, its effect on ropivacaine-induced neurotoxicity remains obscure. Our research aimed to explore the impact and mechanism of melatonin on ropivacaine-induced neurotoxicity. Our results showed that melatonin pretreatment protected the cell viability, morphology, and apoptosis of PC12 and HT22 cells, and it also improved ropivacaine-induced mitochondrial dysfunction and the activation of mitophagy. In addition, we found that autophagy activation with rapamycin significantly weakened the protective effect of melatonin against ropivacaine-induced apoptosis, whereas autophagy inhibition with 3-MA enhanced the effect of melatonin. We also detected the activation of Parkin and PINK1, a canonical mechanism for mitophagy regulation, and results shown that melatonin downregulated the expression of Parkin and PINK1, and upregulated Tomm20 and COXIV proteins, so that those results indicated that melatonin protected ropivacaine-induced apoptosis through suppressing excessive mitophagy by inhibiting the Parkin/PINK1 pathway. Melatonin may be a useful potential therapeutic agent against ropivacaine-induced neurotoxicity.
Collapse
|
4
|
Zhang R, Lian Y, Xie K, Cai Y, Pan Y, Zhu Y. Ropivacaine suppresses tumor biological characteristics of human hepatocellular carcinoma via inhibiting IGF-1R/PI3K/AKT/mTOR signaling axis. Bioengineered 2021; 12:9162-9173. [PMID: 34696683 PMCID: PMC8810031 DOI: 10.1080/21655979.2021.1995103] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
Ropivacaine, a common local anesthetic in the clinic, has anti-proliferative and pro-apoptotic effects in numerous cancers, however, the underlying regulatory mechanism of ropivacaine in hepatocellular carcinoma remains unclear. In the current study, human HepG2 cells were stimulated with different ropivacaine concentrations. Cell Counting Kit-8 assay, cell colony formation, and cell cycle were used to monitor cell viability. Cell apoptosis, migration, and invasion were determined by flow cytometry and transwell assays. Tumor xenograft experiments were performed to prove the anti-cancer effect of ropivacaine in vivo. A high dose of ropivacaine inhibited proliferation and promoted apoptosis of HepG2 cells in a dose-dependent manner. Ropivacaine challenge also arrested cells in the G2 phase, followed by a decline in the protein expression of cyclin D1 and cyclin-dependent kinase 2, and an increase in p27 levels in HepG2 cells. Additionally, different ropivacaine doses suppressed cell migration and invasion by upregulating E-cadherin expression and downregulating N-cadherin expression. Mechanically, ropivacaine challenge gradually restrained insulin-like growth factor-1 receptor (IGF-1 R) expression and the activities of phosphorylated-PI3K, AKT, and mTOR in HepG2 cells with increased ropivacaine doses. In the tumor xenograft experiment, ropivacaine was confirmed to inhibit tumor growth, accompanied by inhibition of the IGF-1 R/PI3K/AKT/mTOR signaling axis. In conclusion, ropivacaine suppressed tumor biological characteristics and promoted apoptosis, resulting in the suppression of hepatocellular carcinoma progression by targeting the IGF-1 R/PI3K/AKT/mTOR signaling pathway. It is possible that ropivacaine-mediated local anesthesia may be developed as a novel surgical adjuvant drug for treating hepatocellular carcinoma.
Collapse
Affiliation(s)
- Runze Zhang
- Department of Anesthesiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Department of Anesthesiology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yanhong Lian
- Department of Anesthesiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Department of Anesthesiology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Kangjie Xie
- Department of Anesthesiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Department of Anesthesiology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yunfang Cai
- Department of Anesthesiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Department of Anesthesiology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yafei Pan
- Department of Anesthesiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Department of Anesthesiology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yuntian Zhu
- Department of Anesthesiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Department of Anesthesiology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Wang X, Ge P. Parthanatos in the pathogenesis of nervous system diseases. Neuroscience 2020; 449:241-250. [DOI: 10.1016/j.neuroscience.2020.09.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
|
6
|
Dexmedetomidine suppresses bupivacaine-induced parthanatos in human SH-SY5Y cells via the miR-7-5p/PARP1 axis-mediated ROS. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:783-796. [PMID: 32989562 DOI: 10.1007/s00210-020-01971-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/31/2020] [Indexed: 12/30/2022]
Abstract
This study aims to explore the regulatory mechanisms of dexmedetomidine in parthanatos. MTT assay was applied to reveal cell viability; JC-1 staining assay was utilized to reveal mitochondrial membrane potential. Reactive oxygen species (ROS) probe, DCFH-DA, was used to detect intracellular ROS production. Luciferase activity assay was applied to measure the binding between miR-7-5p and PARP1. We first identified that bupivacaine inhibited the viability and induced the parthanatos of human neuroblastoma SH-SY5Y cells. In addition, dexmedetomidine, a potent α2-adrenoceptor agonist, reversed the regulatory effect of bupivacaine on parthanatos of SH-SY5Y. More importantly, dexmedetomidine counteracted bupivacaine-induced changes of mitochondrial membrane potential and ROS production in SH-SY5Y cells. Hyper-activation of PARP1 plays a vital role in parthanatos. Further exploration of our study identified that bupivacaine triggered overexpression of PARP1 in SH-SY5Y cells. Bioinformatics analysis revealed that miR-7-5p targeted the 3' untranslated region (3' UTR) of PARP1 to inhibit PARP1 expression. In addition, dexmedetomidine recovered the suppressive effects of bupivacaine on miR-7-5p expression. Dexmedetomidine suppressed bupivacaine-induced parthanatos in SH-SY5Y cells via the miR-7-5p/PARP1 axis, which may shed a new insight into parthanatos-dependent neuronal injury.
Collapse
|
7
|
Zhao G, Liu F, Liu Z, Zuo K, Wang B, Zhang Y, Han X, Lian A, Wang Y, Liu M, Zou F, Li P, Liu X, Jin M, Liu JY. MSC-derived exosomes attenuate cell death through suppressing AIF nucleus translocation and enhance cutaneous wound healing. Stem Cell Res Ther 2020; 11:174. [PMID: 32393338 PMCID: PMC7212595 DOI: 10.1186/s13287-020-01616-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/02/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Background Skin wounding is very common and may be slow to heal. Increasing evidence shows that exosomes derived from mesenchymal stem cells (MSCs) dramatically enhance skin wound healing in a paracrine manner. However, the mechanism underlying this phenomenon has not yet been elucidated. Thus, the objective of the present study was to identify the signaling pathways and paracrine factors by which MSC-derived exosomes promote de novo skin tissue regeneration in response to wound healing. Methods In vitro and in vivo skin wound healing models were created by treating immortalized human keratinocytes (HaCaT) with hydrogen peroxide (H2O2) and excising full-thickness mouse skin, respectively. Exosomes were extracted from human umbilical cord Wharton’s jelly MSCs (hucMSC-Ex) by ultracentrifugation of cell culture supernatant. Results The hucMSC-Ex treatment significantly increased HaCaT cell proliferation and migration in a time- and dose-dependent manner, suppressed HaCaT apoptosis induced with H2O2 by inhibiting nuclear translocation of apoptosis-inducing factor (AIF) and upregulating poly ADP ribose polymerase 1 (PARP-1) and poly (ADP-ribose) (PAR). The animal experiments showed that relative to hucMSCs, hucMSC-Ex attenuated full-thickness skin wounding by enhancing epidermal re-epithelialization and dermal angiogenesis. Conclusions These findings indicated that direct administration of hucMSC-Ex may effectively treat cutaneous wounding and could be of great value in clinical settings.
Collapse
Affiliation(s)
- Guifang Zhao
- Department of Toxicology, School of Public Health, Jilin University, No. 1163 Xinmin Street, Changchun, Jilin, 130021, China.,Department of Pathology, Jilin Medical University, Jilin, China
| | - Feilin Liu
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | - Zinan Liu
- Department of Toxicology, School of Public Health, Jilin University, No. 1163 Xinmin Street, Changchun, Jilin, 130021, China
| | - Kuiyang Zuo
- Department of Toxicology, School of Public Health, Jilin University, No. 1163 Xinmin Street, Changchun, Jilin, 130021, China
| | - Bo Wang
- Department of Toxicology, School of Public Health, Jilin University, No. 1163 Xinmin Street, Changchun, Jilin, 130021, China
| | - Yuying Zhang
- Department of Toxicology, School of Public Health, Jilin University, No. 1163 Xinmin Street, Changchun, Jilin, 130021, China
| | - Xing Han
- Department of Toxicology, School of Public Health, Jilin University, No. 1163 Xinmin Street, Changchun, Jilin, 130021, China
| | - Aobo Lian
- Department of Toxicology, School of Public Health, Jilin University, No. 1163 Xinmin Street, Changchun, Jilin, 130021, China
| | - Yuan Wang
- Department of Toxicology, School of Public Health, Jilin University, No. 1163 Xinmin Street, Changchun, Jilin, 130021, China
| | - Mingsheng Liu
- Department of Toxicology, School of Public Health, Jilin University, No. 1163 Xinmin Street, Changchun, Jilin, 130021, China
| | - Fei Zou
- Department of Toxicology, School of Public Health, Jilin University, No. 1163 Xinmin Street, Changchun, Jilin, 130021, China
| | - Pengdong Li
- Department of Toxicology, School of Public Health, Jilin University, No. 1163 Xinmin Street, Changchun, Jilin, 130021, China
| | - Xiaomei Liu
- Department of Toxicology, School of Public Health, Jilin University, No. 1163 Xinmin Street, Changchun, Jilin, 130021, China
| | - Minghua Jin
- Department of Toxicology, School of Public Health, Jilin University, No. 1163 Xinmin Street, Changchun, Jilin, 130021, China
| | - Jin Yu Liu
- Department of Toxicology, School of Public Health, Jilin University, No. 1163 Xinmin Street, Changchun, Jilin, 130021, China.
| |
Collapse
|
8
|
Zhu N, Li J, Li Y, Zhang Y, Du Q, Hao P, Li J, Cao X, Li L. Berberine Protects Against Simulated Ischemia/Reperfusion Injury-Induced H9C2 Cardiomyocytes Apoptosis In Vitro and Myocardial Ischemia/Reperfusion-Induced Apoptosis In Vivo by Regulating the Mitophagy-Mediated HIF-1α/BNIP3 Pathway. Front Pharmacol 2020; 11:367. [PMID: 32292345 PMCID: PMC7120539 DOI: 10.3389/fphar.2020.00367] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/10/2020] [Indexed: 12/28/2022] Open
Abstract
Berberine (BBR) has a variety of pharmacological activities and is widely used in Asian countries. However, the clinical application of BBR still lacks scientific basis, what protective mechanism of BBR against myocardial ischemia-reperfusion injury (MIRI). In vitro experiments, BBR pretreatment regulated autophagy-related protein expression, induced cell proliferation and autophagosome formation, and reduced the mitochondrial membrane potential (ΔΨm) increase in H9C2 cells. In vivo experiments, BBR reduced the myocardial infarct size, decreased cardiomyocyte apoptosis, and markedly decreased myocardial enzyme (CK-MB, LDH, and AST) activity-induced I/R. In addition, upon BNIP3 knockdown, the regulatory effects of BBR on the above indicators were weakened both in H9C2 cells and in vivo. Luciferase reporter and ChIP assays indicated that BBR mediated BNIP3 expression by enhancing the binding of HIF-1α to the BNIP3 promoter. BBR protects against myocardial I/R injury by inducing cardiomyocytes proliferation, inhibiting cardiomyocytes apoptosis, and inducing the mitophagy-mediated HIF-1α/BNIP3 pathway. Thus, BBR may serve as a novel therapeutic drug for myocardial I/R injury.
Collapse
Affiliation(s)
- Na Zhu
- Department of Health Management, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Jiang Li
- Henan Provincial Research Center of Natural Medicine Extraction and Medical Technology Application Engineering, Zhengzhou Railway Vocational Technical College, Zhengzhou, China
| | - Yongli Li
- Department of Health Management, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Yuwei Zhang
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Qiubo Du
- Department of Cardiology, Henan Provincial Key Lab for Control of Coronary Heart Disease, Henan Provincial People's Hospital, Central China Fuwai Hospital, Zhengzhou University People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Peiyuan Hao
- Department of Cardiology, Henan Provincial Key Lab for Control of Coronary Heart Disease, Henan Provincial People's Hospital, Central China Fuwai Hospital, Zhengzhou University People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Jinying Li
- Department of Health Management, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Xueming Cao
- Department of Cardiology, Henan Provincial Key Lab for Control of Coronary Heart Disease, Henan Provincial People's Hospital, Central China Fuwai Hospital, Zhengzhou University People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Li Li
- Department of Scientific Research and Discipline Construction, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China
| |
Collapse
|
9
|
Zhai Y, Ma Y, Liu J, Zhu Y, Xie K, Yu L, Zhang H. Brain-Derived Neurotrophic Factor Alleviates Ropivacaine-Induced Neuronal Damage by Enhancing the Akt Signaling Pathway. Med Sci Monit 2019; 25:10154-10163. [PMID: 31885368 PMCID: PMC6951110 DOI: 10.12659/msm.918479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is one of the neurotrophic factors that modulate critical metabolic activities, including apoptosis, proliferation, and differentiation modulation. Although numerous studies have focused on the damaging effects of BDNF on neurons, the underlying relationship between these effects remains unclear. In the present study, we investigated the protective effect of BDNF on neuronal injury induced by ropivacaine and assessed whether it is related to the Akt signaling pathway. MATERIAL AND METHODS Human neuroblastoma cell line SH-SY5Y cells were stimulated with ropivacaine at different concentrations to induce neuronal injury. MTT analysis, flow cytometry, immunohistochemistry, qRT-PCR, and Western blot were used to investigate the proliferation activity, apoptotic level, and expression of Akt, PCNA, Bax, Bcl-2, and cleaved caspase-3, collectively demonstrating the underlying regulatory mechanisms. RESULTS Compared with the control group, the morphological damage and proliferation inhibition of SH-SY5Y cells induced by ropivacaine were dose-dependent and time-dependent, accompanied by a significant decrease in Akt expression. We treated cells with BDNF or SC79, which is a selective cell-permeable small molecule Akt activator. The results showed that, compared to the ropivacaine group, the morphological damage of neurons was alleviated; cell proliferation activity was enhanced; apoptotic rate was reduced; PCNA, Bcl-2, and phosphorylated Akt expression levels were increased; and Bax and caspase-3 gene and protein expression were decreased. We were able to reverse these effects by administering API-2, an Akt inhibitor. CONCLUSIONS BDNF can alleviate ropivacaine-induced neuronal injury by activating Akt signaling pathway, consequently modulating the proliferation and apoptosis of neurons.
Collapse
Affiliation(s)
- Yongyi Zhai
- Department of Rehabilitation, Linzi District People's Hospital, Zibo, Shandong, China (mainland)
| | - Yong Ma
- Department of Anesthesiology, People's Liberation Army 970 Hospital, Yantai, Shandong, China (mainland)
| | - Jingying Liu
- Department of Obstetrics, Yantaishan Hospital, Yantai, Shandong, China (mainland)
| | - Yulin Zhu
- Department of Anesthesiology, Yantanshan Hospital, Yantai, Shandong, China (mainland)
| | - Kun Xie
- Department of Anesthesiology, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Lingzhi Yu
- Department of Pain, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Hao Zhang
- Department of Anesthesiology, People's Liberation Army 970 Hospital, Yantai, Shandong, China (mainland)
| |
Collapse
|
10
|
Li L, Sun Y, Zhang N, Qiu X, Wang L, Luo Q. By regulating miR-182-5p/BCL10/CYCS, sufentanil reduces the apoptosis of umbilical cord mesenchymal stem cells caused by ropivacaine. Biosci Trends 2019; 13:49-57. [PMID: 30773504 DOI: 10.5582/bst.2018.01291] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Sufentanil is a type of opioid analgesic and is usually used to facilitate painless labor in combination with the local anesthetic ropivacaine. One aim of the current study was to investigate the effects of sufentanil and ropivacaine on umbilical cord mesenchymal stem cells (UCMSCs). A second aim of this study was to determine whether sufentanil attenuated the cytotoxicity of ropivacaine in vitro. UCMSCs were divided into 3 groups: one was treated with ropivacaine at a concentration of 50, 100, 200, or 400 μg/mL, another was treated with sufentanil at a concentration of 0.5, 5, 50, or 500 nmol/L, and a third was treated with a combination of ropivacaine at a concentration of 200 μg/mL and sufentanil at a concentration of 0.5, 5, 50, or 500 nmol/L. Results indicated that cell proliferation decreased in cells treated with ropivacaine while it increased in cells treated with sufentanil. In addition, sufentanil limited the inhibitory effect of ropivacaine on UCMSC growth in a dose- and time-dependent manner. Combined treatment with ropivacaine at a concentration of 200 μg/mL and sufentanil at a concentration of 500 nmol/L decreased the proportion of dead and apoptotic UCMSCs, and fewer cells were arrested in the S phase compared to cells treated with ropivacaine. Sufentanil inhibited the apoptosis induced by ropivacaine by increasing miR-182-5p, which regulated the expression of mRNA of the pro-apoptotic genes B-cell lymphoma/leukemia 10 (BCL10) and cytochrome c, somatic (CYCS). Sufentanil also increased the expression of mRNA of anti-apoptotic genes. In short, ropivacaine inhibits the cell viability and induces the apoptosis of UCMSCs in vitro while sufentanil attenuates this apoptosis by regulating miR182-5p/BCL10/CYCS.
Collapse
Affiliation(s)
- Lisha Li
- Obstetrics and Gynecology Hospital of Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Yan Sun
- Obstetrics and Gynecology Hospital of Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Na Zhang
- Obstetrics and Gynecology Hospital of Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Xuemin Qiu
- Obstetrics and Gynecology Hospital of Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Ling Wang
- Obstetrics and Gynecology Hospital of Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Qingyan Luo
- Obstetrics and Gynecology Hospital of Fudan University
| |
Collapse
|
11
|
Preparation of ropivacaine loaded PLGA microspheres as controlled-release system with narrow size distribution and high loading efficiency. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Zou Y, He X, Peng QY, Guo QL. Inhibition of CD38/Cyclic ADP-ribose Pathway Protects Rats against Ropivacaine-induced Convulsion. Chin Med J (Engl) 2018; 130:2354-2360. [PMID: 28937043 PMCID: PMC5634088 DOI: 10.4103/0366-6999.215333] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The CD38/cyclic ADP-ribose (cADPR) pathway plays a role in various central nervous system diseases and in morphine tolerance, but its role in local anesthetic intoxication is unknown. The aim of this study was to determine the role of the CD38/cADPR pathway in ropivacaine-induced convulsion. METHODS Forty male Sprague-Dawley rats were randomly divided into five groups (n = 8 per group): sham group, ropivacaine group, ropivacaine+8-Br-cADPR (5 nmol) group, ropivacaine+8-Br-cADPR (10 nmol) group, and ropivacaine+8-Br-cADPR (20 nmol) group (no rats died). Rats were intracerebroventricularly injected with normal saline or 8-Br-cADPR 30 min before receiving an intraperitoneal injection of ropivacaine. Electroencephalography and convulsion behavior scores were recorded. The hippocampus was harvested from each group and subjected to nicotinamide adenine dinucleotide and cADPR assays, Western blotting analysis, and malondialdehyde (MDA) and superoxide dismutase (SOD) assays. RESULTS Intraperitoneal injection of ropivacaine (33.8 mg/kg) induced convulsions in rats. CD38 and cADPR levels increased significantly following ropivacaine-induced convulsion (P = 0.031 and 0.020, respectively, compared with the sham group). Intraventricular injection of 8-Br-cADPR (5, 10, and 20 nmol) significantly prolonged convulsion latency (P = 0.037, 0.034, and 0.000, respectively), reduced convulsion duration (P = 0.005, 0.005, and 0.005, respectively), and reduced convulsion behavior scores (P = 0.015, 0.015, and 0.000, respectively). Intraventricular injection of 8-Br-cADPR (10 nmol) also increased the B-cell lymphoma-2 (Bcl-2)/Bcl-2-associated X protein ratio (P = 0.044) and reduced cleaved Caspase 3/Caspase 3 ratio, inducible nitric oxide synthase, MDA and SOD levels (P = 0.014, 0.044, 0.001, and 0.010, respectively) compared with the ropivacaine group. CONCLUSIONS The CD38/cADPR pathway is activated in ropivacaine-induced convulsion. Inhibiting this pathway alleviates ropivacaine-induced convulsion and protects the brain from apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Yu Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xin He
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qian-Yi Peng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qu-Lian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
13
|
Ye Q, Meng X, Jiang L. Identification and assessment of residual levels of the main oxidation product of tert-butylhydroquinone in frying oils after heating and its cytotoxicity to RAW 264.7 cells. Food Chem 2018; 264:293-300. [PMID: 29853379 DOI: 10.1016/j.foodchem.2018.05.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/01/2018] [Accepted: 05/11/2018] [Indexed: 12/14/2022]
Abstract
tert-Butylhydroquinone (TBHQ) losses and the residual levels of 2-tert-butyl-1,4-benzoquinone (TBBQ) in tripalmitin at different heating temperatures with or without reflux over various time intervals were investigated. Heating at 120 °C resulted in the slowest TBHQ loss and the highest TBBQ levels (52.61-62.93 μg/mL). The highest TBBQ concentrations (111.73-164.67 μg/mL) at 5 and 8 h and residual concentrations of 10.23-46.95 μg/mL during heating at 170 °C over 24 h were observed. Furthermore, the potential cytotoxicity of TBBQ to RAW 264.7 cells was evaluated with the MTT assay, Hoechst 33258 staining test, and flow cytometry analysis. Results indicate that TBBQ dose- and time-dependently decreased the growth of cells and inhibited DNA synthesis by regulating the S/G2 transition. The TBBQ concentration giving 50% inhibition in RAW 264.7 cells was 10.71 μg/mL. This threshold value is lower than the residual level of TBBQ in oil, indicating the necessity for concerns over the safety of fried food in terms of TBBQ residues.
Collapse
Key Words
- 2,5-Di-tert-butyl-1,4-benzoquinone (PubChem CID: 17161)
- 2,5-Di-tert-butylhydroquinone (PubChem CID: 2374)
- 2,6-Di-tert-butylcyclohexa-2,5-diene-1,4-dione (PubChem CID: 12867)
- 2,6-Di-tert-butylhydroquinone (PubChem CID: 75550)
- 2-tert-Butyl-1,4-benzoquinone
- 2-tert-Butyl-1,4-benzoquinone (PubChem CID: 19211)
- 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (PubChem CID: 64965)
- Apoptosis
- Oxidation
- RAW 264.7 cells
- Thymoquinone (PubChem CID: 10281)
- Viability
- tert-Butylhydroquinone
- tert-Butylhydroquinone (PubChem CID: 16043)
Collapse
Affiliation(s)
- Qin Ye
- Ocean College, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xianghe Meng
- Ocean College, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| |
Collapse
|