1
|
Kasahara E, Kitamura Y, Katada M, Mizuki M, Okumura N, Sano T, Koizumi Y, Maeda K, Takahashi-Ando N, Kimura M, Nakajima Y. Attempting to Create a Pathway to 15-Deacetylcalonectrin with Limited Accumulation in Cultures of Fusarium Tri3 Mutants: Insight into Trichothecene Biosynthesis Machinery. Int J Mol Sci 2024; 25:6414. [PMID: 38928120 PMCID: PMC11203908 DOI: 10.3390/ijms25126414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The compound 15-deacetylcalonectrin (15-deCAL) is a common pathway intermediate in the biosynthesis of Fusarium trichothecenes. This tricyclic intermediate is metabolized to calonectrin (CAL) by trichothecene 15-O-acetyltransferase encoded by Tri3. Unlike other trichothecene pathway Tri gene mutants, the Δtri3 mutant produces lower amounts of the knocked-out enzyme's substrate 15-deCAL, and instead, accumulates higher quantities of earlier bicyclic intermediate and shunt metabolites. Furthermore, evolutionary studies suggest that Tri3 may play a role in shaping the chemotypes of trichothecene-producing Fusarium strains. To better understand the functional role of Tri3p in biosynthesis and evolution, we aimed to develop a method to produce 15-deCAL by using transgenic Fusarium graminearum strains derived from a trichothecene overproducer. Unfortunately, introducing mutant Tri3, encoding a catalytically impaired but structurally intact acetylase, did not improve the low 15-deCAL production level of the ΔFgtri3 deletion strain, and the bicyclic products continued to accumulate as the major metabolites of the active-site mutant. These findings are discussed in light of the enzyme responsible for 15-deCAL production in trichothecene biosynthesis machinery. To efficiently produce 15-deCAL, we tested an alternative strategy of using a CAL-overproducing transformant. By feeding a crude CAL extract to a Fusarium commune strain that was isolated in this study and capable of specifically deacetylating C-15 acetyl, 15-deCAL was efficiently recovered. The substrate produced in this manner can be used for kinetic investigations of this enzyme and its possible role in chemotype diversification.
Collapse
Affiliation(s)
- Ena Kasahara
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan; (E.K.); (Y.K.); (M.K.); (M.M.); (N.O.); (T.S.); (K.M.)
| | - Yuna Kitamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan; (E.K.); (Y.K.); (M.K.); (M.M.); (N.O.); (T.S.); (K.M.)
| | - Miho Katada
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan; (E.K.); (Y.K.); (M.K.); (M.M.); (N.O.); (T.S.); (K.M.)
| | - Masashi Mizuki
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan; (E.K.); (Y.K.); (M.K.); (M.M.); (N.O.); (T.S.); (K.M.)
| | - Natsuki Okumura
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan; (E.K.); (Y.K.); (M.K.); (M.M.); (N.O.); (T.S.); (K.M.)
| | - Tomomi Sano
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan; (E.K.); (Y.K.); (M.K.); (M.M.); (N.O.); (T.S.); (K.M.)
| | - Yoshiaki Koizumi
- Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe 350-8585, Saitama, Japan; (Y.K.); (N.T.-A.)
| | - Kazuyuki Maeda
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan; (E.K.); (Y.K.); (M.K.); (M.M.); (N.O.); (T.S.); (K.M.)
| | - Naoko Takahashi-Ando
- Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe 350-8585, Saitama, Japan; (Y.K.); (N.T.-A.)
| | - Makoto Kimura
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan; (E.K.); (Y.K.); (M.K.); (M.M.); (N.O.); (T.S.); (K.M.)
| | - Yuichi Nakajima
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan; (E.K.); (Y.K.); (M.K.); (M.M.); (N.O.); (T.S.); (K.M.)
| |
Collapse
|
2
|
Koizumi Y, Nakajima Y, Tanaka Y, Matsui K, Sakabe M, Maeda K, Sato M, Koshino H, Sato S, Kimura M, Takahashi-Ando N. A Role in 15-Deacetylcalonectrin Acetylation in the Non-Enzymatic Cyclization of an Earlier Bicyclic Intermediate in Fusarium Trichothecene Biosynthesis. Int J Mol Sci 2024; 25:4288. [PMID: 38673874 PMCID: PMC11050026 DOI: 10.3390/ijms25084288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The trichothecene biosynthesis in Fusarium begins with the cyclization of farnesyl pyrophosphate to trichodiene, followed by subsequent oxygenation to isotrichotriol. This initial bicyclic intermediate is further cyclized to isotrichodermol (ITDmol), a tricyclic precursor with a toxic trichothecene skeleton. Although the first cyclization and subsequent oxygenation are catalyzed by enzymes encoded by Tri5 and Tri4, the second cyclization occurs non-enzymatically. Following ITDmol formation, the enzymes encoded by Tri101, Tri11, Tri3, and Tri1 catalyze 3-O-acetylation, 15-hydroxylation, 15-O-acetylation, and A-ring oxygenation, respectively. In this study, we extensively analyzed the metabolites of the corresponding pathway-blocked mutants of Fusarium graminearum. The disruption of these Tri genes, except Tri3, led to the accumulation of tricyclic trichothecenes as the main products: ITDmol due to Tri101 disruption; a mixture of isotrichodermin (ITD), 7-hydroxyisotrichodermin (7-HIT), and 8-hydroxyisotrichodermin (8-HIT) due to Tri11 disruption; and a mixture of calonectrin and 3-deacetylcalonectrin due to Tri1 disruption. However, the ΔFgtri3 mutant accumulated substantial amounts of bicyclic metabolites, isotrichotriol and trichotriol, in addition to tricyclic 15-deacetylcalonectrin (15-deCAL). The ΔFgtri5ΔFgtri3 double gene disruptant transformed ITD into 7-HIT, 8-HIT, and 15-deCAL. The deletion of FgTri3 and overexpression of Tri6 and Tri10 trichothecene regulatory genes did not result in the accumulation of 15-deCAL in the transgenic strain. Thus, the absence of Tri3p and/or the presence of a small amount of 15-deCAL adversely affected the non-enzymatic second cyclization and C-15 hydroxylation steps.
Collapse
Affiliation(s)
- Yoshiaki Koizumi
- Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe 350-8585, Japan; (Y.K.); (S.S.)
| | - Yuichi Nakajima
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (Y.N.); (Y.T.); (K.M.); (K.M.)
| | - Yuya Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (Y.N.); (Y.T.); (K.M.); (K.M.)
| | - Kosuke Matsui
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (Y.N.); (Y.T.); (K.M.); (K.M.)
| | - Masato Sakabe
- Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe 350-8585, Japan;
| | - Kazuyuki Maeda
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (Y.N.); (Y.T.); (K.M.); (K.M.)
| | - Masayuki Sato
- Plant & Microbial Engineering Research Unit, Discovery Research Institute (DRI) RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan;
| | - Hiroyuki Koshino
- Molecular Structure Characterization Unit, Technology Platform Division, Center for Sustainable Resource Science (CSRS) RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan;
| | - Soichi Sato
- Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe 350-8585, Japan; (Y.K.); (S.S.)
- Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe 350-8585, Japan;
| | - Makoto Kimura
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (Y.N.); (Y.T.); (K.M.); (K.M.)
- Plant & Microbial Engineering Research Unit, Discovery Research Institute (DRI) RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan;
| | - Naoko Takahashi-Ando
- Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe 350-8585, Japan; (Y.K.); (S.S.)
- Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe 350-8585, Japan;
- Plant & Microbial Engineering Research Unit, Discovery Research Institute (DRI) RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan;
| |
Collapse
|
3
|
Wang X, Meng Q, Chen H, Yin X, Dai H, Zhao P, Pan Y, Xia X, Zhang L. Secondary metabolites isolated from Penicillium christenseniae SD.84 and their antimicrobial resistance effects. Nat Prod Res 2024; 38:1311-1319. [PMID: 36336920 DOI: 10.1080/14786419.2022.2140150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/03/2022] [Accepted: 10/15/2022] [Indexed: 11/09/2022]
Abstract
A pair of new quinolone alkaloid enantiomers, (Ra)-(-)-viridicatol (1) and (Sa)-(+)-viridicatol (4), and seven known compounds, namely, 2, 3 and 5-9, were isolated from Penicillium christenseniae SD.84. The structures of 1 and 4 were determined using NMR and HRESIMS data. Theoretical calculations through CD and ECD confirmed 1 and 4 as a pair of enantiomers. The MIC values of 4 against Staphylococcus aureus and methicillin-resistant S. aureus were 12.4 and 24.7 μM, respectively, compound 1 had no inhibitory activity. Antimicrobial assays of 2, 3, and 5-7 showed a moderate activity against S. aureus and methicillin-resistant S. aureus. This study demonstrated the remarkable potential of Penicillium sp. to produce new drug-resistant leading compounds, thereby advancing the mining for new sources of antimicrobial agents.
Collapse
Affiliation(s)
- Xinzhu Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Qixia District, China
| | - Qingzhou Meng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Haiyan Chen
- Medical College of Guangxi University, Nanning, China
| | - Xin Yin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Peipei Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Qixia District, China
| | - Xuekui Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lixin Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
4
|
Chen L, Yang J, Wang H, Yang X, Zhang C, Zhao Z, Wang J. NX toxins: New threat posed by Fusarium graminearum species complex. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Matsui K, Takeda H, Shinkai K, Kakinuma T, Koizumi Y, Kase M, Yoshinari T, Minegishi H, Nakajima Y, Aikawa S, Takahashi-Ando N, Kimura M. 4- O-Glucosylation of Trichothecenes by Fusarium Species: A Phase II Xenobiotic Metabolism for t-Type Trichothecene Producers. Int J Mol Sci 2021; 22:13542. [PMID: 34948339 PMCID: PMC8709292 DOI: 10.3390/ijms222413542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 11/24/2022] Open
Abstract
The t-type trichothecene producers Fusarium sporotrichioides and Fusarium graminearum protect themselves against their own mycotoxins by acetylating the C-3 hydroxy group with Tri101p acetylase. To understand the mechanism by which they deal with exogenously added d-type trichothecenes, the Δtri5 mutants expressing all but the first trichothecene pathway enzymes were fed with trichodermol (TDmol), trichothecolone (TCC), 8-deoxytrichothecin, and trichothecin. LC-MS/MS and NMR analyses showed that these C-3 unoxygenated trichothecenes were conjugated with glucose at C-4 by α-glucosidic linkage. As t-type trichothecenes are readily incorporated into the biosynthetic pathway following the C-3 acetylation, the mycotoxins were fed to the ΔFgtri5ΔFgtri101 mutant to examine their fate. LC-MS/MS and NMR analyses demonstrated that the mutant conjugated glucose at C-4 of HT-2 toxin (HT-2) by α-glucosidic linkage, while the ΔFgtri5 mutant metabolized HT-2 to 3-acetyl HT-2 toxin and T-2 toxin. The 4-O-glucosylation of exogenously added t-type trichothecenes appears to be a general response of the ΔFgtri5ΔFgtri101 mutant, as nivalenol and its acetylated derivatives appeared to be conjugated with hexose to some extent. The toxicities of 4-O-glucosides of TDmol, TCC, and HT-2 were much weaker than their corresponding aglycons, suggesting that 4-O-glucosylation serves as a phase II xenobiotic metabolism for t-type trichothecene producers.
Collapse
Affiliation(s)
- Kosuke Matsui
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan; (K.M.); (Y.N.); (M.K.)
| | - Hirone Takeda
- Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe 350-8585, Saitama, Japan; (H.T.); (K.S.); (Y.K.); (M.K.); (H.M.)
| | - Koki Shinkai
- Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe 350-8585, Saitama, Japan; (H.T.); (K.S.); (Y.K.); (M.K.); (H.M.)
| | - Takao Kakinuma
- Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe 350-8585, Saitama, Japan;
| | - Yoshiaki Koizumi
- Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe 350-8585, Saitama, Japan; (H.T.); (K.S.); (Y.K.); (M.K.); (H.M.)
| | - Masahiro Kase
- Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe 350-8585, Saitama, Japan; (H.T.); (K.S.); (Y.K.); (M.K.); (H.M.)
| | - Tomoya Yoshinari
- Division of Microbiology, National Institute of Health and Sciences, Kawasaki 210-9501, Kanagawa, Japan;
| | - Hiroaki Minegishi
- Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe 350-8585, Saitama, Japan; (H.T.); (K.S.); (Y.K.); (M.K.); (H.M.)
| | - Yuichi Nakajima
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan; (K.M.); (Y.N.); (M.K.)
| | - Shunichi Aikawa
- Research Institute of Industrial Technology, Toyo University, 2100 Kujirai, Kawagoe 350-8585, Saitama, Japan;
| | - Naoko Takahashi-Ando
- Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe 350-8585, Saitama, Japan; (H.T.); (K.S.); (Y.K.); (M.K.); (H.M.)
- Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe 350-8585, Saitama, Japan;
- Research Institute of Industrial Technology, Toyo University, 2100 Kujirai, Kawagoe 350-8585, Saitama, Japan;
| | - Makoto Kimura
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan; (K.M.); (Y.N.); (M.K.)
| |
Collapse
|
6
|
Accumulation of 4-Deoxy-7-hydroxytrichothecenes, but Not 4,7-Dihydroxytrichothecenes, in Axenic Culture of a Transgenic Nivalenol Chemotype Expressing the NX-Type FgTri1 Gene. Int J Mol Sci 2021; 22:ijms222111428. [PMID: 34768859 PMCID: PMC8583793 DOI: 10.3390/ijms222111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Fusarium graminearum species complex produces type B trichothecenes oxygenated at C-7. In axenic liquid culture, F. graminearum mainly accumulates one of the three types of trichothecenes, namely 3-acetyldeoxyinvalenol, 15-acetyldeoxyinvalenol, or mixtures of 4,15-diacetylnivalenol/4-acetylnivalenol, depending on each strain's genetic background. The acetyl groups of these trichothecenes are slowly deacetylated to give deoxynivalenol (DON) or nivalenol (NIV) on solid medium culture. Due to the evolution of F. graminearum FgTri1, encoding a cytochrome P450 monooxygenase responsible for hydroxylation at both C-7 and C-8, new derivatives of DON, designated as NX-type trichothecenes, have recently emerged. To assess the risks of emergence of new NX-type trichothecenes, we examined the effects of replacing FgTri1 in the three chemotypes with FgTri1_NX chemotype, which encodes a cytochrome P450 monooxygenase that can only hydroxylate C-7 of trichothecenes. Similar to the transgenic DON chemotypes, the transgenic NIV chemotype strain accumulated NX-type 4-deoxytrichothecenes in axenic liquid culture. C-4 oxygenated trichothecenes were marginal, despite the presence of a functional FgTri13 encoding a C-4 hydroxylase. At present, outcrossing of the currently occurring NX chemotype with NIV chemotype strains of F. graminearum in the natural environment likely will not yield a new strain that produces a C-4 oxygenated NX-type trichothecene.
Collapse
|
7
|
Yang B, Zha R, Zhao W, Gong D, Meng X, Zhang Z, Zhu L, Qi N, Wang B. Comparative transcriptome analysis of the fungus Gibberella zeae transforming lithocholic acid into ursodeoxycholic acid. Biotechnol Lett 2021; 43:415-422. [PMID: 33179169 DOI: 10.1007/s10529-020-03048-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 11/04/2020] [Indexed: 10/23/2022]
Abstract
The comparative transcriptome analysis of the fungus Gibberella zeae which could efficiently catalyze the 7β-hydroxylation of LCA to produce UDCA was performed with LCA induction. This is the first time to report the comparative transcriptome of fungus under LCA treatment. Totally, 1364 differentially expressed genes including 770 up-regulated and 594 down-regulated genes were identified. In the 770 up-regulated genes, 12 genes with the function of hydroxylation were picked out by application of function screening, which were annotated as CYP450 or hydroxylase. Moreover, the qRT-PCR results of five up-regulated CYP450-like genes confirmed the credibility of RNA-Seq further. These results provide valuable information for the discovery of novel enzyme producing clinical drug UDCA from butchery byproduct LCA, and also might indicate some clues for the detoxification process of LCA in humans.
Collapse
Affiliation(s)
- Biling Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Renfen Zha
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Wenyan Zhao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Daoyong Gong
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Xinhua Meng
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Zhi Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| | - Na Qi
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
8
|
Maeda K, Tanaka Y, Matsuyama M, Sato M, Sadamatsu K, Suzuki T, Matsui K, Nakajima Y, Tokai T, Kanamaru K, Ohsato S, Kobayashi T, Fujimura M, Nishiuchi T, Takahashi-Ando N, Kimura M. Substrate specificities of Fusarium biosynthetic enzymes explain the genetic basis of a mixed chemotype producing both deoxynivalenol and nivalenol-type trichothecenes. Int J Food Microbiol 2020; 320:108532. [DOI: 10.1016/j.ijfoodmicro.2020.108532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 01/02/2020] [Accepted: 01/20/2020] [Indexed: 01/31/2023]
|
9
|
Tanaka N, Takushima R, Tanaka A, Okada A, Matsui K, Maeda K, Aikawa S, Kimura M, Takahashi-Ando N. Reduced Toxicity of Trichothecenes, Isotrichodermol, and Deoxynivalenol, by Transgenic Expression of the Tri101 3- O-Acetyltransferase Gene in Cultured Mammalian FM3A Cells. Toxins (Basel) 2019; 11:toxins11110654. [PMID: 31717667 PMCID: PMC6891669 DOI: 10.3390/toxins11110654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 11/16/2022] Open
Abstract
In trichothecene-producing fusaria, isotrichodermol (ITDol) is the first intermediate with a trichothecene skeleton. In the biosynthetic pathway of trichothecene, a 3-O-acetyltransferase, encoded by Tri101, acetylates ITDol to a less-toxic intermediate, isotrichodermin (ITD). Although trichothecene resistance has been conferred to microbes and plants transformed with Tri101, there are no reports of resistance in cultured mammalian cells. In this study, we found that a 3-O-acetyl group of trichothecenes is liable to hydrolysis by esterases in fetal bovine serum and FM3A cells. We transfected the cells with Tri101 under the control of the MMTV-LTR promoter and obtained a cell line G3 with the highest level of C-3 acetylase activity. While the wild-type FM3A cells hardly grew in the medium containing 0.40 μM ITDol, many G3 cells survived at this concentration. The IC50 values of ITDol and ITD in G3 cells were 1.0 and 9.6 μM, respectively, which were higher than the values of 0.23 and 3.0 μM in the wild-type FM3A cells. A similar, but more modest, tendency was observed in deoxynivalenol and 3-acetyldeoxynivalenol. Our findings indicate that the expression of Tri101 conferred trichothecene resistance in cultured mammalian cells.
Collapse
Affiliation(s)
- Nozomu Tanaka
- Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Ryo Takushima
- Graduate School of Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Akira Tanaka
- Graduate School of Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Ayaki Okada
- Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Kosuke Matsui
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan (M.K.)
| | - Kazuyuki Maeda
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan (M.K.)
| | - Shunichi Aikawa
- Research Institute of Industrial Technology, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Makoto Kimura
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan (M.K.)
| | - Naoko Takahashi-Ando
- Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
- Graduate School of Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
- Research Institute of Industrial Technology, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
- Correspondence: ; Tel.: +81-49-239-1384
| |
Collapse
|
10
|
Crippin T, Renaud JB, Sumarah MW, Miller JD. Comparing genotype and chemotype of Fusarium graminearum from cereals in Ontario, Canada. PLoS One 2019; 14:e0216735. [PMID: 31071188 PMCID: PMC6508712 DOI: 10.1371/journal.pone.0216735] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/26/2019] [Indexed: 01/21/2023] Open
Abstract
Fusarium graminearum is responsible for production of the mycotoxin deoxynivalenol (DON) on maize and wheat in Ontario, Canada. It has been understood since the early 1980s that in most parts of Canada, the predominant chemotype of F. graminearum is 15ADON, and not the 3ADON chemotype mainly found in Europe and Asia. The discovery of F. graminearum strains that did not produce DON but the structurally related 7-α hydroxy, 15-deacetylcalonectrin (3ANX) and its hydrolysis product 7-α hydroxy, 3,15-dideacetylcalonectrin to (NX) demonstrated that we still have a lot to learn about this well studied but complicated fungus. We conducted a survey of maize and wheat samples from Ontario farms. In the 2015 crop year, we isolated 86 strains and tested a representative subset of 20 using the published genetic probes for assessing genotype. We also developed a targeted LC-MS/MS method for the identification and quantitation of known toxins from this species to determine chemotype. The results showed that 80% of our strains produced some 3ANX in addition to 15ADON and one strain produced 3ANX and no 15ADON. Comparison of chemical data with genotyping revealed that in more than 50% of the cases there was no clear agreement. These data demonstrate the importance of chemical analysis for understanding the toxigenic potential of strains, especially using a LC-MS method that is capable of differentiating 3ADON and 15ADON. For this collection, genotyping of isolates did not produce reliable information on the chemotype. This is the first report of 3ANX toxin production concurrently with 15ADON and suggests that the 3ANX producers in North America likely originated from the 15ADON background.
Collapse
Affiliation(s)
- Trinda Crippin
- Department of Chemistry, Carleton University, Ottawa, Ontario, Canada
| | - Justin B. Renaud
- London Research and Development Center, Agriculture and Agri-Food Canada, London, Canada
| | - Mark W. Sumarah
- Department of Chemistry, Carleton University, Ottawa, Ontario, Canada
- London Research and Development Center, Agriculture and Agri-Food Canada, London, Canada
| | - J. David Miller
- Department of Chemistry, Carleton University, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
11
|
Xue H, Bi Y, Sun Y, Hussain R, Wang H, Zhang S, Zhang R, Long H, Nan M, Cheng X, Alejandro CU. Acetylsalicylic acid treatment reduce Fusarium rot development and neosolaniol accumulation in muskmelon fruit. Food Chem 2019; 289:278-284. [PMID: 30955613 DOI: 10.1016/j.foodchem.2019.02.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023]
Abstract
Fusarium rot of muskmelon is a common and frequently-occurring postharvest disease, which leads to quality deterioration and neosolaniol (NEO) contamination. New strategies to control postharvest decay and reduce NEO contamination are of paramount importance. The effects of acetylsalicylic acid (ASA) treatment on the growth of Fusarium sulphureum in vitro, and Fusarium rot development and NEO accumulation in fruits inoculated with F. sulphureum in vivo were investigated. The results showed that ASA inhibited the growth of F. sulphureum, evident morphological and major cellular changes were observed under the microscope. In vivo testing showed that 3.2 mg/mL ASA significantly suppressed Fusarium rot development and NEO accumulation after 6 and 8 d of pathogen inoculation. Meanwhile, Tri gene expressions involved in NEO biosynthesis were down-regulated after treatment. Taken together, ASA treatment not only reduced Fusarium rot development by inhibiting the growth of F. sulphureum, but decreased NEO accumulation by suppressing NEO biosynthesis pathway.
Collapse
Affiliation(s)
- Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yaxuan Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, PR China
| | - Raza Hussain
- Department of Food Science and Technology, Faculty of Life Sciences, University of Central Punjab, 1-Khayaban-e-Jinnah Johar Town, Lahore, Pakistan
| | - Hujun Wang
- College of Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Shan Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Rui Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Haitao Long
- College of Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Mina Nan
- College of Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Xiaoyan Cheng
- College of Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | | |
Collapse
|
12
|
Flynn CM, Broz K, Jonkers W, Schmidt-Dannert C, Kistler HC. Expression of the Fusarium graminearum terpenome and involvement of the endoplasmic reticulum-derived toxisome. Fungal Genet Biol 2019; 124:78-87. [PMID: 30664933 DOI: 10.1016/j.fgb.2019.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/29/2018] [Accepted: 01/14/2019] [Indexed: 12/26/2022]
Abstract
The sesquiterpenoid deoxynivalenol (DON) is an important trichothecene mycotoxin produced by the cereal pathogen Fusarium graminearum. DON is synthesized in specialized subcellular structures called toxisomes. The first step in DON synthesis is catalyzed by the sesquiterpene synthase (STS), Tri5 (trichodiene synthase), resulting in the cyclization of farnesyl diphosphate (FPP) to produce the sesquiterpene trichodiene. Tri5 is one of eight putative STSs in the F. graminearum genome. To better understand the F. graminearum terpenome, the volatile and soluble fractions of fungal cultures were sampled. Stringent regulation of sesquiterpene accumulation was observed. When grown in trichothecene induction medium, the fungus produces trichothecenes as well as several volatile non-trichothecene related sesquiterpenes, whereas no volatile terpenes were detected when grown in non-inducing medium. Surprisingly, a Δtri5 deletion strain grown in inducing conditions not only ceased accumulation of trichothecenes, but also failed to produce the non-trichothecene related sesquiterpenes. To test whether Tri5 from F. graminearum may be a promiscuous STS directly producing all observed sesquiterpenes, Tri5 was cloned and expressed in E. coli and shown to produce primarily trichodiene in addition to minor, related cyclization products. Therefore, while Tri5 expression in F. graminearum is necessary for non-trichothecene sesquiterpene biosynthesis, direct catalysis by Tri5 does not explain the sesquiterpene deficient phenotype observed in the Δtri5 strain. To test whether Tri5 protein, separate from its enzymatic activity, may be required for non-trichothecene synthesis, the Tri5 locus was replaced with an enzymatically inactive, but structurally unaffected tri5N225D S229T allele. This allele restores non-trichothecene synthesis but not trichothecene synthesis. The tri5N225D S229T allele also restores toxisome structure which is lacking in the Δtri5 deletion strain. Our results indicate that the Tri5 protein, but not its enzymatic activity, is also required for the synthesis of non-trichothecene related sesquiterpenes and the formation of toxisomes. Toxisomes thus not only may be important for DON synthesis, but also for the synthesis of other sesquiterpene mycotoxins such as culmorin by F. graminearum.
Collapse
Affiliation(s)
- Christopher M Flynn
- University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics, Saint Paul, MN, USA
| | - Karen Broz
- USDA ARS Cereal Disease Laboratory, Saint Paul, MN, USA
| | | | - Claudia Schmidt-Dannert
- University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics, Saint Paul, MN, USA
| | | |
Collapse
|
13
|
Kamata K, Sato H, Maeda K, Furihata K, Aikawa S, Adachi K, Tanaka A, Tokai T, Nakajima Y, Yoshida Y, Sakuda S, Kimura M, Takahashi-Ando N. Exploring an Artificial Metabolic Route in Fusarium sporotrichioides: Production and Characterization of 7-Hydroxy T-2 Toxin. JOURNAL OF NATURAL PRODUCTS 2018; 81:1041-1044. [PMID: 29578706 DOI: 10.1021/acs.jnatprod.7b00398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An artificial metabolic route to an unnatural trichothecene was designed by taking advantage of the broad substrate specificities of the T-2 toxin biosynthetic enzymes of Fusarium sporotrichioides. By feeding 7-hydroxyisotrichodermin, a shunt pathway metabolite of F. graminearum, to a trichodiene synthase-deficient mutant of F. sporotrichioides, 7-hydroxy T-2 toxin (1) was obtained as the final metabolite. Such an approach may have future applications in the metabolic engineering of a variety of fungal secondary metabolites. The toxicity of 7-hydroxy T-2 toxin was 10 times lower than that of T-2 toxin in HL-60 cells.
Collapse
Affiliation(s)
- Kentaro Kamata
- Graduate School of Engineering , Toyo University , 2100 Kujirai , Kawagoe , Saitama 350-8585 , Japan
| | - Hiroki Sato
- Graduate School of Science & Engineering , Toyo University , 2100 Kujirai , Kawagoe , Saitama 350-8585 , Japan
| | - Kazuyuki Maeda
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences , Nagoya University , Furo-cho, Chikusa-ku, Nagoya , Aichi 464-8601 , Japan
- Plant and Microbial Metabolic Engineering Research Unit , RIKEN DRI, 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Kazuo Furihata
- Department of Applied Biological Chemistry , The University of Tokyo , 1-1-1 Yayoi , Bunkyo-ku , Tokyo 113-8657 , Japan
| | - Shunichi Aikawa
- Research Institute of Industrial Technology , Toyo University , 2100 Kujirai , Kawagoe , Saitama 350-8585 , Japan
| | - Kentaro Adachi
- Graduate School of Science & Engineering , Toyo University , 2100 Kujirai , Kawagoe , Saitama 350-8585 , Japan
| | - Akira Tanaka
- Graduate School of Engineering , Toyo University , 2100 Kujirai , Kawagoe , Saitama 350-8585 , Japan
| | - Takeshi Tokai
- Plant and Microbial Metabolic Engineering Research Unit , RIKEN DRI, 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Yuichi Nakajima
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences , Nagoya University , Furo-cho, Chikusa-ku, Nagoya , Aichi 464-8601 , Japan
- Plant and Microbial Metabolic Engineering Research Unit , RIKEN DRI, 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Yasuhiko Yoshida
- Graduate School of Engineering , Toyo University , 2100 Kujirai , Kawagoe , Saitama 350-8585 , Japan
- Graduate School of Science & Engineering , Toyo University , 2100 Kujirai , Kawagoe , Saitama 350-8585 , Japan
- Research Institute of Industrial Technology , Toyo University , 2100 Kujirai , Kawagoe , Saitama 350-8585 , Japan
| | - Shohei Sakuda
- Department of Applied Biological Chemistry , The University of Tokyo , 1-1-1 Yayoi , Bunkyo-ku , Tokyo 113-8657 , Japan
| | - Makoto Kimura
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences , Nagoya University , Furo-cho, Chikusa-ku, Nagoya , Aichi 464-8601 , Japan
- Plant and Microbial Metabolic Engineering Research Unit , RIKEN DRI, 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Naoko Takahashi-Ando
- Graduate School of Engineering , Toyo University , 2100 Kujirai , Kawagoe , Saitama 350-8585 , Japan
- Graduate School of Science & Engineering , Toyo University , 2100 Kujirai , Kawagoe , Saitama 350-8585 , Japan
- Plant and Microbial Metabolic Engineering Research Unit , RIKEN DRI, 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
- Research Institute of Industrial Technology , Toyo University , 2100 Kujirai , Kawagoe , Saitama 350-8585 , Japan
| |
Collapse
|
14
|
Evolution of structural diversity of trichothecenes, a family of toxins produced by plant pathogenic and entomopathogenic fungi. PLoS Pathog 2018; 14:e1006946. [PMID: 29649280 PMCID: PMC5897003 DOI: 10.1371/journal.ppat.1006946] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 02/21/2018] [Indexed: 12/16/2022] Open
Abstract
Trichothecenes are a family of terpenoid toxins produced by multiple genera of fungi, including plant and insect pathogens. Some trichothecenes produced by the fungus Fusarium are among the mycotoxins of greatest concern to food and feed safety because of their toxicity and frequent occurrence in cereal crops, and trichothecene production contributes to pathogenesis of some Fusarium species on plants. Collectively, fungi produce over 150 trichothecene analogs: i.e., molecules that share the same core structure but differ in patterns of substituents attached to the core structure. Here, we carried out genomic, phylogenetic, gene-function, and analytical chemistry studies of strains from nine fungal genera to identify genetic variation responsible for trichothecene structural diversity and to gain insight into evolutionary processes that have contributed to the variation. The results indicate that structural diversity has resulted from gain, loss, and functional changes of trichothecene biosynthetic (TRI) genes. The results also indicate that the presence of some substituents has arisen independently in different fungi by gain of different genes with the same function. Variation in TRI gene duplication and number of TRI loci was also observed among the fungi examined, but there was no evidence that such genetic differences have contributed to trichothecene structural variation. We also inferred ancestral states of the TRI cluster and trichothecene biosynthetic pathway, and proposed scenarios for changes in trichothecene structures during divergence of TRI cluster homologs. Together, our findings provide insight into evolutionary processes responsible for structural diversification of toxins produced by pathogenic fungi. Toxins produced by pathogens can contribute to infection and/or colonization of hosts. Some toxins consist of a family of metabolites with similar but distinct chemical structures. This structural variation can affect biological activity, which in turn likely contributes to adaptation to different environments, including to different hosts. Trichothecene toxins consist of over 150 structurally distinct molecules produced by certain fungi, including some plant and insect pathogens. In multiple systems that have been examined, trichothecenes contribute to pathogenesis on plants. To elucidate the evolutionary processes that have given rise to trichothecene structural variation, we conducted comparative analyses of nine fungal genera, most of which produce different trichothecene structures. Using genomic, molecular biology, phylogenetic, and analytical chemistry approaches, we obtained evidence that trichothecene structural variation has arisen primarily from gain, loss, and functional changes of trichothecene biosynthetic genes. Our results also indicate that some structural changes have arisen independently in different fungi. Our findings provide insight into genetic and biochemical changes that can occur in toxin biosynthetic pathways as fungi with the pathways adapt to different environmental conditions.
Collapse
|
15
|
Maeda K, Izawa M, Nakajima Y, Jin Q, Hirose T, Nakamura T, Koshino H, Kanamaru K, Ohsato S, Kamakura T, Kobayashi T, Yoshida M, Kimura M. Increased metabolite production by deletion of an HDA1-type histone deacetylase in the phytopathogenic fungi, Magnaporthe oryzae (Pyricularia oryzae) and Fusarium asiaticum. Lett Appl Microbiol 2017; 65:446-452. [PMID: 28862744 DOI: 10.1111/lam.12797] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/10/2017] [Accepted: 08/27/2017] [Indexed: 11/29/2022]
Abstract
Histone deacetylases (HDACs) play an important role in the regulation of chromatin structure and gene expression. We found that dark pigmentation of Magnaporthe oryzae (anamorph Pyricularia oryzae) ΔMohda1, a mutant strain in which an orthologue of the yeast HDA1 was disrupted by double cross-over homologous recombination, was significantly stimulated in liquid culture. Analysis of metabolites in a ΔMohda1 mutant culture revealed that the accumulation of shunt products of the 1,8-dihydroxynaphthalene melanin and ergosterol pathways were significantly enhanced compared to the wild-type strain. Northern blot analysis of the ΔMohda1 mutant revealed transcriptional activation of three melanin genes that are dispersed throughout the genome of M. oryzae. The effect of deletion of the yeast HDA1 orthologue was also observed in Fusarium asiaticum from the Fusarium graminearum species complex; the HDF2 deletion mutant produced increased levels of nivalenol-type trichothecenes. These results suggest that histone modification via HDA1-type HDAC regulates the production of natural products in filamentous fungi. SIGNIFICANCE AND IMPACT OF THE STUDY Natural products of fungi have significant impacts on human welfare, in both detrimental and beneficial ways. Although HDA1-type histone deacetylase is not essential for vegetative growth, deletion of the gene affects the expression of clustered secondary metabolite genes in some fungi. Here, we report that such phenomena are also observed in physically unlinked genes required for melanin biosynthesis in the rice blast fungus. In addition, production of Fusarium trichothecenes, previously reported to be unaffected by HDA1 deletion, was significantly upregulated in another Fusarium species. Thus, the HDA1-inactivation strategy may be regarded as a general approach for overproduction and/or discovery of fungal metabolites.
Collapse
Affiliation(s)
- K Maeda
- Chemical Genetics Laboratory, RIKEN, Wako, Saitama, Japan.,Department of Biological Mechanisms and Function, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan.,Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - M Izawa
- Chemical Genetics Laboratory, RIKEN, Wako, Saitama, Japan.,Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Y Nakajima
- Department of Biological Mechanisms and Function, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Q Jin
- Department of Biological Mechanisms and Function, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - T Hirose
- Chemical Genetics Laboratory, RIKEN, Wako, Saitama, Japan.,Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - T Nakamura
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science (CSRS), Wako, Saitama, Japan
| | - H Koshino
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science (CSRS), Wako, Saitama, Japan
| | - K Kanamaru
- Department of Biological Mechanisms and Function, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - S Ohsato
- Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - T Kamakura
- Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - T Kobayashi
- Department of Biological Mechanisms and Function, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - M Yoshida
- Chemical Genetics Laboratory, RIKEN, Wako, Saitama, Japan
| | - M Kimura
- Chemical Genetics Laboratory, RIKEN, Wako, Saitama, Japan.,Department of Biological Mechanisms and Function, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
16
|
Maeda K, Nakajima Y, Motoyama T, Kondoh Y, Kawamura T, Kanamaru K, Ohsato S, Nishiuchi T, Yoshida M, Osada H, Kobayashi T, Kimura M. Identification of a trichothecene production inhibitor by chemical array and library screening using trichodiene synthase as a target protein. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 138:1-7. [PMID: 28456298 DOI: 10.1016/j.pestbp.2017.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/20/2017] [Accepted: 03/21/2017] [Indexed: 06/07/2023]
Abstract
Trichothecene mycotoxins often accumulate in apparently normal grains of cereal crops. In an effort to develop an agricultural chemical to reduce trichothecene contamination, we screened trichothecene production inhibitors from the compounds on the chemical arrays. By using the trichodiene (TDN) synthase tagged with hexahistidine (rTRI5) as a target protein, 32 hit compounds were obtained from chemical library of the RIKEN Natural Product Depository (NPDepo) by chemical array screening. At 10μgmL-1, none of the 32 chemicals inhibited trichothecene production by Fusarium graminearum in liquid culture. Against the purified rTRI5 enzyme, however, NPD10133 [progesterone 3-(O-carboxymethyl)oxime amide-bonded to phenylalanine] showed weak inhibitory activity at 10μgmL-1 (18.7μM). For the screening of chemicals inhibiting trichothecene accumulation in liquid culture, 20 analogs of NPD10133 selected from the NPDepo chemical library were assayed. At 10μM, only NPD352 [testosterone 3-(O-carboxymethyl)oxime amide-bonded to phenylalanine methyl ester] inhibited rTRI5 activity and trichothecene production. Kinetic analysis suggested that the enzyme inhibition was of a mixed-type. The identification of NPD352 as a TDN synthase inhibitor lays the foundation for the development of a more potent inhibitor via systematic introduction of wide structural diversity on the gonane skeleton and amino acid residues.
Collapse
Affiliation(s)
- Kazuyuki Maeda
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan; Graduate School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Yuichi Nakajima
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan; Chemical Genetics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takayuki Motoyama
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasumitsu Kondoh
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tatsuro Kawamura
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kyoko Kanamaru
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Shuichi Ohsato
- Graduate School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Takumi Nishiuchi
- Division of Functional Genomics, Advanced Science Research Centre, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-0934, Japan
| | - Minoru Yoshida
- Chemical Genetics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tetsuo Kobayashi
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Makoto Kimura
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
| |
Collapse
|
17
|
Nakajima Y, Maeda K, Jin Q, Takahashi-Ando N, Kanamaru K, Kobayashi T, Kimura M. Oligosaccharides containing an α-(1→2) (glucosyl/xylosyl)-fructosyl linkage as inducer molecules of trichothecene biosynthesis for Fusarium graminearum. Int J Food Microbiol 2016; 238:215-221. [PMID: 27664790 DOI: 10.1016/j.ijfoodmicro.2016.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/08/2016] [Accepted: 09/15/2016] [Indexed: 11/27/2022]
Abstract
Fructo-oligosaccharides containing a sucrose unit are reported as carbon sources necessary for trichothecene production by Fusarium graminearum. Here we demonstrate that trichothecene production is induced when at least 100μM sucrose is added to a culture medium containing 333mM glucose in a 24-well plate. When glucose, the main carbon source of the medium, was replaced with galactose, maltose, or sorbitol, the addition of 100μM sucrose could no longer induce trichothecene production. However, replacing half the amount of each carbon source with glucose restored the trichothecene production-inducing activity of sucrose. Detailed investigations with media containing various concentrations of galactose and glucose as carbon sources suggested that operation of the galactose catabolic pathway for energy conservation affected trichothecene biosynthesis induction by sucrose. Trichothecene production was also induced by 100μM of either raffinose or xylosucrose in axenic liquid culture medium containing glucose as the major carbon source. These results demonstrate that sucrose derivatives are not necessary as a carbon source for inducing trichothecene biosynthesis, and that the minimum structural requirement for sugars to function as trichothecene production-inducer molecules is to contain an α-(1→2) (glucosyl/xylosyl)-fructosyl linkage.
Collapse
Affiliation(s)
- Yuichi Nakajima
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Kazuyuki Maeda
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Qi Jin
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Naoko Takahashi-Ando
- Graduate School of Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Kyoko Kanamaru
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Tetsuo Kobayashi
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Makoto Kimura
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan.
| |
Collapse
|